/* * Copyright © 2014 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Connor Abbott (cwabbott0@gmail.com) * */ #include "nir.h" #include "nir_builder.h" #include "nir_control_flow_private.h" #include "nir_worklist.h" #include "util/half_float.h" #include #include #include #include "util/u_math.h" #include "util/u_qsort.h" #include "main/menums.h" /* BITFIELD64_MASK */ #ifndef NDEBUG uint32_t nir_debug = 0; bool nir_debug_print_shader[MESA_SHADER_KERNEL + 1] = { 0 }; static const struct debug_named_value nir_debug_control[] = { { "clone", NIR_DEBUG_CLONE, "Test cloning a shader at each successful lowering/optimization call" }, { "serialize", NIR_DEBUG_SERIALIZE, "Test serialize and deserialize shader at each successful lowering/optimization call" }, { "novalidate", NIR_DEBUG_NOVALIDATE, "Disable shader validation at each successful lowering/optimization call" }, { "validate_ssa_dominance", NIR_DEBUG_VALIDATE_SSA_DOMINANCE, "Validate SSA dominance in shader at each successful lowering/optimization call" }, { "validate_gc_list", NIR_DEBUG_VALIDATE_GC_LIST, "Validate the instruction GC list at each successful lowering/optimization call" }, { "tgsi", NIR_DEBUG_TGSI, "Dump NIR/TGSI shaders when doing a NIR<->TGSI translation" }, { "print", NIR_DEBUG_PRINT, "Dump resulting shader after each successful lowering/optimization call" }, { "print_vs", NIR_DEBUG_PRINT_VS, "Dump resulting vertex shader after each successful lowering/optimization call" }, { "print_tcs", NIR_DEBUG_PRINT_TCS, "Dump resulting tessellation control shader after each successful lowering/optimization call" }, { "print_tes", NIR_DEBUG_PRINT_TES, "Dump resulting tessellation evaluation shader after each successful lowering/optimization call" }, { "print_gs", NIR_DEBUG_PRINT_GS, "Dump resulting geometry shader after each successful lowering/optimization call" }, { "print_fs", NIR_DEBUG_PRINT_FS, "Dump resulting fragment shader after each successful lowering/optimization call" }, { "print_cs", NIR_DEBUG_PRINT_CS, "Dump resulting compute shader after each successful lowering/optimization call" }, { "print_ts", NIR_DEBUG_PRINT_TS, "Dump resulting task shader after each successful lowering/optimization call" }, { "print_ms", NIR_DEBUG_PRINT_MS, "Dump resulting mesh shader after each successful lowering/optimization call" }, { "print_rgs", NIR_DEBUG_PRINT_RGS, "Dump resulting raygen shader after each successful lowering/optimization call" }, { "print_ahs", NIR_DEBUG_PRINT_AHS, "Dump resulting any-hit shader after each successful lowering/optimization call" }, { "print_chs", NIR_DEBUG_PRINT_CHS, "Dump resulting closest-hit shader after each successful lowering/optimization call" }, { "print_mhs", NIR_DEBUG_PRINT_MHS, "Dump resulting miss-hit shader after each successful lowering/optimization call" }, { "print_is", NIR_DEBUG_PRINT_IS, "Dump resulting intersection shader after each successful lowering/optimization call" }, { "print_cbs", NIR_DEBUG_PRINT_CBS, "Dump resulting callable shader after each successful lowering/optimization call" }, { "print_ks", NIR_DEBUG_PRINT_KS, "Dump resulting kernel shader after each successful lowering/optimization call" }, { "print_consts", NIR_DEBUG_PRINT_CONSTS, "Print const value near each use of const SSA variable" }, { NULL } }; DEBUG_GET_ONCE_FLAGS_OPTION(nir_debug, "NIR_DEBUG", nir_debug_control, 0) static void nir_process_debug_variable_once(void) { nir_debug = debug_get_option_nir_debug(); nir_debug_print_shader[MESA_SHADER_VERTEX] = NIR_DEBUG(PRINT_VS); nir_debug_print_shader[MESA_SHADER_TESS_CTRL] = NIR_DEBUG(PRINT_TCS); nir_debug_print_shader[MESA_SHADER_TESS_EVAL] = NIR_DEBUG(PRINT_TES); nir_debug_print_shader[MESA_SHADER_GEOMETRY] = NIR_DEBUG(PRINT_GS); nir_debug_print_shader[MESA_SHADER_FRAGMENT] = NIR_DEBUG(PRINT_FS); nir_debug_print_shader[MESA_SHADER_COMPUTE] = NIR_DEBUG(PRINT_CS); nir_debug_print_shader[MESA_SHADER_TASK] = NIR_DEBUG(PRINT_TS); nir_debug_print_shader[MESA_SHADER_MESH] = NIR_DEBUG(PRINT_MS); nir_debug_print_shader[MESA_SHADER_RAYGEN] = NIR_DEBUG(PRINT_RGS); nir_debug_print_shader[MESA_SHADER_ANY_HIT] = NIR_DEBUG(PRINT_AHS); nir_debug_print_shader[MESA_SHADER_CLOSEST_HIT] = NIR_DEBUG(PRINT_CHS); nir_debug_print_shader[MESA_SHADER_MISS] = NIR_DEBUG(PRINT_MHS); nir_debug_print_shader[MESA_SHADER_INTERSECTION] = NIR_DEBUG(PRINT_IS); nir_debug_print_shader[MESA_SHADER_CALLABLE] = NIR_DEBUG(PRINT_CBS); nir_debug_print_shader[MESA_SHADER_KERNEL] = NIR_DEBUG(PRINT_KS); } void nir_process_debug_variable(void) { static once_flag flag = ONCE_FLAG_INIT; call_once(&flag, nir_process_debug_variable_once); } #endif /** Return true if the component mask "mask" with bit size "old_bit_size" can * be re-interpreted to be used with "new_bit_size". */ bool nir_component_mask_can_reinterpret(nir_component_mask_t mask, unsigned old_bit_size, unsigned new_bit_size) { assert(util_is_power_of_two_nonzero(old_bit_size)); assert(util_is_power_of_two_nonzero(new_bit_size)); if (old_bit_size == new_bit_size) return true; if (old_bit_size == 1 || new_bit_size == 1) return false; if (old_bit_size > new_bit_size) { unsigned ratio = old_bit_size / new_bit_size; return util_last_bit(mask) * ratio <= NIR_MAX_VEC_COMPONENTS; } unsigned iter = mask; while (iter) { int start, count; u_bit_scan_consecutive_range(&iter, &start, &count); start *= old_bit_size; count *= old_bit_size; if (start % new_bit_size != 0) return false; if (count % new_bit_size != 0) return false; } return true; } /** Re-interprets a component mask "mask" with bit size "old_bit_size" so that * it can be used can be used with "new_bit_size". */ nir_component_mask_t nir_component_mask_reinterpret(nir_component_mask_t mask, unsigned old_bit_size, unsigned new_bit_size) { assert(nir_component_mask_can_reinterpret(mask, old_bit_size, new_bit_size)); if (old_bit_size == new_bit_size) return mask; nir_component_mask_t new_mask = 0; unsigned iter = mask; while (iter) { int start, count; u_bit_scan_consecutive_range(&iter, &start, &count); start = start * old_bit_size / new_bit_size; count = count * old_bit_size / new_bit_size; new_mask |= BITFIELD_RANGE(start, count); } return new_mask; } static void nir_shader_destructor(void *ptr) { nir_shader *shader = ptr; /* Free all instrs from the shader, since they're not ralloced. */ list_for_each_entry_safe(nir_instr, instr, &shader->gc_list, gc_node) { nir_instr_free(instr); } } nir_shader * nir_shader_create(void *mem_ctx, gl_shader_stage stage, const nir_shader_compiler_options *options, shader_info *si) { nir_shader *shader = rzalloc(mem_ctx, nir_shader); ralloc_set_destructor(shader, nir_shader_destructor); #ifndef NDEBUG nir_process_debug_variable(); #endif exec_list_make_empty(&shader->variables); shader->options = options; if (si) { assert(si->stage == stage); shader->info = *si; } else { shader->info.stage = stage; } exec_list_make_empty(&shader->functions); list_inithead(&shader->gc_list); shader->num_inputs = 0; shader->num_outputs = 0; shader->num_uniforms = 0; return shader; } static nir_register * reg_create(void *mem_ctx, struct exec_list *list) { nir_register *reg = ralloc(mem_ctx, nir_register); list_inithead(®->uses); list_inithead(®->defs); list_inithead(®->if_uses); reg->num_components = 0; reg->bit_size = 32; reg->num_array_elems = 0; reg->divergent = false; exec_list_push_tail(list, ®->node); return reg; } nir_register * nir_local_reg_create(nir_function_impl *impl) { nir_register *reg = reg_create(ralloc_parent(impl), &impl->registers); reg->index = impl->reg_alloc++; return reg; } void nir_reg_remove(nir_register *reg) { exec_node_remove(®->node); } void nir_shader_add_variable(nir_shader *shader, nir_variable *var) { switch (var->data.mode) { case nir_var_function_temp: assert(!"nir_shader_add_variable cannot be used for local variables"); return; case nir_var_shader_temp: case nir_var_shader_in: case nir_var_shader_out: case nir_var_uniform: case nir_var_mem_ubo: case nir_var_mem_ssbo: case nir_var_image: case nir_var_mem_shared: case nir_var_system_value: case nir_var_mem_push_const: case nir_var_mem_constant: case nir_var_shader_call_data: case nir_var_ray_hit_attrib: case nir_var_mem_task_payload: case nir_var_mem_global: break; default: assert(!"invalid mode"); return; } exec_list_push_tail(&shader->variables, &var->node); } nir_variable * nir_variable_create(nir_shader *shader, nir_variable_mode mode, const struct glsl_type *type, const char *name) { nir_variable *var = rzalloc(shader, nir_variable); var->name = ralloc_strdup(var, name); var->type = type; var->data.mode = mode; var->data.how_declared = nir_var_declared_normally; if ((mode == nir_var_shader_in && shader->info.stage != MESA_SHADER_VERTEX && shader->info.stage != MESA_SHADER_KERNEL) || (mode == nir_var_shader_out && shader->info.stage != MESA_SHADER_FRAGMENT)) var->data.interpolation = INTERP_MODE_SMOOTH; if (mode == nir_var_shader_in || mode == nir_var_uniform) var->data.read_only = true; nir_shader_add_variable(shader, var); return var; } nir_variable * nir_local_variable_create(nir_function_impl *impl, const struct glsl_type *type, const char *name) { nir_variable *var = rzalloc(impl->function->shader, nir_variable); var->name = ralloc_strdup(var, name); var->type = type; var->data.mode = nir_var_function_temp; nir_function_impl_add_variable(impl, var); return var; } nir_variable * nir_find_variable_with_location(nir_shader *shader, nir_variable_mode mode, unsigned location) { assert(util_bitcount(mode) == 1 && mode != nir_var_function_temp); nir_foreach_variable_with_modes(var, shader, mode) { if (var->data.location == location) return var; } return NULL; } nir_variable * nir_find_variable_with_driver_location(nir_shader *shader, nir_variable_mode mode, unsigned location) { assert(util_bitcount(mode) == 1 && mode != nir_var_function_temp); nir_foreach_variable_with_modes(var, shader, mode) { if (var->data.driver_location == location) return var; } return NULL; } /* Annoyingly, qsort_r is not in the C standard library and, in particular, we * can't count on it on MSV and Android. So we stuff the CMP function into * each array element. It's a bit messy and burns more memory but the list of * variables should hever be all that long. */ struct var_cmp { nir_variable *var; int (*cmp)(const nir_variable *, const nir_variable *); }; static int var_sort_cmp(const void *_a, const void *_b, void *_cmp) { const struct var_cmp *a = _a; const struct var_cmp *b = _b; assert(a->cmp == b->cmp); return a->cmp(a->var, b->var); } void nir_sort_variables_with_modes(nir_shader *shader, int (*cmp)(const nir_variable *, const nir_variable *), nir_variable_mode modes) { unsigned num_vars = 0; nir_foreach_variable_with_modes(var, shader, modes) { ++num_vars; } struct var_cmp *vars = ralloc_array(shader, struct var_cmp, num_vars); unsigned i = 0; nir_foreach_variable_with_modes_safe(var, shader, modes) { exec_node_remove(&var->node); vars[i++] = (struct var_cmp){ .var = var, .cmp = cmp, }; } assert(i == num_vars); util_qsort_r(vars, num_vars, sizeof(*vars), var_sort_cmp, cmp); for (i = 0; i < num_vars; i++) exec_list_push_tail(&shader->variables, &vars[i].var->node); ralloc_free(vars); } nir_function * nir_function_create(nir_shader *shader, const char *name) { nir_function *func = ralloc(shader, nir_function); exec_list_push_tail(&shader->functions, &func->node); func->name = ralloc_strdup(func, name); func->shader = shader; func->num_params = 0; func->params = NULL; func->impl = NULL; func->is_entrypoint = false; func->is_preamble = false; return func; } static bool src_has_indirect(nir_src *src) { return !src->is_ssa && src->reg.indirect; } static void src_free_indirects(nir_src *src) { if (src_has_indirect(src)) { assert(src->reg.indirect->is_ssa || !src->reg.indirect->reg.indirect); free(src->reg.indirect); src->reg.indirect = NULL; } } static void dest_free_indirects(nir_dest *dest) { if (!dest->is_ssa && dest->reg.indirect) { assert(dest->reg.indirect->is_ssa || !dest->reg.indirect->reg.indirect); free(dest->reg.indirect); dest->reg.indirect = NULL; } } /* NOTE: if the instruction you are copying a src to is already added * to the IR, use nir_instr_rewrite_src() instead. */ void nir_src_copy(nir_src *dest, const nir_src *src) { src_free_indirects(dest); dest->is_ssa = src->is_ssa; if (src->is_ssa) { dest->ssa = src->ssa; } else { dest->reg.base_offset = src->reg.base_offset; dest->reg.reg = src->reg.reg; if (src->reg.indirect) { dest->reg.indirect = calloc(1, sizeof(nir_src)); nir_src_copy(dest->reg.indirect, src->reg.indirect); } else { dest->reg.indirect = NULL; } } } void nir_dest_copy(nir_dest *dest, const nir_dest *src) { /* Copying an SSA definition makes no sense whatsoever. */ assert(!src->is_ssa); dest_free_indirects(dest); dest->is_ssa = false; dest->reg.base_offset = src->reg.base_offset; dest->reg.reg = src->reg.reg; if (src->reg.indirect) { dest->reg.indirect = calloc(1, sizeof(nir_src)); nir_src_copy(dest->reg.indirect, src->reg.indirect); } else { dest->reg.indirect = NULL; } } void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src) { nir_src_copy(&dest->src, &src->src); dest->abs = src->abs; dest->negate = src->negate; for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; i++) dest->swizzle[i] = src->swizzle[i]; } void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src) { nir_dest_copy(&dest->dest, &src->dest); dest->write_mask = src->write_mask; dest->saturate = src->saturate; } bool nir_alu_src_is_trivial_ssa(const nir_alu_instr *alu, unsigned srcn) { static uint8_t trivial_swizzle[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }; STATIC_ASSERT(ARRAY_SIZE(trivial_swizzle) == NIR_MAX_VEC_COMPONENTS); const nir_alu_src *src = &alu->src[srcn]; unsigned num_components = nir_ssa_alu_instr_src_components(alu, srcn); return src->src.is_ssa && (src->src.ssa->num_components == num_components) && !src->abs && !src->negate && (memcmp(src->swizzle, trivial_swizzle, num_components) == 0); } static void cf_init(nir_cf_node *node, nir_cf_node_type type) { exec_node_init(&node->node); node->parent = NULL; node->type = type; } nir_function_impl * nir_function_impl_create_bare(nir_shader *shader) { nir_function_impl *impl = ralloc(shader, nir_function_impl); impl->function = NULL; impl->preamble = NULL; cf_init(&impl->cf_node, nir_cf_node_function); exec_list_make_empty(&impl->body); exec_list_make_empty(&impl->registers); exec_list_make_empty(&impl->locals); impl->reg_alloc = 0; impl->ssa_alloc = 0; impl->num_blocks = 0; impl->valid_metadata = nir_metadata_none; impl->structured = true; /* create start & end blocks */ nir_block *start_block = nir_block_create(shader); nir_block *end_block = nir_block_create(shader); start_block->cf_node.parent = &impl->cf_node; end_block->cf_node.parent = &impl->cf_node; impl->end_block = end_block; exec_list_push_tail(&impl->body, &start_block->cf_node.node); start_block->successors[0] = end_block; _mesa_set_add(end_block->predecessors, start_block); return impl; } nir_function_impl * nir_function_impl_create(nir_function *function) { assert(function->impl == NULL); nir_function_impl *impl = nir_function_impl_create_bare(function->shader); function->impl = impl; impl->function = function; return impl; } nir_block * nir_block_create(nir_shader *shader) { nir_block *block = rzalloc(shader, nir_block); cf_init(&block->cf_node, nir_cf_node_block); block->successors[0] = block->successors[1] = NULL; block->predecessors = _mesa_pointer_set_create(block); block->imm_dom = NULL; /* XXX maybe it would be worth it to defer allocation? This * way it doesn't get allocated for shader refs that never run * nir_calc_dominance? For example, state-tracker creates an * initial IR, clones that, runs appropriate lowering pass, passes * to driver which does common lowering/opt, and then stores ref * which is later used to do state specific lowering and futher * opt. Do any of the references not need dominance metadata? */ block->dom_frontier = _mesa_pointer_set_create(block); exec_list_make_empty(&block->instr_list); return block; } static inline void src_init(nir_src *src) { src->is_ssa = false; src->reg.reg = NULL; src->reg.indirect = NULL; src->reg.base_offset = 0; } nir_if * nir_if_create(nir_shader *shader) { nir_if *if_stmt = ralloc(shader, nir_if); if_stmt->control = nir_selection_control_none; cf_init(&if_stmt->cf_node, nir_cf_node_if); src_init(&if_stmt->condition); nir_block *then = nir_block_create(shader); exec_list_make_empty(&if_stmt->then_list); exec_list_push_tail(&if_stmt->then_list, &then->cf_node.node); then->cf_node.parent = &if_stmt->cf_node; nir_block *else_stmt = nir_block_create(shader); exec_list_make_empty(&if_stmt->else_list); exec_list_push_tail(&if_stmt->else_list, &else_stmt->cf_node.node); else_stmt->cf_node.parent = &if_stmt->cf_node; return if_stmt; } nir_loop * nir_loop_create(nir_shader *shader) { nir_loop *loop = rzalloc(shader, nir_loop); cf_init(&loop->cf_node, nir_cf_node_loop); /* Assume that loops are divergent until proven otherwise */ loop->divergent = true; nir_block *body = nir_block_create(shader); exec_list_make_empty(&loop->body); exec_list_push_tail(&loop->body, &body->cf_node.node); body->cf_node.parent = &loop->cf_node; body->successors[0] = body; _mesa_set_add(body->predecessors, body); return loop; } static void instr_init(nir_instr *instr, nir_instr_type type) { instr->type = type; instr->block = NULL; exec_node_init(&instr->node); } static void dest_init(nir_dest *dest) { dest->is_ssa = false; dest->reg.reg = NULL; dest->reg.indirect = NULL; dest->reg.base_offset = 0; } static void alu_dest_init(nir_alu_dest *dest) { dest_init(&dest->dest); dest->saturate = false; dest->write_mask = 0xf; } static void alu_src_init(nir_alu_src *src) { src_init(&src->src); src->abs = src->negate = false; for (int i = 0; i < NIR_MAX_VEC_COMPONENTS; ++i) src->swizzle[i] = i; } nir_alu_instr * nir_alu_instr_create(nir_shader *shader, nir_op op) { unsigned num_srcs = nir_op_infos[op].num_inputs; /* TODO: don't use calloc */ nir_alu_instr *instr = calloc(1, sizeof(nir_alu_instr) + num_srcs * sizeof(nir_alu_src)); instr_init(&instr->instr, nir_instr_type_alu); instr->op = op; alu_dest_init(&instr->dest); for (unsigned i = 0; i < num_srcs; i++) alu_src_init(&instr->src[i]); list_add(&instr->instr.gc_node, &shader->gc_list); return instr; } nir_deref_instr * nir_deref_instr_create(nir_shader *shader, nir_deref_type deref_type) { nir_deref_instr *instr = calloc(1, sizeof(*instr)); instr_init(&instr->instr, nir_instr_type_deref); instr->deref_type = deref_type; if (deref_type != nir_deref_type_var) src_init(&instr->parent); if (deref_type == nir_deref_type_array || deref_type == nir_deref_type_ptr_as_array) src_init(&instr->arr.index); dest_init(&instr->dest); list_add(&instr->instr.gc_node, &shader->gc_list); return instr; } nir_jump_instr * nir_jump_instr_create(nir_shader *shader, nir_jump_type type) { nir_jump_instr *instr = malloc(sizeof(*instr)); instr_init(&instr->instr, nir_instr_type_jump); src_init(&instr->condition); instr->type = type; instr->target = NULL; instr->else_target = NULL; list_add(&instr->instr.gc_node, &shader->gc_list); return instr; } nir_load_const_instr * nir_load_const_instr_create(nir_shader *shader, unsigned num_components, unsigned bit_size) { nir_load_const_instr *instr = calloc(1, sizeof(*instr) + num_components * sizeof(*instr->value)); instr_init(&instr->instr, nir_instr_type_load_const); nir_ssa_def_init(&instr->instr, &instr->def, num_components, bit_size); list_add(&instr->instr.gc_node, &shader->gc_list); return instr; } nir_intrinsic_instr * nir_intrinsic_instr_create(nir_shader *shader, nir_intrinsic_op op) { unsigned num_srcs = nir_intrinsic_infos[op].num_srcs; /* TODO: don't use calloc */ nir_intrinsic_instr *instr = calloc(1, sizeof(nir_intrinsic_instr) + num_srcs * sizeof(nir_src)); instr_init(&instr->instr, nir_instr_type_intrinsic); instr->intrinsic = op; if (nir_intrinsic_infos[op].has_dest) dest_init(&instr->dest); for (unsigned i = 0; i < num_srcs; i++) src_init(&instr->src[i]); list_add(&instr->instr.gc_node, &shader->gc_list); return instr; } nir_call_instr * nir_call_instr_create(nir_shader *shader, nir_function *callee) { const unsigned num_params = callee->num_params; nir_call_instr *instr = calloc(1, sizeof(*instr) + num_params * sizeof(instr->params[0])); instr_init(&instr->instr, nir_instr_type_call); instr->callee = callee; instr->num_params = num_params; for (unsigned i = 0; i < num_params; i++) src_init(&instr->params[i]); list_add(&instr->instr.gc_node, &shader->gc_list); return instr; } static int8_t default_tg4_offsets[4][2] = { { 0, 1 }, { 1, 1 }, { 1, 0 }, { 0, 0 }, }; nir_tex_instr * nir_tex_instr_create(nir_shader *shader, unsigned num_srcs) { nir_tex_instr *instr = calloc(1, sizeof(*instr)); instr_init(&instr->instr, nir_instr_type_tex); dest_init(&instr->dest); instr->num_srcs = num_srcs; instr->src = malloc(sizeof(nir_tex_src) * num_srcs); for (unsigned i = 0; i < num_srcs; i++) src_init(&instr->src[i].src); instr->texture_index = 0; instr->sampler_index = 0; memcpy(instr->tg4_offsets, default_tg4_offsets, sizeof(instr->tg4_offsets)); list_add(&instr->instr.gc_node, &shader->gc_list); return instr; } void nir_tex_instr_add_src(nir_tex_instr *tex, nir_tex_src_type src_type, nir_src src) { nir_tex_src *new_srcs = calloc(sizeof(*new_srcs), tex->num_srcs + 1); for (unsigned i = 0; i < tex->num_srcs; i++) { new_srcs[i].src_type = tex->src[i].src_type; nir_instr_move_src(&tex->instr, &new_srcs[i].src, &tex->src[i].src); } free(tex->src); tex->src = new_srcs; tex->src[tex->num_srcs].src_type = src_type; nir_instr_rewrite_src(&tex->instr, &tex->src[tex->num_srcs].src, src); tex->num_srcs++; } void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx) { assert(src_idx < tex->num_srcs); /* First rewrite the source to NIR_SRC_INIT */ nir_instr_rewrite_src(&tex->instr, &tex->src[src_idx].src, NIR_SRC_INIT); /* Now, move all of the other sources down */ for (unsigned i = src_idx + 1; i < tex->num_srcs; i++) { tex->src[i-1].src_type = tex->src[i].src_type; nir_instr_move_src(&tex->instr, &tex->src[i-1].src, &tex->src[i].src); } tex->num_srcs--; } bool nir_tex_instr_has_explicit_tg4_offsets(nir_tex_instr *tex) { if (tex->op != nir_texop_tg4) return false; return memcmp(tex->tg4_offsets, default_tg4_offsets, sizeof(tex->tg4_offsets)) != 0; } nir_phi_instr * nir_phi_instr_create(nir_shader *shader) { nir_phi_instr *instr = malloc(sizeof(*instr)); instr_init(&instr->instr, nir_instr_type_phi); dest_init(&instr->dest); exec_list_make_empty(&instr->srcs); list_add(&instr->instr.gc_node, &shader->gc_list); return instr; } /** * Adds a new source to a NIR instruction. * * Note that this does not update the def/use relationship for src, assuming * that the instr is not in the shader. If it is, you have to do: * * list_addtail(&phi_src->src.use_link, &src.ssa->uses); */ nir_phi_src * nir_phi_instr_add_src(nir_phi_instr *instr, nir_block *pred, nir_src src) { nir_phi_src *phi_src; phi_src = calloc(1, sizeof(nir_phi_src)); phi_src->pred = pred; phi_src->src = src; phi_src->src.parent_instr = &instr->instr; exec_list_push_tail(&instr->srcs, &phi_src->node); return phi_src; } nir_parallel_copy_instr * nir_parallel_copy_instr_create(nir_shader *shader) { nir_parallel_copy_instr *instr = malloc(sizeof(*instr)); instr_init(&instr->instr, nir_instr_type_parallel_copy); exec_list_make_empty(&instr->entries); list_add(&instr->instr.gc_node, &shader->gc_list); return instr; } nir_ssa_undef_instr * nir_ssa_undef_instr_create(nir_shader *shader, unsigned num_components, unsigned bit_size) { nir_ssa_undef_instr *instr = malloc(sizeof(*instr)); instr_init(&instr->instr, nir_instr_type_ssa_undef); nir_ssa_def_init(&instr->instr, &instr->def, num_components, bit_size); list_add(&instr->instr.gc_node, &shader->gc_list); return instr; } static nir_const_value const_value_float(double d, unsigned bit_size) { nir_const_value v; memset(&v, 0, sizeof(v)); switch (bit_size) { case 16: v.u16 = _mesa_float_to_half(d); break; case 32: v.f32 = d; break; case 64: v.f64 = d; break; default: unreachable("Invalid bit size"); } return v; } static nir_const_value const_value_int(int64_t i, unsigned bit_size) { nir_const_value v; memset(&v, 0, sizeof(v)); switch (bit_size) { case 1: v.b = i & 1; break; case 8: v.i8 = i; break; case 16: v.i16 = i; break; case 32: v.i32 = i; break; case 64: v.i64 = i; break; default: unreachable("Invalid bit size"); } return v; } nir_const_value nir_alu_binop_identity(nir_op binop, unsigned bit_size) { const int64_t max_int = (1ull << (bit_size - 1)) - 1; const int64_t min_int = -max_int - 1; switch (binop) { case nir_op_iadd: return const_value_int(0, bit_size); case nir_op_fadd: return const_value_float(0, bit_size); case nir_op_imul: return const_value_int(1, bit_size); case nir_op_fmul: return const_value_float(1, bit_size); case nir_op_imin: return const_value_int(max_int, bit_size); case nir_op_umin: return const_value_int(~0ull, bit_size); case nir_op_fmin: return const_value_float(INFINITY, bit_size); case nir_op_imax: return const_value_int(min_int, bit_size); case nir_op_umax: return const_value_int(0, bit_size); case nir_op_fmax: return const_value_float(-INFINITY, bit_size); case nir_op_iand: return const_value_int(~0ull, bit_size); case nir_op_ior: return const_value_int(0, bit_size); case nir_op_ixor: return const_value_int(0, bit_size); default: unreachable("Invalid reduction operation"); } } nir_function_impl * nir_cf_node_get_function(nir_cf_node *node) { while (node->type != nir_cf_node_function) { node = node->parent; } return nir_cf_node_as_function(node); } /* Reduces a cursor by trying to convert everything to after and trying to * go up to block granularity when possible. */ static nir_cursor reduce_cursor(nir_cursor cursor) { switch (cursor.option) { case nir_cursor_before_block: if (exec_list_is_empty(&cursor.block->instr_list)) { /* Empty block. After is as good as before. */ cursor.option = nir_cursor_after_block; } return cursor; case nir_cursor_after_block: return cursor; case nir_cursor_before_instr: { nir_instr *prev_instr = nir_instr_prev(cursor.instr); if (prev_instr) { /* Before this instruction is after the previous */ cursor.instr = prev_instr; cursor.option = nir_cursor_after_instr; } else { /* No previous instruction. Switch to before block */ cursor.block = cursor.instr->block; cursor.option = nir_cursor_before_block; } return reduce_cursor(cursor); } case nir_cursor_after_instr: if (nir_instr_next(cursor.instr) == NULL) { /* This is the last instruction, switch to after block */ cursor.option = nir_cursor_after_block; cursor.block = cursor.instr->block; } return cursor; default: unreachable("Inavlid cursor option"); } } bool nir_cursors_equal(nir_cursor a, nir_cursor b) { /* Reduced cursors should be unique */ a = reduce_cursor(a); b = reduce_cursor(b); return a.block == b.block && a.option == b.option; } static bool add_use_cb(nir_src *src, void *state) { nir_instr *instr = state; src->parent_instr = instr; list_addtail(&src->use_link, src->is_ssa ? &src->ssa->uses : &src->reg.reg->uses); return true; } static bool add_ssa_def_cb(nir_ssa_def *def, void *state) { nir_instr *instr = state; if (instr->block && def->index == UINT_MAX) { nir_function_impl *impl = nir_cf_node_get_function(&instr->block->cf_node); def->index = impl->ssa_alloc++; impl->valid_metadata &= ~nir_metadata_live_ssa_defs; } return true; } static bool add_reg_def_cb(nir_dest *dest, void *state) { nir_instr *instr = state; if (!dest->is_ssa) { dest->reg.parent_instr = instr; list_addtail(&dest->reg.def_link, &dest->reg.reg->defs); } return true; } static void add_defs_uses(nir_instr *instr) { nir_foreach_src(instr, add_use_cb, instr); nir_foreach_dest(instr, add_reg_def_cb, instr); nir_foreach_ssa_def(instr, add_ssa_def_cb, instr); } void nir_instr_insert(nir_cursor cursor, nir_instr *instr) { switch (cursor.option) { case nir_cursor_before_block: /* Only allow inserting jumps into empty blocks. */ if (instr->type == nir_instr_type_jump) assert(exec_list_is_empty(&cursor.block->instr_list)); instr->block = cursor.block; add_defs_uses(instr); exec_list_push_head(&cursor.block->instr_list, &instr->node); break; case nir_cursor_after_block: { /* Inserting instructions after a jump is illegal. */ nir_instr *last = nir_block_last_instr(cursor.block); assert(last == NULL || last->type != nir_instr_type_jump); (void) last; instr->block = cursor.block; add_defs_uses(instr); exec_list_push_tail(&cursor.block->instr_list, &instr->node); break; } case nir_cursor_before_instr: assert(instr->type != nir_instr_type_jump); instr->block = cursor.instr->block; add_defs_uses(instr); exec_node_insert_node_before(&cursor.instr->node, &instr->node); break; case nir_cursor_after_instr: /* Inserting instructions after a jump is illegal. */ assert(cursor.instr->type != nir_instr_type_jump); /* Only allow inserting jumps at the end of the block. */ if (instr->type == nir_instr_type_jump) assert(cursor.instr == nir_block_last_instr(cursor.instr->block)); instr->block = cursor.instr->block; add_defs_uses(instr); exec_node_insert_after(&cursor.instr->node, &instr->node); break; } if (instr->type == nir_instr_type_jump) nir_handle_add_jump(instr->block); nir_function_impl *impl = nir_cf_node_get_function(&instr->block->cf_node); impl->valid_metadata &= ~nir_metadata_instr_index; } bool nir_instr_move(nir_cursor cursor, nir_instr *instr) { /* If the cursor happens to refer to this instruction (either before or * after), don't do anything. */ if ((cursor.option == nir_cursor_before_instr || cursor.option == nir_cursor_after_instr) && cursor.instr == instr) return false; nir_instr_remove(instr); nir_instr_insert(cursor, instr); return true; } static bool src_is_valid(const nir_src *src) { return src->is_ssa ? (src->ssa != NULL) : (src->reg.reg != NULL); } static bool remove_use_cb(nir_src *src, void *state) { (void) state; if (src_is_valid(src)) list_del(&src->use_link); return true; } static bool remove_def_cb(nir_dest *dest, void *state) { (void) state; if (!dest->is_ssa) list_del(&dest->reg.def_link); return true; } static void remove_defs_uses(nir_instr *instr) { nir_foreach_dest(instr, remove_def_cb, instr); nir_foreach_src(instr, remove_use_cb, instr); } void nir_instr_remove_v(nir_instr *instr) { remove_defs_uses(instr); exec_node_remove(&instr->node); if (instr->type == nir_instr_type_jump) { nir_jump_instr *jump_instr = nir_instr_as_jump(instr); nir_handle_remove_jump(instr->block, jump_instr->type); } } static bool free_src_indirects_cb(nir_src *src, void *state) { src_free_indirects(src); return true; } static bool free_dest_indirects_cb(nir_dest *dest, void *state) { dest_free_indirects(dest); return true; } void nir_instr_free(nir_instr *instr) { nir_foreach_src(instr, free_src_indirects_cb, NULL); nir_foreach_dest(instr, free_dest_indirects_cb, NULL); switch (instr->type) { case nir_instr_type_tex: free(nir_instr_as_tex(instr)->src); break; case nir_instr_type_phi: { nir_phi_instr *phi = nir_instr_as_phi(instr); nir_foreach_phi_src_safe(phi_src, phi) { free(phi_src); } break; } default: break; } list_del(&instr->gc_node); free(instr); } void nir_instr_free_list(struct exec_list *list) { struct exec_node *node; while ((node = exec_list_pop_head(list))) { nir_instr *removed_instr = exec_node_data(nir_instr, node, node); nir_instr_free(removed_instr); } } static bool nir_instr_free_and_dce_live_cb(nir_ssa_def *def, void *state) { bool *live = state; if (!nir_ssa_def_is_unused(def)) { *live = true; return false; } else { return true; } } static bool nir_instr_free_and_dce_is_live(nir_instr *instr) { /* Note: don't have to worry about jumps because they don't have dests to * become unused. */ if (instr->type == nir_instr_type_intrinsic) { nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr); const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic]; if (!(info->flags & NIR_INTRINSIC_CAN_ELIMINATE)) return true; } bool live = false; nir_foreach_ssa_def(instr, nir_instr_free_and_dce_live_cb, &live); return live; } static bool nir_instr_dce_add_dead_srcs_cb(nir_src *src, void *state) { nir_instr_worklist *wl = state; if (src->is_ssa) { list_del(&src->use_link); if (!nir_instr_free_and_dce_is_live(src->ssa->parent_instr)) nir_instr_worklist_push_tail(wl, src->ssa->parent_instr); /* Stop nir_instr_remove from trying to delete the link again. */ src->ssa = NULL; } return true; } static void nir_instr_dce_add_dead_ssa_srcs(nir_instr_worklist *wl, nir_instr *instr) { nir_foreach_src(instr, nir_instr_dce_add_dead_srcs_cb, wl); } /** * Frees an instruction and any SSA defs that it used that are now dead, * returning a nir_cursor where the instruction previously was. */ nir_cursor nir_instr_free_and_dce(nir_instr *instr) { nir_instr_worklist *worklist = nir_instr_worklist_create(); nir_instr_dce_add_dead_ssa_srcs(worklist, instr); nir_cursor c = nir_instr_remove(instr); struct exec_list to_free; exec_list_make_empty(&to_free); nir_instr *dce_instr; while ((dce_instr = nir_instr_worklist_pop_head(worklist))) { nir_instr_dce_add_dead_ssa_srcs(worklist, dce_instr); /* If we're removing the instr where our cursor is, then we have to * point the cursor elsewhere. */ if ((c.option == nir_cursor_before_instr || c.option == nir_cursor_after_instr) && c.instr == dce_instr) c = nir_instr_remove(dce_instr); else nir_instr_remove(dce_instr); exec_list_push_tail(&to_free, &dce_instr->node); } nir_instr_free_list(&to_free); nir_instr_worklist_destroy(worklist); return c; } /*@}*/ void nir_index_local_regs(nir_function_impl *impl) { unsigned index = 0; foreach_list_typed(nir_register, reg, node, &impl->registers) { reg->index = index++; } impl->reg_alloc = index; } struct foreach_ssa_def_state { nir_foreach_ssa_def_cb cb; void *client_state; }; static inline bool nir_ssa_def_visitor(nir_dest *dest, void *void_state) { struct foreach_ssa_def_state *state = void_state; if (dest->is_ssa) return state->cb(&dest->ssa, state->client_state); else return true; } bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb, void *state) { switch (instr->type) { case nir_instr_type_alu: case nir_instr_type_deref: case nir_instr_type_tex: case nir_instr_type_intrinsic: case nir_instr_type_phi: case nir_instr_type_parallel_copy: { struct foreach_ssa_def_state foreach_state = {cb, state}; return nir_foreach_dest(instr, nir_ssa_def_visitor, &foreach_state); } case nir_instr_type_load_const: return cb(&nir_instr_as_load_const(instr)->def, state); case nir_instr_type_ssa_undef: return cb(&nir_instr_as_ssa_undef(instr)->def, state); case nir_instr_type_call: case nir_instr_type_jump: return true; default: unreachable("Invalid instruction type"); } } nir_ssa_def * nir_instr_ssa_def(nir_instr *instr) { switch (instr->type) { case nir_instr_type_alu: assert(nir_instr_as_alu(instr)->dest.dest.is_ssa); return &nir_instr_as_alu(instr)->dest.dest.ssa; case nir_instr_type_deref: assert(nir_instr_as_deref(instr)->dest.is_ssa); return &nir_instr_as_deref(instr)->dest.ssa; case nir_instr_type_tex: assert(nir_instr_as_tex(instr)->dest.is_ssa); return &nir_instr_as_tex(instr)->dest.ssa; case nir_instr_type_intrinsic: { nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr); if (nir_intrinsic_infos[intrin->intrinsic].has_dest) { assert(intrin->dest.is_ssa); return &intrin->dest.ssa; } else { return NULL; } } case nir_instr_type_phi: assert(nir_instr_as_phi(instr)->dest.is_ssa); return &nir_instr_as_phi(instr)->dest.ssa; case nir_instr_type_parallel_copy: unreachable("Parallel copies are unsupported by this function"); case nir_instr_type_load_const: return &nir_instr_as_load_const(instr)->def; case nir_instr_type_ssa_undef: return &nir_instr_as_ssa_undef(instr)->def; case nir_instr_type_call: case nir_instr_type_jump: return NULL; } unreachable("Invalid instruction type"); } bool nir_instr_def_is_register(nir_instr *instr) { switch (instr->type) { case nir_instr_type_alu: return !nir_instr_as_alu(instr)->dest.dest.is_ssa; case nir_instr_type_deref: return !nir_instr_as_deref(instr)->dest.is_ssa; case nir_instr_type_tex: return !nir_instr_as_tex(instr)->dest.is_ssa; case nir_instr_type_intrinsic: { nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr); return nir_intrinsic_infos[intrin->intrinsic].has_dest && !intrin->dest.is_ssa; } case nir_instr_type_phi: return !nir_instr_as_phi(instr)->dest.is_ssa; case nir_instr_type_parallel_copy: unreachable("Parallel copies are unsupported by this function"); case nir_instr_type_load_const: case nir_instr_type_ssa_undef: return false; case nir_instr_type_call: case nir_instr_type_jump: return false; } unreachable("Invalid instruction type"); } bool nir_foreach_phi_src_leaving_block(nir_block *block, nir_foreach_src_cb cb, void *state) { for (unsigned i = 0; i < ARRAY_SIZE(block->successors); i++) { if (block->successors[i] == NULL) continue; nir_foreach_instr(instr, block->successors[i]) { if (instr->type != nir_instr_type_phi) break; nir_phi_instr *phi = nir_instr_as_phi(instr); nir_foreach_phi_src(phi_src, phi) { if (phi_src->pred == block) { if (!cb(&phi_src->src, state)) return false; } } } } return true; } nir_const_value nir_const_value_for_float(double f, unsigned bit_size) { nir_const_value v; memset(&v, 0, sizeof(v)); switch (bit_size) { case 16: v.u16 = _mesa_float_to_half(f); break; case 32: v.f32 = f; break; case 64: v.f64 = f; break; default: unreachable("Invalid bit size"); } return v; } double nir_const_value_as_float(nir_const_value value, unsigned bit_size) { switch (bit_size) { case 16: return _mesa_half_to_float(value.u16); case 32: return value.f32; case 64: return value.f64; default: unreachable("Invalid bit size"); } } nir_const_value * nir_src_as_const_value(nir_src src) { if (!src.is_ssa) return NULL; if (src.ssa->parent_instr->type != nir_instr_type_load_const) return NULL; nir_load_const_instr *load = nir_instr_as_load_const(src.ssa->parent_instr); return load->value; } /** * Returns true if the source is known to be always uniform. Otherwise it * returns false which means it may or may not be uniform but it can't be * determined. * * For a more precise analysis of uniform values, use nir_divergence_analysis. */ bool nir_src_is_always_uniform(nir_src src) { if (!src.is_ssa) return false; /* Constants are trivially uniform */ if (src.ssa->parent_instr->type == nir_instr_type_load_const) return true; if (src.ssa->parent_instr->type == nir_instr_type_intrinsic) { nir_intrinsic_instr *intr = nir_instr_as_intrinsic(src.ssa->parent_instr); /* As are uniform variables */ if (intr->intrinsic == nir_intrinsic_load_uniform && nir_src_is_always_uniform(intr->src[0])) return true; /* From the Vulkan specification 15.6.1. Push Constant Interface: * "Any member of a push constant block that is declared as an array must * only be accessed with dynamically uniform indices." */ if (intr->intrinsic == nir_intrinsic_load_push_constant) return true; if (intr->intrinsic == nir_intrinsic_load_deref && nir_deref_mode_is(nir_src_as_deref(intr->src[0]), nir_var_mem_push_const)) return true; } /* Operating together uniform expressions produces a uniform result */ if (src.ssa->parent_instr->type == nir_instr_type_alu) { nir_alu_instr *alu = nir_instr_as_alu(src.ssa->parent_instr); for (int i = 0; i < nir_op_infos[alu->op].num_inputs; i++) { if (!nir_src_is_always_uniform(alu->src[i].src)) return false; } return true; } /* XXX: this could have many more tests, such as when a sampler function is * called with uniform arguments. */ return false; } static void src_remove_all_uses(nir_src *src) { for (; src; src = src->is_ssa ? NULL : src->reg.indirect) { if (!src_is_valid(src)) continue; list_del(&src->use_link); } } static void src_add_all_uses(nir_src *src, nir_instr *parent_instr, nir_if *parent_if) { for (; src; src = src->is_ssa ? NULL : src->reg.indirect) { if (!src_is_valid(src)) continue; if (parent_instr) { src->parent_instr = parent_instr; if (src->is_ssa) list_addtail(&src->use_link, &src->ssa->uses); else list_addtail(&src->use_link, &src->reg.reg->uses); } else { assert(parent_if); src->parent_if = parent_if; if (src->is_ssa) list_addtail(&src->use_link, &src->ssa->if_uses); else list_addtail(&src->use_link, &src->reg.reg->if_uses); } } } void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src) { assert(!src_is_valid(src) || src->parent_instr == instr); src_remove_all_uses(src); nir_src_copy(src, &new_src); src_add_all_uses(src, instr, NULL); } void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src) { assert(!src_is_valid(dest) || dest->parent_instr == dest_instr); src_remove_all_uses(dest); src_free_indirects(dest); src_remove_all_uses(src); *dest = *src; *src = NIR_SRC_INIT; src_add_all_uses(dest, dest_instr, NULL); } void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src) { nir_src *src = &if_stmt->condition; assert(!src_is_valid(src) || src->parent_if == if_stmt); src_remove_all_uses(src); nir_src_copy(src, &new_src); src_add_all_uses(src, NULL, if_stmt); } void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest, nir_dest new_dest) { if (dest->is_ssa) { /* We can only overwrite an SSA destination if it has no uses. */ assert(nir_ssa_def_is_unused(&dest->ssa)); } else { list_del(&dest->reg.def_link); if (dest->reg.indirect) src_remove_all_uses(dest->reg.indirect); } /* We can't re-write with an SSA def */ assert(!new_dest.is_ssa); nir_dest_copy(dest, &new_dest); dest->reg.parent_instr = instr; list_addtail(&dest->reg.def_link, &new_dest.reg.reg->defs); if (dest->reg.indirect) src_add_all_uses(dest->reg.indirect, instr, NULL); } /* note: does *not* take ownership of 'name' */ void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def, unsigned num_components, unsigned bit_size) { def->parent_instr = instr; list_inithead(&def->uses); list_inithead(&def->if_uses); def->num_components = num_components; def->bit_size = bit_size; def->divergent = true; /* This is the safer default */ if (instr->block) { nir_function_impl *impl = nir_cf_node_get_function(&instr->block->cf_node); def->index = impl->ssa_alloc++; impl->valid_metadata &= ~nir_metadata_live_ssa_defs; } else { def->index = UINT_MAX; } } /* note: does *not* take ownership of 'name' */ void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest, unsigned num_components, unsigned bit_size, const char *name) { dest->is_ssa = true; nir_ssa_def_init(instr, &dest->ssa, num_components, bit_size); } void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_ssa_def *new_ssa) { assert(def != new_ssa); nir_foreach_use_safe(use_src, def) nir_instr_rewrite_src_ssa(use_src->parent_instr, use_src, new_ssa); nir_foreach_if_use_safe(use_src, def) nir_if_rewrite_condition_ssa(use_src->parent_if, use_src, new_ssa); } void nir_ssa_def_rewrite_uses_src(nir_ssa_def *def, nir_src new_src) { if (new_src.is_ssa) { nir_ssa_def_rewrite_uses(def, new_src.ssa); } else { nir_foreach_use_safe(use_src, def) nir_instr_rewrite_src(use_src->parent_instr, use_src, new_src); nir_foreach_if_use_safe(use_src, def) nir_if_rewrite_condition(use_src->parent_if, new_src); } } static bool is_instr_between(nir_instr *start, nir_instr *end, nir_instr *between) { assert(start->block == end->block); if (between->block != start->block) return false; /* Search backwards looking for "between" */ while (start != end) { if (between == end) return true; end = nir_instr_prev(end); assert(end); } return false; } /* Replaces all uses of the given SSA def with the given source but only if * the use comes after the after_me instruction. This can be useful if you * are emitting code to fix up the result of some instruction: you can freely * use the result in that code and then call rewrite_uses_after and pass the * last fixup instruction as after_me and it will replace all of the uses you * want without touching the fixup code. * * This function assumes that after_me is in the same block as * def->parent_instr and that after_me comes after def->parent_instr. */ void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_ssa_def *new_ssa, nir_instr *after_me) { if (def == new_ssa) return; nir_foreach_use_safe(use_src, def) { assert(use_src->parent_instr != def->parent_instr); /* Since def already dominates all of its uses, the only way a use can * not be dominated by after_me is if it is between def and after_me in * the instruction list. */ if (!is_instr_between(def->parent_instr, after_me, use_src->parent_instr)) nir_instr_rewrite_src_ssa(use_src->parent_instr, use_src, new_ssa); } nir_foreach_if_use_safe(use_src, def) { nir_if_rewrite_condition_ssa(use_src->parent_if, &use_src->parent_if->condition, new_ssa); } } static nir_ssa_def * get_store_value(nir_intrinsic_instr *intrin) { assert(nir_intrinsic_has_write_mask(intrin)); /* deref stores have the deref in src[0] and the store value in src[1] */ if (intrin->intrinsic == nir_intrinsic_store_deref || intrin->intrinsic == nir_intrinsic_store_deref_block_intel) return intrin->src[1].ssa; /* all other stores have the store value in src[0] */ return intrin->src[0].ssa; } nir_component_mask_t nir_src_components_read(const nir_src *src) { assert(src->is_ssa && src->parent_instr); if (src->parent_instr->type == nir_instr_type_alu) { nir_alu_instr *alu = nir_instr_as_alu(src->parent_instr); nir_alu_src *alu_src = exec_node_data(nir_alu_src, src, src); int src_idx = alu_src - &alu->src[0]; assert(src_idx >= 0 && src_idx < nir_op_infos[alu->op].num_inputs); return nir_alu_instr_src_read_mask(alu, src_idx); } else if (src->parent_instr->type == nir_instr_type_intrinsic) { nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(src->parent_instr); if (nir_intrinsic_has_write_mask(intrin) && src->ssa == get_store_value(intrin)) return nir_intrinsic_write_mask(intrin); else return (1 << src->ssa->num_components) - 1; } else { return (1 << src->ssa->num_components) - 1; } } nir_component_mask_t nir_ssa_def_components_read(const nir_ssa_def *def) { nir_component_mask_t read_mask = 0; if (!list_is_empty(&def->if_uses)) read_mask |= 1; nir_foreach_use(use, def) { read_mask |= nir_src_components_read(use); if (read_mask == (1 << def->num_components) - 1) return read_mask; } return read_mask; } nir_block * nir_block_unstructured_next(nir_block *block) { if (block == NULL) { /* nir_foreach_block_unstructured_safe() will call this function on a * NULL block after the last iteration, but it won't use the result so * just return NULL here. */ return NULL; } nir_cf_node *cf_next = nir_cf_node_next(&block->cf_node); if (cf_next == NULL && block->cf_node.parent->type == nir_cf_node_function) return NULL; if (cf_next && cf_next->type == nir_cf_node_block) return nir_cf_node_as_block(cf_next); return nir_block_cf_tree_next(block); } nir_block * nir_unstructured_start_block(nir_function_impl *impl) { return nir_start_block(impl); } nir_block * nir_block_cf_tree_next(nir_block *block) { if (block == NULL) { /* nir_foreach_block_safe() will call this function on a NULL block * after the last iteration, but it won't use the result so just return * NULL here. */ return NULL; } assert(nir_cf_node_get_function(&block->cf_node)->structured); nir_cf_node *cf_next = nir_cf_node_next(&block->cf_node); if (cf_next) return nir_cf_node_cf_tree_first(cf_next); nir_cf_node *parent = block->cf_node.parent; switch (parent->type) { case nir_cf_node_if: { /* Are we at the end of the if? Go to the beginning of the else */ nir_if *if_stmt = nir_cf_node_as_if(parent); if (block == nir_if_last_then_block(if_stmt)) return nir_if_first_else_block(if_stmt); assert(block == nir_if_last_else_block(if_stmt)); } FALLTHROUGH; case nir_cf_node_loop: return nir_cf_node_as_block(nir_cf_node_next(parent)); case nir_cf_node_function: return NULL; default: unreachable("unknown cf node type"); } } nir_block * nir_block_cf_tree_prev(nir_block *block) { if (block == NULL) { /* do this for consistency with nir_block_cf_tree_next() */ return NULL; } assert(nir_cf_node_get_function(&block->cf_node)->structured); nir_cf_node *cf_prev = nir_cf_node_prev(&block->cf_node); if (cf_prev) return nir_cf_node_cf_tree_last(cf_prev); nir_cf_node *parent = block->cf_node.parent; switch (parent->type) { case nir_cf_node_if: { /* Are we at the beginning of the else? Go to the end of the if */ nir_if *if_stmt = nir_cf_node_as_if(parent); if (block == nir_if_first_else_block(if_stmt)) return nir_if_last_then_block(if_stmt); assert(block == nir_if_first_then_block(if_stmt)); } FALLTHROUGH; case nir_cf_node_loop: return nir_cf_node_as_block(nir_cf_node_prev(parent)); case nir_cf_node_function: return NULL; default: unreachable("unknown cf node type"); } } nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node) { switch (node->type) { case nir_cf_node_function: { nir_function_impl *impl = nir_cf_node_as_function(node); return nir_start_block(impl); } case nir_cf_node_if: { nir_if *if_stmt = nir_cf_node_as_if(node); return nir_if_first_then_block(if_stmt); } case nir_cf_node_loop: { nir_loop *loop = nir_cf_node_as_loop(node); return nir_loop_first_block(loop); } case nir_cf_node_block: { return nir_cf_node_as_block(node); } default: unreachable("unknown node type"); } } nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node) { switch (node->type) { case nir_cf_node_function: { nir_function_impl *impl = nir_cf_node_as_function(node); return nir_impl_last_block(impl); } case nir_cf_node_if: { nir_if *if_stmt = nir_cf_node_as_if(node); return nir_if_last_else_block(if_stmt); } case nir_cf_node_loop: { nir_loop *loop = nir_cf_node_as_loop(node); return nir_loop_last_block(loop); } case nir_cf_node_block: { return nir_cf_node_as_block(node); } default: unreachable("unknown node type"); } } nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node) { if (node->type == nir_cf_node_block) return nir_block_cf_tree_next(nir_cf_node_as_block(node)); else if (node->type == nir_cf_node_function) return NULL; else return nir_cf_node_as_block(nir_cf_node_next(node)); } nir_if * nir_block_get_following_if(nir_block *block) { if (exec_node_is_tail_sentinel(&block->cf_node.node)) return NULL; if (nir_cf_node_is_last(&block->cf_node)) return NULL; nir_cf_node *next_node = nir_cf_node_next(&block->cf_node); if (next_node->type != nir_cf_node_if) return NULL; return nir_cf_node_as_if(next_node); } nir_loop * nir_block_get_following_loop(nir_block *block) { if (exec_node_is_tail_sentinel(&block->cf_node.node)) return NULL; if (nir_cf_node_is_last(&block->cf_node)) return NULL; nir_cf_node *next_node = nir_cf_node_next(&block->cf_node); if (next_node->type != nir_cf_node_loop) return NULL; return nir_cf_node_as_loop(next_node); } static int compare_block_index(const void *p1, const void *p2) { const nir_block *block1 = *((const nir_block **) p1); const nir_block *block2 = *((const nir_block **) p2); return (int) block1->index - (int) block2->index; } nir_block ** nir_block_get_predecessors_sorted(const nir_block *block, void *mem_ctx) { nir_block **preds = ralloc_array(mem_ctx, nir_block *, block->predecessors->entries); unsigned i = 0; set_foreach(block->predecessors, entry) preds[i++] = (nir_block *) entry->key; assert(i == block->predecessors->entries); qsort(preds, block->predecessors->entries, sizeof(nir_block *), compare_block_index); return preds; } void nir_index_blocks(nir_function_impl *impl) { unsigned index = 0; if (impl->valid_metadata & nir_metadata_block_index) return; nir_foreach_block_unstructured(block, impl) { block->index = index++; } /* The end_block isn't really part of the program, which is why its index * is >= num_blocks. */ impl->num_blocks = impl->end_block->index = index; } static bool index_ssa_def_cb(nir_ssa_def *def, void *state) { unsigned *index = (unsigned *) state; def->index = (*index)++; return true; } /** * The indices are applied top-to-bottom which has the very nice property * that, if A dominates B, then A->index <= B->index. */ void nir_index_ssa_defs(nir_function_impl *impl) { unsigned index = 0; impl->valid_metadata &= ~nir_metadata_live_ssa_defs; nir_foreach_block_unstructured(block, impl) { nir_foreach_instr(instr, block) nir_foreach_ssa_def(instr, index_ssa_def_cb, &index); } impl->ssa_alloc = index; } /** * The indices are applied top-to-bottom which has the very nice property * that, if A dominates B, then A->index <= B->index. */ unsigned nir_index_instrs(nir_function_impl *impl) { unsigned index = 0; nir_foreach_block(block, impl) { block->start_ip = index++; nir_foreach_instr(instr, block) instr->index = index++; block->end_ip = index++; } return index; } unsigned nir_shader_index_vars(nir_shader *shader, nir_variable_mode modes) { unsigned count = 0; nir_foreach_variable_with_modes(var, shader, modes) var->index = count++; return count; } unsigned nir_function_impl_index_vars(nir_function_impl *impl) { unsigned count = 0; nir_foreach_function_temp_variable(var, impl) var->index = count++; return count; } static nir_instr * cursor_next_instr(nir_cursor cursor) { switch (cursor.option) { case nir_cursor_before_block: for (nir_block *block = cursor.block; block; block = nir_block_cf_tree_next(block)) { nir_instr *instr = nir_block_first_instr(block); if (instr) return instr; } return NULL; case nir_cursor_after_block: cursor.block = nir_block_cf_tree_next(cursor.block); if (cursor.block == NULL) return NULL; cursor.option = nir_cursor_before_block; return cursor_next_instr(cursor); case nir_cursor_before_instr: return cursor.instr; case nir_cursor_after_instr: if (nir_instr_next(cursor.instr)) return nir_instr_next(cursor.instr); cursor.option = nir_cursor_after_block; cursor.block = cursor.instr->block; return cursor_next_instr(cursor); } unreachable("Inavlid cursor option"); } ASSERTED static bool dest_is_ssa(nir_dest *dest, void *_state) { (void) _state; return dest->is_ssa; } bool nir_function_impl_lower_instructions(nir_function_impl *impl, nir_instr_filter_cb filter, nir_lower_instr_cb lower, void *cb_data) { nir_builder b; nir_builder_init(&b, impl); nir_metadata preserved = nir_metadata_block_index | nir_metadata_dominance; bool progress = false; nir_cursor iter = nir_before_cf_list(&impl->body); nir_instr *instr; while ((instr = cursor_next_instr(iter)) != NULL) { if (filter && !filter(instr, cb_data)) { iter = nir_after_instr(instr); continue; } assert(nir_foreach_dest(instr, dest_is_ssa, NULL)); nir_ssa_def *old_def = nir_instr_ssa_def(instr); struct list_head old_uses, old_if_uses; if (old_def != NULL) { /* We're about to ask the callback to generate a replacement for instr. * Save off the uses from instr's SSA def so we know what uses to * rewrite later. If we use nir_ssa_def_rewrite_uses, it fails in the * case where the generated replacement code uses the result of instr * itself. If we use nir_ssa_def_rewrite_uses_after (which is the * normal solution to this problem), it doesn't work well if control- * flow is inserted as part of the replacement, doesn't handle cases * where the replacement is something consumed by instr, and suffers * from performance issues. This is the only way to 100% guarantee * that we rewrite the correct set efficiently. */ list_replace(&old_def->uses, &old_uses); list_inithead(&old_def->uses); list_replace(&old_def->if_uses, &old_if_uses); list_inithead(&old_def->if_uses); } b.cursor = nir_after_instr(instr); nir_ssa_def *new_def = lower(&b, instr, cb_data); if (new_def && new_def != NIR_LOWER_INSTR_PROGRESS && new_def != NIR_LOWER_INSTR_PROGRESS_REPLACE) { assert(old_def != NULL); if (new_def->parent_instr->block != instr->block) preserved = nir_metadata_none; nir_src new_src = nir_src_for_ssa(new_def); list_for_each_entry_safe(nir_src, use_src, &old_uses, use_link) nir_instr_rewrite_src(use_src->parent_instr, use_src, new_src); list_for_each_entry_safe(nir_src, use_src, &old_if_uses, use_link) nir_if_rewrite_condition(use_src->parent_if, new_src); if (nir_ssa_def_is_unused(old_def)) { iter = nir_instr_free_and_dce(instr); } else { iter = nir_after_instr(instr); } progress = true; } else { /* We didn't end up lowering after all. Put the uses back */ if (old_def) { list_replace(&old_uses, &old_def->uses); list_replace(&old_if_uses, &old_def->if_uses); } if (new_def == NIR_LOWER_INSTR_PROGRESS_REPLACE) { /* Only instructions without a return value can be removed like this */ assert(!old_def); iter = nir_instr_free_and_dce(instr); progress = true; } else iter = nir_after_instr(instr); if (new_def == NIR_LOWER_INSTR_PROGRESS) progress = true; } } if (progress) { nir_metadata_preserve(impl, preserved); } else { nir_metadata_preserve(impl, nir_metadata_all); } return progress; } bool nir_shader_lower_instructions(nir_shader *shader, nir_instr_filter_cb filter, nir_lower_instr_cb lower, void *cb_data) { bool progress = false; nir_foreach_function(function, shader) { if (function->impl && nir_function_impl_lower_instructions(function->impl, filter, lower, cb_data)) progress = true; } return progress; } /** * Returns true if the shader supports quad-based implicit derivatives on * texture sampling. */ bool nir_shader_supports_implicit_lod(nir_shader *shader) { return (shader->info.stage == MESA_SHADER_FRAGMENT || (shader->info.stage == MESA_SHADER_COMPUTE && shader->info.cs.derivative_group != DERIVATIVE_GROUP_NONE)); } nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val) { switch (val) { case SYSTEM_VALUE_VERTEX_ID: return nir_intrinsic_load_vertex_id; case SYSTEM_VALUE_INSTANCE_ID: return nir_intrinsic_load_instance_id; case SYSTEM_VALUE_DRAW_ID: return nir_intrinsic_load_draw_id; case SYSTEM_VALUE_BASE_INSTANCE: return nir_intrinsic_load_base_instance; case SYSTEM_VALUE_VERTEX_ID_ZERO_BASE: return nir_intrinsic_load_vertex_id_zero_base; case SYSTEM_VALUE_IS_INDEXED_DRAW: return nir_intrinsic_load_is_indexed_draw; case SYSTEM_VALUE_FIRST_VERTEX: return nir_intrinsic_load_first_vertex; case SYSTEM_VALUE_BASE_VERTEX: return nir_intrinsic_load_base_vertex; case SYSTEM_VALUE_INVOCATION_ID: return nir_intrinsic_load_invocation_id; case SYSTEM_VALUE_FRAG_COORD: return nir_intrinsic_load_frag_coord; case SYSTEM_VALUE_POINT_COORD: return nir_intrinsic_load_point_coord; case SYSTEM_VALUE_LINE_COORD: return nir_intrinsic_load_line_coord; case SYSTEM_VALUE_FRONT_FACE: return nir_intrinsic_load_front_face; case SYSTEM_VALUE_SAMPLE_ID: return nir_intrinsic_load_sample_id; case SYSTEM_VALUE_SAMPLE_POS: return nir_intrinsic_load_sample_pos; case SYSTEM_VALUE_SAMPLE_POS_OR_CENTER: return nir_intrinsic_load_sample_pos_or_center; case SYSTEM_VALUE_SAMPLE_MASK_IN: return nir_intrinsic_load_sample_mask_in; case SYSTEM_VALUE_LOCAL_INVOCATION_ID: return nir_intrinsic_load_local_invocation_id; case SYSTEM_VALUE_LOCAL_INVOCATION_INDEX: return nir_intrinsic_load_local_invocation_index; case SYSTEM_VALUE_WORKGROUP_ID: return nir_intrinsic_load_workgroup_id; case SYSTEM_VALUE_WORKGROUP_INDEX: return nir_intrinsic_load_workgroup_index; case SYSTEM_VALUE_NUM_WORKGROUPS: return nir_intrinsic_load_num_workgroups; case SYSTEM_VALUE_PRIMITIVE_ID: return nir_intrinsic_load_primitive_id; case SYSTEM_VALUE_TESS_COORD: return nir_intrinsic_load_tess_coord; case SYSTEM_VALUE_TESS_LEVEL_OUTER: return nir_intrinsic_load_tess_level_outer; case SYSTEM_VALUE_TESS_LEVEL_INNER: return nir_intrinsic_load_tess_level_inner; case SYSTEM_VALUE_TESS_LEVEL_OUTER_DEFAULT: return nir_intrinsic_load_tess_level_outer_default; case SYSTEM_VALUE_TESS_LEVEL_INNER_DEFAULT: return nir_intrinsic_load_tess_level_inner_default; case SYSTEM_VALUE_VERTICES_IN: return nir_intrinsic_load_patch_vertices_in; case SYSTEM_VALUE_HELPER_INVOCATION: return nir_intrinsic_load_helper_invocation; case SYSTEM_VALUE_COLOR0: return nir_intrinsic_load_color0; case SYSTEM_VALUE_COLOR1: return nir_intrinsic_load_color1; case SYSTEM_VALUE_VIEW_INDEX: return nir_intrinsic_load_view_index; case SYSTEM_VALUE_SUBGROUP_SIZE: return nir_intrinsic_load_subgroup_size; case SYSTEM_VALUE_SUBGROUP_INVOCATION: return nir_intrinsic_load_subgroup_invocation; case SYSTEM_VALUE_SUBGROUP_EQ_MASK: return nir_intrinsic_load_subgroup_eq_mask; case SYSTEM_VALUE_SUBGROUP_GE_MASK: return nir_intrinsic_load_subgroup_ge_mask; case SYSTEM_VALUE_SUBGROUP_GT_MASK: return nir_intrinsic_load_subgroup_gt_mask; case SYSTEM_VALUE_SUBGROUP_LE_MASK: return nir_intrinsic_load_subgroup_le_mask; case SYSTEM_VALUE_SUBGROUP_LT_MASK: return nir_intrinsic_load_subgroup_lt_mask; case SYSTEM_VALUE_NUM_SUBGROUPS: return nir_intrinsic_load_num_subgroups; case SYSTEM_VALUE_SUBGROUP_ID: return nir_intrinsic_load_subgroup_id; case SYSTEM_VALUE_WORKGROUP_SIZE: return nir_intrinsic_load_workgroup_size; case SYSTEM_VALUE_GLOBAL_INVOCATION_ID: return nir_intrinsic_load_global_invocation_id; case SYSTEM_VALUE_BASE_GLOBAL_INVOCATION_ID: return nir_intrinsic_load_base_global_invocation_id; case SYSTEM_VALUE_GLOBAL_INVOCATION_INDEX: return nir_intrinsic_load_global_invocation_index; case SYSTEM_VALUE_WORK_DIM: return nir_intrinsic_load_work_dim; case SYSTEM_VALUE_USER_DATA_AMD: return nir_intrinsic_load_user_data_amd; case SYSTEM_VALUE_RAY_LAUNCH_ID: return nir_intrinsic_load_ray_launch_id; case SYSTEM_VALUE_RAY_LAUNCH_SIZE: return nir_intrinsic_load_ray_launch_size; case SYSTEM_VALUE_RAY_LAUNCH_SIZE_ADDR_AMD: return nir_intrinsic_load_ray_launch_size_addr_amd; case SYSTEM_VALUE_RAY_WORLD_ORIGIN: return nir_intrinsic_load_ray_world_origin; case SYSTEM_VALUE_RAY_WORLD_DIRECTION: return nir_intrinsic_load_ray_world_direction; case SYSTEM_VALUE_RAY_OBJECT_ORIGIN: return nir_intrinsic_load_ray_object_origin; case SYSTEM_VALUE_RAY_OBJECT_DIRECTION: return nir_intrinsic_load_ray_object_direction; case SYSTEM_VALUE_RAY_T_MIN: return nir_intrinsic_load_ray_t_min; case SYSTEM_VALUE_RAY_T_MAX: return nir_intrinsic_load_ray_t_max; case SYSTEM_VALUE_RAY_OBJECT_TO_WORLD: return nir_intrinsic_load_ray_object_to_world; case SYSTEM_VALUE_RAY_WORLD_TO_OBJECT: return nir_intrinsic_load_ray_world_to_object; case SYSTEM_VALUE_RAY_HIT_KIND: return nir_intrinsic_load_ray_hit_kind; case SYSTEM_VALUE_RAY_FLAGS: return nir_intrinsic_load_ray_flags; case SYSTEM_VALUE_RAY_GEOMETRY_INDEX: return nir_intrinsic_load_ray_geometry_index; case SYSTEM_VALUE_RAY_INSTANCE_CUSTOM_INDEX: return nir_intrinsic_load_ray_instance_custom_index; case SYSTEM_VALUE_CULL_MASK: return nir_intrinsic_load_cull_mask; case SYSTEM_VALUE_MESH_VIEW_COUNT: return nir_intrinsic_load_mesh_view_count; case SYSTEM_VALUE_FRAG_SHADING_RATE: return nir_intrinsic_load_frag_shading_rate; default: unreachable("system value does not directly correspond to intrinsic"); } } gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin) { switch (intrin) { case nir_intrinsic_load_vertex_id: return SYSTEM_VALUE_VERTEX_ID; case nir_intrinsic_load_instance_id: return SYSTEM_VALUE_INSTANCE_ID; case nir_intrinsic_load_draw_id: return SYSTEM_VALUE_DRAW_ID; case nir_intrinsic_load_base_instance: return SYSTEM_VALUE_BASE_INSTANCE; case nir_intrinsic_load_vertex_id_zero_base: return SYSTEM_VALUE_VERTEX_ID_ZERO_BASE; case nir_intrinsic_load_first_vertex: return SYSTEM_VALUE_FIRST_VERTEX; case nir_intrinsic_load_is_indexed_draw: return SYSTEM_VALUE_IS_INDEXED_DRAW; case nir_intrinsic_load_base_vertex: return SYSTEM_VALUE_BASE_VERTEX; case nir_intrinsic_load_invocation_id: return SYSTEM_VALUE_INVOCATION_ID; case nir_intrinsic_load_frag_coord: return SYSTEM_VALUE_FRAG_COORD; case nir_intrinsic_load_point_coord: return SYSTEM_VALUE_POINT_COORD; case nir_intrinsic_load_line_coord: return SYSTEM_VALUE_LINE_COORD; case nir_intrinsic_load_front_face: return SYSTEM_VALUE_FRONT_FACE; case nir_intrinsic_load_sample_id: return SYSTEM_VALUE_SAMPLE_ID; case nir_intrinsic_load_sample_pos: return SYSTEM_VALUE_SAMPLE_POS; case nir_intrinsic_load_sample_pos_or_center: return SYSTEM_VALUE_SAMPLE_POS_OR_CENTER; case nir_intrinsic_load_sample_mask_in: return SYSTEM_VALUE_SAMPLE_MASK_IN; case nir_intrinsic_load_local_invocation_id: return SYSTEM_VALUE_LOCAL_INVOCATION_ID; case nir_intrinsic_load_local_invocation_index: return SYSTEM_VALUE_LOCAL_INVOCATION_INDEX; case nir_intrinsic_load_num_workgroups: return SYSTEM_VALUE_NUM_WORKGROUPS; case nir_intrinsic_load_workgroup_id: return SYSTEM_VALUE_WORKGROUP_ID; case nir_intrinsic_load_workgroup_index: return SYSTEM_VALUE_WORKGROUP_INDEX; case nir_intrinsic_load_primitive_id: return SYSTEM_VALUE_PRIMITIVE_ID; case nir_intrinsic_load_tess_coord: return SYSTEM_VALUE_TESS_COORD; case nir_intrinsic_load_tess_level_outer: return SYSTEM_VALUE_TESS_LEVEL_OUTER; case nir_intrinsic_load_tess_level_inner: return SYSTEM_VALUE_TESS_LEVEL_INNER; case nir_intrinsic_load_tess_level_outer_default: return SYSTEM_VALUE_TESS_LEVEL_OUTER_DEFAULT; case nir_intrinsic_load_tess_level_inner_default: return SYSTEM_VALUE_TESS_LEVEL_INNER_DEFAULT; case nir_intrinsic_load_patch_vertices_in: return SYSTEM_VALUE_VERTICES_IN; case nir_intrinsic_load_helper_invocation: return SYSTEM_VALUE_HELPER_INVOCATION; case nir_intrinsic_load_color0: return SYSTEM_VALUE_COLOR0; case nir_intrinsic_load_color1: return SYSTEM_VALUE_COLOR1; case nir_intrinsic_load_view_index: return SYSTEM_VALUE_VIEW_INDEX; case nir_intrinsic_load_subgroup_size: return SYSTEM_VALUE_SUBGROUP_SIZE; case nir_intrinsic_load_subgroup_invocation: return SYSTEM_VALUE_SUBGROUP_INVOCATION; case nir_intrinsic_load_subgroup_eq_mask: return SYSTEM_VALUE_SUBGROUP_EQ_MASK; case nir_intrinsic_load_subgroup_ge_mask: return SYSTEM_VALUE_SUBGROUP_GE_MASK; case nir_intrinsic_load_subgroup_gt_mask: return SYSTEM_VALUE_SUBGROUP_GT_MASK; case nir_intrinsic_load_subgroup_le_mask: return SYSTEM_VALUE_SUBGROUP_LE_MASK; case nir_intrinsic_load_subgroup_lt_mask: return SYSTEM_VALUE_SUBGROUP_LT_MASK; case nir_intrinsic_load_num_subgroups: return SYSTEM_VALUE_NUM_SUBGROUPS; case nir_intrinsic_load_subgroup_id: return SYSTEM_VALUE_SUBGROUP_ID; case nir_intrinsic_load_workgroup_size: return SYSTEM_VALUE_WORKGROUP_SIZE; case nir_intrinsic_load_global_invocation_id: return SYSTEM_VALUE_GLOBAL_INVOCATION_ID; case nir_intrinsic_load_base_global_invocation_id: return SYSTEM_VALUE_BASE_GLOBAL_INVOCATION_ID; case nir_intrinsic_load_global_invocation_index: return SYSTEM_VALUE_GLOBAL_INVOCATION_INDEX; case nir_intrinsic_load_work_dim: return SYSTEM_VALUE_WORK_DIM; case nir_intrinsic_load_user_data_amd: return SYSTEM_VALUE_USER_DATA_AMD; case nir_intrinsic_load_barycentric_model: return SYSTEM_VALUE_BARYCENTRIC_PULL_MODEL; case nir_intrinsic_load_gs_header_ir3: return SYSTEM_VALUE_GS_HEADER_IR3; case nir_intrinsic_load_tcs_header_ir3: return SYSTEM_VALUE_TCS_HEADER_IR3; case nir_intrinsic_load_ray_launch_id: return SYSTEM_VALUE_RAY_LAUNCH_ID; case nir_intrinsic_load_ray_launch_size: return SYSTEM_VALUE_RAY_LAUNCH_SIZE; case nir_intrinsic_load_ray_launch_size_addr_amd: return SYSTEM_VALUE_RAY_LAUNCH_SIZE_ADDR_AMD; case nir_intrinsic_load_ray_world_origin: return SYSTEM_VALUE_RAY_WORLD_ORIGIN; case nir_intrinsic_load_ray_world_direction: return SYSTEM_VALUE_RAY_WORLD_DIRECTION; case nir_intrinsic_load_ray_object_origin: return SYSTEM_VALUE_RAY_OBJECT_ORIGIN; case nir_intrinsic_load_ray_object_direction: return SYSTEM_VALUE_RAY_OBJECT_DIRECTION; case nir_intrinsic_load_ray_t_min: return SYSTEM_VALUE_RAY_T_MIN; case nir_intrinsic_load_ray_t_max: return SYSTEM_VALUE_RAY_T_MAX; case nir_intrinsic_load_ray_object_to_world: return SYSTEM_VALUE_RAY_OBJECT_TO_WORLD; case nir_intrinsic_load_ray_world_to_object: return SYSTEM_VALUE_RAY_WORLD_TO_OBJECT; case nir_intrinsic_load_ray_hit_kind: return SYSTEM_VALUE_RAY_HIT_KIND; case nir_intrinsic_load_ray_flags: return SYSTEM_VALUE_RAY_FLAGS; case nir_intrinsic_load_ray_geometry_index: return SYSTEM_VALUE_RAY_GEOMETRY_INDEX; case nir_intrinsic_load_ray_instance_custom_index: return SYSTEM_VALUE_RAY_INSTANCE_CUSTOM_INDEX; case nir_intrinsic_load_cull_mask: return SYSTEM_VALUE_CULL_MASK; case nir_intrinsic_load_frag_shading_rate: return SYSTEM_VALUE_FRAG_SHADING_RATE; case nir_intrinsic_load_mesh_view_count: return SYSTEM_VALUE_MESH_VIEW_COUNT; default: unreachable("intrinsic doesn't produce a system value"); } } /* OpenGL utility method that remaps the location attributes if they are * doubles. Not needed for vulkan due the differences on the input location * count for doubles on vulkan vs OpenGL * * The bitfield returned in dual_slot is one bit for each double input slot in * the original OpenGL single-slot input numbering. The mapping from old * locations to new locations is as follows: * * new_loc = loc + util_bitcount(dual_slot & BITFIELD64_MASK(loc)) */ void nir_remap_dual_slot_attributes(nir_shader *shader, uint64_t *dual_slot) { assert(shader->info.stage == MESA_SHADER_VERTEX); *dual_slot = 0; nir_foreach_shader_in_variable(var, shader) { if (glsl_type_is_dual_slot(glsl_without_array(var->type))) { unsigned slots = glsl_count_attribute_slots(var->type, true); *dual_slot |= BITFIELD64_MASK(slots) << var->data.location; } } nir_foreach_shader_in_variable(var, shader) { var->data.location += util_bitcount64(*dual_slot & BITFIELD64_MASK(var->data.location)); } } /* Returns an attribute mask that has been re-compacted using the given * dual_slot mask. */ uint64_t nir_get_single_slot_attribs_mask(uint64_t attribs, uint64_t dual_slot) { while (dual_slot) { unsigned loc = u_bit_scan64(&dual_slot); /* mask of all bits up to and including loc */ uint64_t mask = BITFIELD64_MASK(loc + 1); attribs = (attribs & mask) | ((attribs & ~mask) >> 1); } return attribs; } void nir_rewrite_image_intrinsic(nir_intrinsic_instr *intrin, nir_ssa_def *src, bool bindless) { enum gl_access_qualifier access = nir_intrinsic_access(intrin); /* Image intrinsics only have one of these */ assert(!nir_intrinsic_has_src_type(intrin) || !nir_intrinsic_has_dest_type(intrin)); nir_alu_type data_type = nir_type_invalid; if (nir_intrinsic_has_src_type(intrin)) data_type = nir_intrinsic_src_type(intrin); if (nir_intrinsic_has_dest_type(intrin)) data_type = nir_intrinsic_dest_type(intrin); switch (intrin->intrinsic) { #define CASE(op) \ case nir_intrinsic_image_deref_##op: \ intrin->intrinsic = bindless ? nir_intrinsic_bindless_image_##op \ : nir_intrinsic_image_##op; \ break; CASE(load) CASE(sparse_load) CASE(store) CASE(atomic_add) CASE(atomic_imin) CASE(atomic_umin) CASE(atomic_imax) CASE(atomic_umax) CASE(atomic_and) CASE(atomic_or) CASE(atomic_xor) CASE(atomic_exchange) CASE(atomic_comp_swap) CASE(atomic_fadd) CASE(atomic_fmin) CASE(atomic_fmax) CASE(atomic_inc_wrap) CASE(atomic_dec_wrap) CASE(size) CASE(samples) CASE(load_raw_intel) CASE(store_raw_intel) #undef CASE default: unreachable("Unhanded image intrinsic"); } nir_deref_instr *deref = nir_src_as_deref(intrin->src[0]); nir_variable *var = nir_deref_instr_get_variable(deref); /* Only update the format if the intrinsic doesn't have one set */ if (nir_intrinsic_format(intrin) == PIPE_FORMAT_NONE) nir_intrinsic_set_format(intrin, var->data.image.format); nir_intrinsic_set_access(intrin, access | var->data.access); if (nir_intrinsic_has_src_type(intrin)) nir_intrinsic_set_src_type(intrin, data_type); if (nir_intrinsic_has_dest_type(intrin)) nir_intrinsic_set_dest_type(intrin, data_type); nir_instr_rewrite_src(&intrin->instr, &intrin->src[0], nir_src_for_ssa(src)); } unsigned nir_image_intrinsic_coord_components(const nir_intrinsic_instr *instr) { enum glsl_sampler_dim dim = nir_intrinsic_image_dim(instr); int coords = glsl_get_sampler_dim_coordinate_components(dim); if (dim == GLSL_SAMPLER_DIM_CUBE) return coords; else return coords + nir_intrinsic_image_array(instr); } nir_src * nir_get_shader_call_payload_src(nir_intrinsic_instr *call) { switch (call->intrinsic) { case nir_intrinsic_trace_ray: case nir_intrinsic_rt_trace_ray: return &call->src[10]; case nir_intrinsic_execute_callable: case nir_intrinsic_rt_execute_callable: return &call->src[1]; default: unreachable("Not a call intrinsic"); return NULL; } } nir_binding nir_chase_binding(nir_src rsrc) { nir_binding res = {0}; if (rsrc.ssa->parent_instr->type == nir_instr_type_deref) { const struct glsl_type *type = glsl_without_array(nir_src_as_deref(rsrc)->type); bool is_image = glsl_type_is_image(type) || glsl_type_is_sampler(type); while (rsrc.ssa->parent_instr->type == nir_instr_type_deref) { nir_deref_instr *deref = nir_src_as_deref(rsrc); if (deref->deref_type == nir_deref_type_var) { res.success = true; res.var = deref->var; res.desc_set = deref->var->data.descriptor_set; res.binding = deref->var->data.binding; return res; } else if (deref->deref_type == nir_deref_type_array && is_image) { if (res.num_indices == ARRAY_SIZE(res.indices)) return (nir_binding){0}; res.indices[res.num_indices++] = deref->arr.index; } rsrc = deref->parent; } } /* Skip copies and trimming. Trimming can appear as nir_op_mov instructions * when removing the offset from addresses. We also consider nir_op_is_vec() * instructions to skip trimming of vec2_index_32bit_offset addresses after * lowering ALU to scalar. */ while (true) { nir_alu_instr *alu = nir_src_as_alu_instr(rsrc); nir_intrinsic_instr *intrin = nir_src_as_intrinsic(rsrc); if (alu && alu->op == nir_op_mov) { for (unsigned i = 0; i < alu->dest.dest.ssa.num_components; i++) { if (alu->src[0].swizzle[i] != i) return (nir_binding){0}; } rsrc = alu->src[0].src; } else if (alu && nir_op_is_vec(alu->op)) { for (unsigned i = 0; i < nir_op_infos[alu->op].num_inputs; i++) { if (alu->src[i].swizzle[0] != i || alu->src[i].src.ssa != alu->src[0].src.ssa) return (nir_binding){0}; } rsrc = alu->src[0].src; } else if (intrin && intrin->intrinsic == nir_intrinsic_read_first_invocation) { /* The caller might want to be aware if only the first invocation of * the indices are used. */ res.read_first_invocation = true; rsrc = intrin->src[0]; } else { break; } } if (nir_src_is_const(rsrc)) { /* GL binding model after deref lowering */ res.success = true; res.binding = nir_src_as_uint(rsrc); return res; } /* otherwise, must be Vulkan binding model after deref lowering or GL bindless */ nir_intrinsic_instr *intrin = nir_src_as_intrinsic(rsrc); if (!intrin) return (nir_binding){0}; /* skip load_vulkan_descriptor */ if (intrin->intrinsic == nir_intrinsic_load_vulkan_descriptor) { intrin = nir_src_as_intrinsic(intrin->src[0]); if (!intrin) return (nir_binding){0}; } if (intrin->intrinsic != nir_intrinsic_vulkan_resource_index) return (nir_binding){0}; assert(res.num_indices == 0); res.success = true; res.desc_set = nir_intrinsic_desc_set(intrin); res.binding = nir_intrinsic_binding(intrin); res.num_indices = 1; res.indices[0] = intrin->src[0]; return res; } nir_variable *nir_get_binding_variable(nir_shader *shader, nir_binding binding) { nir_variable *binding_var = NULL; unsigned count = 0; if (!binding.success) return NULL; if (binding.var) return binding.var; nir_foreach_variable_with_modes(var, shader, nir_var_mem_ubo | nir_var_mem_ssbo) { if (var->data.descriptor_set == binding.desc_set && var->data.binding == binding.binding) { binding_var = var; count++; } } /* Be conservative if another variable is using the same binding/desc_set * because the access mask might be different and we can't get it reliably. */ if (count > 1) return NULL; return binding_var; } bool nir_alu_instr_is_copy(nir_alu_instr *instr) { assert(instr->src[0].src.is_ssa); if (instr->op == nir_op_mov) { return !instr->dest.saturate && !instr->src[0].abs && !instr->src[0].negate; } else if (nir_op_is_vec(instr->op)) { for (unsigned i = 0; i < instr->dest.dest.ssa.num_components; i++) { if (instr->src[i].abs || instr->src[i].negate) return false; } return !instr->dest.saturate; } else { return false; } } nir_ssa_scalar nir_ssa_scalar_chase_movs(nir_ssa_scalar s) { while (nir_ssa_scalar_is_alu(s)) { nir_alu_instr *alu = nir_instr_as_alu(s.def->parent_instr); if (!nir_alu_instr_is_copy(alu)) break; if (alu->op == nir_op_mov) { s.def = alu->src[0].src.ssa; s.comp = alu->src[0].swizzle[s.comp]; } else { assert(nir_op_is_vec(alu->op)); s.def = alu->src[s.comp].src.ssa; s.comp = alu->src[s.comp].swizzle[0]; } } return s; } nir_alu_type nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type) { switch (base_type) { case GLSL_TYPE_BOOL: return nir_type_bool1; break; case GLSL_TYPE_UINT: return nir_type_uint32; break; case GLSL_TYPE_INT: return nir_type_int32; break; case GLSL_TYPE_UINT16: return nir_type_uint16; break; case GLSL_TYPE_INT16: return nir_type_int16; break; case GLSL_TYPE_UINT8: return nir_type_uint8; case GLSL_TYPE_INT8: return nir_type_int8; case GLSL_TYPE_UINT64: return nir_type_uint64; break; case GLSL_TYPE_INT64: return nir_type_int64; break; case GLSL_TYPE_FLOAT: return nir_type_float32; break; case GLSL_TYPE_FLOAT16: return nir_type_float16; break; case GLSL_TYPE_DOUBLE: return nir_type_float64; break; case GLSL_TYPE_SAMPLER: case GLSL_TYPE_TEXTURE: case GLSL_TYPE_IMAGE: case GLSL_TYPE_ATOMIC_UINT: case GLSL_TYPE_STRUCT: case GLSL_TYPE_INTERFACE: case GLSL_TYPE_ARRAY: case GLSL_TYPE_VOID: case GLSL_TYPE_SUBROUTINE: case GLSL_TYPE_FUNCTION: case GLSL_TYPE_ERROR: return nir_type_invalid; } unreachable("unknown type"); } enum glsl_base_type nir_get_glsl_base_type_for_nir_type(nir_alu_type base_type) { switch (base_type) { case nir_type_bool1: return GLSL_TYPE_BOOL; case nir_type_uint32: return GLSL_TYPE_UINT; case nir_type_int32: return GLSL_TYPE_INT; case nir_type_uint16: return GLSL_TYPE_UINT16; case nir_type_int16: return GLSL_TYPE_INT16; case nir_type_uint8: return GLSL_TYPE_UINT8; case nir_type_int8: return GLSL_TYPE_INT8; case nir_type_uint64: return GLSL_TYPE_UINT64; case nir_type_int64: return GLSL_TYPE_INT64; case nir_type_float32: return GLSL_TYPE_FLOAT; case nir_type_float16: return GLSL_TYPE_FLOAT16; case nir_type_float64: return GLSL_TYPE_DOUBLE; default: unreachable("Not a sized nir_alu_type"); } } nir_op nir_op_vec(unsigned components) { switch (components) { case 1: return nir_op_mov; case 2: return nir_op_vec2; case 3: return nir_op_vec3; case 4: return nir_op_vec4; case 5: return nir_op_vec5; case 8: return nir_op_vec8; case 16: return nir_op_vec16; default: unreachable("bad component count"); } } bool nir_op_is_vec(nir_op op) { switch (op) { case nir_op_mov: case nir_op_vec2: case nir_op_vec3: case nir_op_vec4: case nir_op_vec5: case nir_op_vec8: case nir_op_vec16: return true; default: return false; } } bool nir_alu_instr_channel_used(const nir_alu_instr *instr, unsigned src, unsigned channel) { if (nir_op_infos[instr->op].input_sizes[src] > 0) return channel < nir_op_infos[instr->op].input_sizes[src]; return (instr->dest.write_mask >> channel) & 1; } nir_component_mask_t nir_alu_instr_src_read_mask(const nir_alu_instr *instr, unsigned src) { nir_component_mask_t read_mask = 0; for (unsigned c = 0; c < NIR_MAX_VEC_COMPONENTS; c++) { if (!nir_alu_instr_channel_used(instr, src, c)) continue; read_mask |= (1 << instr->src[src].swizzle[c]); } return read_mask; } unsigned nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src) { if (nir_op_infos[instr->op].input_sizes[src] > 0) return nir_op_infos[instr->op].input_sizes[src]; return nir_dest_num_components(instr->dest.dest); } #define CASE_ALL_SIZES(op) \ case op: \ case op ## 8: \ case op ## 16: \ case op ## 32: \ bool nir_alu_instr_is_comparison(const nir_alu_instr *instr) { switch (instr->op) { CASE_ALL_SIZES(nir_op_flt) CASE_ALL_SIZES(nir_op_fge) CASE_ALL_SIZES(nir_op_feq) CASE_ALL_SIZES(nir_op_fneu) CASE_ALL_SIZES(nir_op_ilt) CASE_ALL_SIZES(nir_op_ult) CASE_ALL_SIZES(nir_op_ige) CASE_ALL_SIZES(nir_op_uge) CASE_ALL_SIZES(nir_op_ieq) CASE_ALL_SIZES(nir_op_ine) case nir_op_i2b1: case nir_op_i2b8: case nir_op_i2b16: case nir_op_i2b32: case nir_op_f2b1: case nir_op_f2b8: case nir_op_f2b16: case nir_op_f2b32: case nir_op_inot: return true; default: return false; } } #undef CASE_ALL_SIZES unsigned nir_intrinsic_src_components(const nir_intrinsic_instr *intr, unsigned srcn) { const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic]; assert(srcn < info->num_srcs); if (info->src_components[srcn] > 0) return info->src_components[srcn]; else if (info->src_components[srcn] == 0) return intr->num_components; else return nir_src_num_components(intr->src[srcn]); } unsigned nir_intrinsic_dest_components(nir_intrinsic_instr *intr) { const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic]; if (!info->has_dest) return 0; else if (info->dest_components) return info->dest_components; else return intr->num_components; } /** * Helper to copy const_index[] from src to dst, without assuming they * match in order. */ void nir_intrinsic_copy_const_indices(nir_intrinsic_instr *dst, nir_intrinsic_instr *src) { if (src->intrinsic == dst->intrinsic) { memcpy(dst->const_index, src->const_index, sizeof(dst->const_index)); return; } const nir_intrinsic_info *src_info = &nir_intrinsic_infos[src->intrinsic]; const nir_intrinsic_info *dst_info = &nir_intrinsic_infos[dst->intrinsic]; for (unsigned i = 0; i < NIR_INTRINSIC_NUM_INDEX_FLAGS; i++) { if (src_info->index_map[i] == 0) continue; /* require that dst instruction also uses the same const_index[]: */ assert(dst_info->index_map[i] > 0); dst->const_index[dst_info->index_map[i] - 1] = src->const_index[src_info->index_map[i] - 1]; } } bool nir_tex_instr_need_sampler(const nir_tex_instr *instr) { switch (instr->op) { case nir_texop_txf: case nir_texop_txf_ms: case nir_texop_txs: case nir_texop_query_levels: case nir_texop_texture_samples: case nir_texop_samples_identical: return false; default: return true; } } unsigned nir_tex_instr_result_size(const nir_tex_instr *instr) { switch (instr->op) { case nir_texop_txs: { unsigned ret; switch (instr->sampler_dim) { case GLSL_SAMPLER_DIM_1D: case GLSL_SAMPLER_DIM_BUF: ret = 1; break; case GLSL_SAMPLER_DIM_2D: case GLSL_SAMPLER_DIM_CUBE: case GLSL_SAMPLER_DIM_MS: case GLSL_SAMPLER_DIM_RECT: case GLSL_SAMPLER_DIM_EXTERNAL: case GLSL_SAMPLER_DIM_SUBPASS: ret = 2; break; case GLSL_SAMPLER_DIM_3D: ret = 3; break; default: unreachable("not reached"); } if (instr->is_array) ret++; return ret; } case nir_texop_lod: return 2; case nir_texop_texture_samples: case nir_texop_query_levels: case nir_texop_samples_identical: case nir_texop_fragment_mask_fetch_amd: return 1; default: if (instr->is_shadow && instr->is_new_style_shadow) return 1; return 4; } } bool nir_tex_instr_is_query(const nir_tex_instr *instr) { switch (instr->op) { case nir_texop_txs: case nir_texop_lod: case nir_texop_texture_samples: case nir_texop_query_levels: return true; case nir_texop_tex: case nir_texop_txb: case nir_texop_txl: case nir_texop_txd: case nir_texop_txf: case nir_texop_txf_ms: case nir_texop_txf_ms_fb: case nir_texop_txf_ms_mcs_intel: case nir_texop_tg4: return false; default: unreachable("Invalid texture opcode"); } } bool nir_tex_instr_has_implicit_derivative(const nir_tex_instr *instr) { switch (instr->op) { case nir_texop_tex: case nir_texop_txb: case nir_texop_lod: return true; default: return false; } } nir_alu_type nir_tex_instr_src_type(const nir_tex_instr *instr, unsigned src) { switch (instr->src[src].src_type) { case nir_tex_src_coord: switch (instr->op) { case nir_texop_txf: case nir_texop_txf_ms: case nir_texop_txf_ms_fb: case nir_texop_txf_ms_mcs_intel: case nir_texop_samples_identical: case nir_texop_fragment_fetch_amd: case nir_texop_fragment_mask_fetch_amd: return nir_type_int; default: return nir_type_float; } case nir_tex_src_lod: switch (instr->op) { case nir_texop_txs: case nir_texop_txf: case nir_texop_txf_ms: case nir_texop_fragment_fetch_amd: case nir_texop_fragment_mask_fetch_amd: return nir_type_int; default: return nir_type_float; } case nir_tex_src_projector: case nir_tex_src_comparator: case nir_tex_src_bias: case nir_tex_src_min_lod: case nir_tex_src_ddx: case nir_tex_src_ddy: case nir_tex_src_backend1: case nir_tex_src_backend2: return nir_type_float; case nir_tex_src_offset: case nir_tex_src_ms_index: case nir_tex_src_plane: return nir_type_int; case nir_tex_src_ms_mcs_intel: case nir_tex_src_texture_deref: case nir_tex_src_sampler_deref: case nir_tex_src_texture_offset: case nir_tex_src_sampler_offset: case nir_tex_src_texture_handle: case nir_tex_src_sampler_handle: return nir_type_uint; case nir_num_tex_src_types: unreachable("nir_num_tex_src_types is not a valid source type"); } unreachable("Invalid texture source type"); } unsigned nir_tex_instr_src_size(const nir_tex_instr *instr, unsigned src) { if (instr->src[src].src_type == nir_tex_src_coord) return instr->coord_components; /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs_intel */ if (instr->src[src].src_type == nir_tex_src_ms_mcs_intel) return 4; if (instr->src[src].src_type == nir_tex_src_ddx || instr->src[src].src_type == nir_tex_src_ddy) { if (instr->is_array && !instr->array_is_lowered_cube) return instr->coord_components - 1; else return instr->coord_components; } if (instr->src[src].src_type == nir_tex_src_offset) { if (instr->is_array) return instr->coord_components - 1; else return instr->coord_components; } if (instr->src[src].src_type == nir_tex_src_backend1 || instr->src[src].src_type == nir_tex_src_backend2) return nir_src_num_components(instr->src[src].src); /* For AMD, this can be a vec8/vec4 image/sampler descriptor. */ if (instr->src[src].src_type == nir_tex_src_texture_handle || instr->src[src].src_type == nir_tex_src_sampler_handle) return 0; return 1; } /** * Return which components are written into transform feedback buffers. * The result is relative to 0, not "component". */ unsigned nir_instr_xfb_write_mask(nir_intrinsic_instr *instr) { unsigned mask = 0; if (nir_intrinsic_has_io_xfb(instr)) { unsigned wr_mask = nir_intrinsic_write_mask(instr) << nir_intrinsic_component(instr); assert((wr_mask & ~0xf) == 0); /* only 4 components allowed */ unsigned iter_mask = wr_mask; while (iter_mask) { unsigned i = u_bit_scan(&iter_mask); nir_io_xfb xfb = i < 2 ? nir_intrinsic_io_xfb(instr) : nir_intrinsic_io_xfb2(instr); if (xfb.out[i % 2].num_components) mask |= BITFIELD_RANGE(i, xfb.out[i % 2].num_components) & wr_mask; } } return mask; } /** * Whether an output slot is consumed by fixed-function logic. */ bool nir_slot_is_sysval_output(gl_varying_slot slot) { return slot == VARYING_SLOT_POS || slot == VARYING_SLOT_PSIZ || slot == VARYING_SLOT_EDGE || slot == VARYING_SLOT_CLIP_VERTEX || slot == VARYING_SLOT_CLIP_DIST0 || slot == VARYING_SLOT_CLIP_DIST1 || slot == VARYING_SLOT_CULL_DIST0 || slot == VARYING_SLOT_CULL_DIST1 || slot == VARYING_SLOT_LAYER || slot == VARYING_SLOT_VIEWPORT || slot == VARYING_SLOT_TESS_LEVEL_OUTER || slot == VARYING_SLOT_TESS_LEVEL_INNER || slot == VARYING_SLOT_BOUNDING_BOX0 || slot == VARYING_SLOT_BOUNDING_BOX1 || slot == VARYING_SLOT_VIEW_INDEX || slot == VARYING_SLOT_VIEWPORT_MASK || slot == VARYING_SLOT_PRIMITIVE_SHADING_RATE || slot == VARYING_SLOT_PRIMITIVE_COUNT || slot == VARYING_SLOT_PRIMITIVE_INDICES || slot == VARYING_SLOT_TASK_COUNT; } /** * Whether an input/output slot is consumed by the next shader stage, * or written by the previous shader stage. */ bool nir_slot_is_varying(gl_varying_slot slot) { return slot >= VARYING_SLOT_VAR0 || slot == VARYING_SLOT_COL0 || slot == VARYING_SLOT_COL1 || slot == VARYING_SLOT_BFC0 || slot == VARYING_SLOT_BFC1 || slot == VARYING_SLOT_FOGC || (slot >= VARYING_SLOT_TEX0 && slot <= VARYING_SLOT_TEX7) || slot == VARYING_SLOT_PNTC || slot == VARYING_SLOT_CLIP_DIST0 || slot == VARYING_SLOT_CLIP_DIST1 || slot == VARYING_SLOT_CULL_DIST0 || slot == VARYING_SLOT_CULL_DIST1 || slot == VARYING_SLOT_PRIMITIVE_ID || slot == VARYING_SLOT_LAYER || slot == VARYING_SLOT_VIEWPORT || slot == VARYING_SLOT_TESS_LEVEL_OUTER || slot == VARYING_SLOT_TESS_LEVEL_INNER; } bool nir_slot_is_sysval_output_and_varying(gl_varying_slot slot) { return nir_slot_is_sysval_output(slot) && nir_slot_is_varying(slot); } /** * This marks the output store instruction as not feeding the next shader * stage. If the instruction has no other use, it's removed. */ void nir_remove_varying(nir_intrinsic_instr *intr) { nir_io_semantics sem = nir_intrinsic_io_semantics(intr); if ((!sem.no_sysval_output && nir_slot_is_sysval_output(sem.location)) || nir_instr_xfb_write_mask(intr)) { /* Demote the store instruction. */ sem.no_varying = true; nir_intrinsic_set_io_semantics(intr, sem); } else { nir_instr_remove(&intr->instr); } } /** * This marks the output store instruction as not feeding fixed-function * logic. If the instruction has no other use, it's removed. */ void nir_remove_sysval_output(nir_intrinsic_instr *intr) { nir_io_semantics sem = nir_intrinsic_io_semantics(intr); if ((!sem.no_varying && nir_slot_is_varying(sem.location)) || nir_instr_xfb_write_mask(intr)) { /* Demote the store instruction. */ sem.no_sysval_output = true; nir_intrinsic_set_io_semantics(intr, sem); } else { nir_instr_remove(&intr->instr); } } void nir_remove_non_entrypoints(nir_shader *nir) { foreach_list_typed_safe(nir_function, func, node, &nir->functions) { if (!func->is_entrypoint) exec_node_remove(&func->node); } assert(exec_list_length(&nir->functions) == 1); }