/* * Copyright 2012 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * on the rights to use, copy, modify, merge, publish, distribute, sub * license, and/or sell copies of the Software, and to permit persons to whom * the Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * * Authors: * Christian König * Marek Olšák */ #include "si_pipe.h" #include "si_shader.h" #include "sid.h" #include "tgsi/tgsi_parse.h" #include "tgsi/tgsi_ureg.h" #include "util/u_memory.h" #include "util/u_simple_shaders.h" static void si_set_tesseval_regs(struct si_shader *shader, struct si_pm4_state *pm4) { struct tgsi_shader_info *info = &shader->selector->info; unsigned tes_prim_mode = info->properties[TGSI_PROPERTY_TES_PRIM_MODE]; unsigned tes_spacing = info->properties[TGSI_PROPERTY_TES_SPACING]; bool tes_vertex_order_cw = info->properties[TGSI_PROPERTY_TES_VERTEX_ORDER_CW]; bool tes_point_mode = info->properties[TGSI_PROPERTY_TES_POINT_MODE]; unsigned type, partitioning, topology; switch (tes_prim_mode) { case PIPE_PRIM_LINES: type = V_028B6C_TESS_ISOLINE; break; case PIPE_PRIM_TRIANGLES: type = V_028B6C_TESS_TRIANGLE; break; case PIPE_PRIM_QUADS: type = V_028B6C_TESS_QUAD; break; default: assert(0); return; } switch (tes_spacing) { case PIPE_TESS_SPACING_FRACTIONAL_ODD: partitioning = V_028B6C_PART_FRAC_ODD; break; case PIPE_TESS_SPACING_FRACTIONAL_EVEN: partitioning = V_028B6C_PART_FRAC_EVEN; break; case PIPE_TESS_SPACING_EQUAL: partitioning = V_028B6C_PART_INTEGER; break; default: assert(0); return; } if (tes_point_mode) topology = V_028B6C_OUTPUT_POINT; else if (tes_prim_mode == PIPE_PRIM_LINES) topology = V_028B6C_OUTPUT_LINE; else if (tes_vertex_order_cw) /* for some reason, this must be the other way around */ topology = V_028B6C_OUTPUT_TRIANGLE_CCW; else topology = V_028B6C_OUTPUT_TRIANGLE_CW; si_pm4_set_reg(pm4, R_028B6C_VGT_TF_PARAM, S_028B6C_TYPE(type) | S_028B6C_PARTITIONING(partitioning) | S_028B6C_TOPOLOGY(topology)); } static void si_shader_ls(struct si_shader *shader) { struct si_pm4_state *pm4; unsigned num_sgprs, num_user_sgprs; unsigned vgpr_comp_cnt; uint64_t va; pm4 = shader->pm4 = CALLOC_STRUCT(si_pm4_state); if (pm4 == NULL) return; va = shader->bo->gpu_address; si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_DATA); /* We need at least 2 components for LS. * VGPR0-3: (VertexID, RelAutoindex, ???, InstanceID). */ vgpr_comp_cnt = shader->uses_instanceid ? 3 : 1; num_user_sgprs = SI_LS_NUM_USER_SGPR; num_sgprs = shader->num_sgprs; if (num_user_sgprs > num_sgprs) { /* Last 2 reserved SGPRs are used for VCC */ num_sgprs = num_user_sgprs + 2; } assert(num_sgprs <= 104); si_pm4_set_reg(pm4, R_00B520_SPI_SHADER_PGM_LO_LS, va >> 8); si_pm4_set_reg(pm4, R_00B524_SPI_SHADER_PGM_HI_LS, va >> 40); shader->ls_rsrc1 = S_00B528_VGPRS((shader->num_vgprs - 1) / 4) | S_00B528_SGPRS((num_sgprs - 1) / 8) | S_00B528_VGPR_COMP_CNT(vgpr_comp_cnt); shader->ls_rsrc2 = S_00B52C_USER_SGPR(num_user_sgprs) | S_00B52C_SCRATCH_EN(shader->scratch_bytes_per_wave > 0); } static void si_shader_hs(struct si_shader *shader) { struct si_pm4_state *pm4; unsigned num_sgprs, num_user_sgprs; uint64_t va; pm4 = shader->pm4 = CALLOC_STRUCT(si_pm4_state); if (pm4 == NULL) return; va = shader->bo->gpu_address; si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_DATA); num_user_sgprs = SI_TCS_NUM_USER_SGPR; num_sgprs = shader->num_sgprs; /* One SGPR after user SGPRs is pre-loaded with tessellation factor * buffer offset. */ if ((num_user_sgprs + 1) > num_sgprs) { /* Last 2 reserved SGPRs are used for VCC */ num_sgprs = num_user_sgprs + 1 + 2; } assert(num_sgprs <= 104); si_pm4_set_reg(pm4, R_00B420_SPI_SHADER_PGM_LO_HS, va >> 8); si_pm4_set_reg(pm4, R_00B424_SPI_SHADER_PGM_HI_HS, va >> 40); si_pm4_set_reg(pm4, R_00B428_SPI_SHADER_PGM_RSRC1_HS, S_00B428_VGPRS((shader->num_vgprs - 1) / 4) | S_00B428_SGPRS((num_sgprs - 1) / 8)); si_pm4_set_reg(pm4, R_00B42C_SPI_SHADER_PGM_RSRC2_HS, S_00B42C_USER_SGPR(num_user_sgprs) | S_00B42C_SCRATCH_EN(shader->scratch_bytes_per_wave > 0)); } static void si_shader_es(struct si_shader *shader) { struct si_pm4_state *pm4; unsigned num_sgprs, num_user_sgprs; unsigned vgpr_comp_cnt; uint64_t va; pm4 = shader->pm4 = CALLOC_STRUCT(si_pm4_state); if (pm4 == NULL) return; va = shader->bo->gpu_address; si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_DATA); if (shader->selector->type == PIPE_SHADER_VERTEX) { vgpr_comp_cnt = shader->uses_instanceid ? 3 : 0; num_user_sgprs = SI_VS_NUM_USER_SGPR; } else if (shader->selector->type == PIPE_SHADER_TESS_EVAL) { vgpr_comp_cnt = 3; /* all components are needed for TES */ num_user_sgprs = SI_TES_NUM_USER_SGPR; } else assert(0); num_sgprs = shader->num_sgprs; /* One SGPR after user SGPRs is pre-loaded with es2gs_offset */ if ((num_user_sgprs + 1) > num_sgprs) { /* Last 2 reserved SGPRs are used for VCC */ num_sgprs = num_user_sgprs + 1 + 2; } assert(num_sgprs <= 104); si_pm4_set_reg(pm4, R_00B320_SPI_SHADER_PGM_LO_ES, va >> 8); si_pm4_set_reg(pm4, R_00B324_SPI_SHADER_PGM_HI_ES, va >> 40); si_pm4_set_reg(pm4, R_00B328_SPI_SHADER_PGM_RSRC1_ES, S_00B328_VGPRS((shader->num_vgprs - 1) / 4) | S_00B328_SGPRS((num_sgprs - 1) / 8) | S_00B328_VGPR_COMP_CNT(vgpr_comp_cnt) | S_00B328_DX10_CLAMP(shader->dx10_clamp_mode)); si_pm4_set_reg(pm4, R_00B32C_SPI_SHADER_PGM_RSRC2_ES, S_00B32C_USER_SGPR(num_user_sgprs) | S_00B32C_SCRATCH_EN(shader->scratch_bytes_per_wave > 0)); if (shader->selector->type == PIPE_SHADER_TESS_EVAL) si_set_tesseval_regs(shader, pm4); } static unsigned si_gs_get_max_stream(struct si_shader *shader) { struct pipe_stream_output_info *so = &shader->selector->so; unsigned max_stream = 0, i; if (so->num_outputs == 0) return 0; for (i = 0; i < so->num_outputs; i++) { if (so->output[i].stream > max_stream) max_stream = so->output[i].stream; } return max_stream; } static void si_shader_gs(struct si_shader *shader) { unsigned gs_vert_itemsize = shader->selector->info.num_outputs * 16; unsigned gs_max_vert_out = shader->selector->gs_max_out_vertices; unsigned gsvs_itemsize = (gs_vert_itemsize * gs_max_vert_out) >> 2; unsigned gs_num_invocations = shader->selector->gs_num_invocations; unsigned cut_mode; struct si_pm4_state *pm4; unsigned num_sgprs, num_user_sgprs; uint64_t va; unsigned max_stream = si_gs_get_max_stream(shader); /* The GSVS_RING_ITEMSIZE register takes 15 bits */ assert(gsvs_itemsize < (1 << 15)); pm4 = shader->pm4 = CALLOC_STRUCT(si_pm4_state); if (pm4 == NULL) return; if (gs_max_vert_out <= 128) { cut_mode = V_028A40_GS_CUT_128; } else if (gs_max_vert_out <= 256) { cut_mode = V_028A40_GS_CUT_256; } else if (gs_max_vert_out <= 512) { cut_mode = V_028A40_GS_CUT_512; } else { assert(gs_max_vert_out <= 1024); cut_mode = V_028A40_GS_CUT_1024; } si_pm4_set_reg(pm4, R_028A40_VGT_GS_MODE, S_028A40_MODE(V_028A40_GS_SCENARIO_G) | S_028A40_CUT_MODE(cut_mode)| S_028A40_ES_WRITE_OPTIMIZE(1) | S_028A40_GS_WRITE_OPTIMIZE(1)); si_pm4_set_reg(pm4, R_028A60_VGT_GSVS_RING_OFFSET_1, gsvs_itemsize); si_pm4_set_reg(pm4, R_028A64_VGT_GSVS_RING_OFFSET_2, gsvs_itemsize * ((max_stream >= 2) ? 2 : 1)); si_pm4_set_reg(pm4, R_028A68_VGT_GSVS_RING_OFFSET_3, gsvs_itemsize * ((max_stream >= 3) ? 3 : 1)); si_pm4_set_reg(pm4, R_028AAC_VGT_ESGS_RING_ITEMSIZE, util_bitcount64(shader->selector->inputs_read) * (16 >> 2)); si_pm4_set_reg(pm4, R_028AB0_VGT_GSVS_RING_ITEMSIZE, gsvs_itemsize * (max_stream + 1)); si_pm4_set_reg(pm4, R_028B38_VGT_GS_MAX_VERT_OUT, gs_max_vert_out); si_pm4_set_reg(pm4, R_028B5C_VGT_GS_VERT_ITEMSIZE, gs_vert_itemsize >> 2); si_pm4_set_reg(pm4, R_028B60_VGT_GS_VERT_ITEMSIZE_1, (max_stream >= 1) ? gs_vert_itemsize >> 2 : 0); si_pm4_set_reg(pm4, R_028B64_VGT_GS_VERT_ITEMSIZE_2, (max_stream >= 2) ? gs_vert_itemsize >> 2 : 0); si_pm4_set_reg(pm4, R_028B68_VGT_GS_VERT_ITEMSIZE_3, (max_stream >= 3) ? gs_vert_itemsize >> 2 : 0); si_pm4_set_reg(pm4, R_028B90_VGT_GS_INSTANCE_CNT, S_028B90_CNT(MIN2(gs_num_invocations, 127)) | S_028B90_ENABLE(gs_num_invocations > 0)); va = shader->bo->gpu_address; si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_DATA); si_pm4_set_reg(pm4, R_00B220_SPI_SHADER_PGM_LO_GS, va >> 8); si_pm4_set_reg(pm4, R_00B224_SPI_SHADER_PGM_HI_GS, va >> 40); num_user_sgprs = SI_GS_NUM_USER_SGPR; num_sgprs = shader->num_sgprs; /* Two SGPRs after user SGPRs are pre-loaded with gs2vs_offset, gs_wave_id */ if ((num_user_sgprs + 2) > num_sgprs) { /* Last 2 reserved SGPRs are used for VCC */ num_sgprs = num_user_sgprs + 2 + 2; } assert(num_sgprs <= 104); si_pm4_set_reg(pm4, R_00B228_SPI_SHADER_PGM_RSRC1_GS, S_00B228_VGPRS((shader->num_vgprs - 1) / 4) | S_00B228_SGPRS((num_sgprs - 1) / 8) | S_00B228_DX10_CLAMP(shader->dx10_clamp_mode)); si_pm4_set_reg(pm4, R_00B22C_SPI_SHADER_PGM_RSRC2_GS, S_00B22C_USER_SGPR(num_user_sgprs) | S_00B22C_SCRATCH_EN(shader->scratch_bytes_per_wave > 0)); } static void si_shader_vs(struct si_shader *shader) { struct si_pm4_state *pm4; unsigned num_sgprs, num_user_sgprs; unsigned nparams, vgpr_comp_cnt; uint64_t va; unsigned window_space = shader->selector->info.properties[TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION]; pm4 = shader->pm4 = CALLOC_STRUCT(si_pm4_state); if (pm4 == NULL) return; va = shader->bo->gpu_address; si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_DATA); if (shader->is_gs_copy_shader) { vgpr_comp_cnt = 0; /* only VertexID is needed for GS-COPY. */ num_user_sgprs = SI_GSCOPY_NUM_USER_SGPR; } else if (shader->selector->type == PIPE_SHADER_VERTEX) { vgpr_comp_cnt = shader->uses_instanceid ? 3 : 0; num_user_sgprs = SI_VS_NUM_USER_SGPR; } else if (shader->selector->type == PIPE_SHADER_TESS_EVAL) { vgpr_comp_cnt = 3; /* all components are needed for TES */ num_user_sgprs = SI_TES_NUM_USER_SGPR; } else assert(0); num_sgprs = shader->num_sgprs; if (num_user_sgprs > num_sgprs) { /* Last 2 reserved SGPRs are used for VCC */ num_sgprs = num_user_sgprs + 2; } assert(num_sgprs <= 104); /* VS is required to export at least one param. */ nparams = MAX2(shader->nr_param_exports, 1); si_pm4_set_reg(pm4, R_0286C4_SPI_VS_OUT_CONFIG, S_0286C4_VS_EXPORT_COUNT(nparams - 1)); si_pm4_set_reg(pm4, R_02870C_SPI_SHADER_POS_FORMAT, S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) | S_02870C_POS1_EXPORT_FORMAT(shader->nr_pos_exports > 1 ? V_02870C_SPI_SHADER_4COMP : V_02870C_SPI_SHADER_NONE) | S_02870C_POS2_EXPORT_FORMAT(shader->nr_pos_exports > 2 ? V_02870C_SPI_SHADER_4COMP : V_02870C_SPI_SHADER_NONE) | S_02870C_POS3_EXPORT_FORMAT(shader->nr_pos_exports > 3 ? V_02870C_SPI_SHADER_4COMP : V_02870C_SPI_SHADER_NONE)); si_pm4_set_reg(pm4, R_00B120_SPI_SHADER_PGM_LO_VS, va >> 8); si_pm4_set_reg(pm4, R_00B124_SPI_SHADER_PGM_HI_VS, va >> 40); si_pm4_set_reg(pm4, R_00B128_SPI_SHADER_PGM_RSRC1_VS, S_00B128_VGPRS((shader->num_vgprs - 1) / 4) | S_00B128_SGPRS((num_sgprs - 1) / 8) | S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt) | S_00B128_DX10_CLAMP(shader->dx10_clamp_mode)); si_pm4_set_reg(pm4, R_00B12C_SPI_SHADER_PGM_RSRC2_VS, S_00B12C_USER_SGPR(num_user_sgprs) | S_00B12C_SO_BASE0_EN(!!shader->selector->so.stride[0]) | S_00B12C_SO_BASE1_EN(!!shader->selector->so.stride[1]) | S_00B12C_SO_BASE2_EN(!!shader->selector->so.stride[2]) | S_00B12C_SO_BASE3_EN(!!shader->selector->so.stride[3]) | S_00B12C_SO_EN(!!shader->selector->so.num_outputs) | S_00B12C_SCRATCH_EN(shader->scratch_bytes_per_wave > 0)); if (window_space) si_pm4_set_reg(pm4, R_028818_PA_CL_VTE_CNTL, S_028818_VTX_XY_FMT(1) | S_028818_VTX_Z_FMT(1)); else si_pm4_set_reg(pm4, R_028818_PA_CL_VTE_CNTL, S_028818_VTX_W0_FMT(1) | S_028818_VPORT_X_SCALE_ENA(1) | S_028818_VPORT_X_OFFSET_ENA(1) | S_028818_VPORT_Y_SCALE_ENA(1) | S_028818_VPORT_Y_OFFSET_ENA(1) | S_028818_VPORT_Z_SCALE_ENA(1) | S_028818_VPORT_Z_OFFSET_ENA(1)); if (shader->selector->type == PIPE_SHADER_TESS_EVAL) si_set_tesseval_regs(shader, pm4); } static void si_shader_ps(struct si_shader *shader) { struct tgsi_shader_info *info = &shader->selector->info; struct si_pm4_state *pm4; unsigned i, spi_ps_in_control; unsigned num_sgprs, num_user_sgprs; unsigned spi_baryc_cntl = 0, spi_ps_input_ena; uint64_t va; pm4 = shader->pm4 = CALLOC_STRUCT(si_pm4_state); if (pm4 == NULL) return; for (i = 0; i < info->num_inputs; i++) { switch (info->input_semantic_name[i]) { case TGSI_SEMANTIC_POSITION: /* SPI_BARYC_CNTL.POS_FLOAT_LOCATION * Possible vaules: * 0 -> Position = pixel center (default) * 1 -> Position = pixel centroid * 2 -> Position = at sample position */ switch (info->input_interpolate_loc[i]) { case TGSI_INTERPOLATE_LOC_CENTROID: spi_baryc_cntl |= S_0286E0_POS_FLOAT_LOCATION(1); break; case TGSI_INTERPOLATE_LOC_SAMPLE: spi_baryc_cntl |= S_0286E0_POS_FLOAT_LOCATION(2); break; } if (info->properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER] == TGSI_FS_COORD_PIXEL_CENTER_INTEGER) spi_baryc_cntl |= S_0286E0_POS_FLOAT_ULC(1); break; } } spi_ps_in_control = S_0286D8_NUM_INTERP(shader->nparam) | S_0286D8_BC_OPTIMIZE_DISABLE(1); si_pm4_set_reg(pm4, R_0286E0_SPI_BARYC_CNTL, spi_baryc_cntl); spi_ps_input_ena = shader->spi_ps_input_ena; /* we need to enable at least one of them, otherwise we hang the GPU */ assert(G_0286CC_PERSP_SAMPLE_ENA(spi_ps_input_ena) || G_0286CC_PERSP_CENTER_ENA(spi_ps_input_ena) || G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena) || G_0286CC_PERSP_PULL_MODEL_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_SAMPLE_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTER_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena) || G_0286CC_LINE_STIPPLE_TEX_ENA(spi_ps_input_ena)); si_pm4_set_reg(pm4, R_0286CC_SPI_PS_INPUT_ENA, spi_ps_input_ena); si_pm4_set_reg(pm4, R_0286D0_SPI_PS_INPUT_ADDR, spi_ps_input_ena); si_pm4_set_reg(pm4, R_0286D8_SPI_PS_IN_CONTROL, spi_ps_in_control); si_pm4_set_reg(pm4, R_028710_SPI_SHADER_Z_FORMAT, shader->spi_shader_z_format); si_pm4_set_reg(pm4, R_028714_SPI_SHADER_COL_FORMAT, shader->spi_shader_col_format); si_pm4_set_reg(pm4, R_02823C_CB_SHADER_MASK, shader->cb_shader_mask); va = shader->bo->gpu_address; si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_DATA); si_pm4_set_reg(pm4, R_00B020_SPI_SHADER_PGM_LO_PS, va >> 8); si_pm4_set_reg(pm4, R_00B024_SPI_SHADER_PGM_HI_PS, va >> 40); num_user_sgprs = SI_PS_NUM_USER_SGPR; num_sgprs = shader->num_sgprs; /* One SGPR after user SGPRs is pre-loaded with {prim_mask, lds_offset} */ if ((num_user_sgprs + 1) > num_sgprs) { /* Last 2 reserved SGPRs are used for VCC */ num_sgprs = num_user_sgprs + 1 + 2; } assert(num_sgprs <= 104); si_pm4_set_reg(pm4, R_00B028_SPI_SHADER_PGM_RSRC1_PS, S_00B028_VGPRS((shader->num_vgprs - 1) / 4) | S_00B028_SGPRS((num_sgprs - 1) / 8) | S_00B028_DX10_CLAMP(shader->dx10_clamp_mode)); si_pm4_set_reg(pm4, R_00B02C_SPI_SHADER_PGM_RSRC2_PS, S_00B02C_EXTRA_LDS_SIZE(shader->lds_size) | S_00B02C_USER_SGPR(num_user_sgprs) | S_00B32C_SCRATCH_EN(shader->scratch_bytes_per_wave > 0)); } static void si_shader_init_pm4_state(struct si_shader *shader) { if (shader->pm4) si_pm4_free_state_simple(shader->pm4); switch (shader->selector->type) { case PIPE_SHADER_VERTEX: if (shader->key.vs.as_ls) si_shader_ls(shader); else if (shader->key.vs.as_es) si_shader_es(shader); else si_shader_vs(shader); break; case PIPE_SHADER_TESS_CTRL: si_shader_hs(shader); break; case PIPE_SHADER_TESS_EVAL: if (shader->key.tes.as_es) si_shader_es(shader); else si_shader_vs(shader); break; case PIPE_SHADER_GEOMETRY: si_shader_gs(shader); si_shader_vs(shader->gs_copy_shader); break; case PIPE_SHADER_FRAGMENT: si_shader_ps(shader); break; default: assert(0); } } /* Compute the key for the hw shader variant */ static inline void si_shader_selector_key(struct pipe_context *ctx, struct si_shader_selector *sel, union si_shader_key *key) { struct si_context *sctx = (struct si_context *)ctx; unsigned i; memset(key, 0, sizeof(*key)); switch (sel->type) { case PIPE_SHADER_VERTEX: if (sctx->vertex_elements) for (i = 0; i < sctx->vertex_elements->count; ++i) key->vs.instance_divisors[i] = sctx->vertex_elements->elements[i].instance_divisor; if (sctx->tes_shader) key->vs.as_ls = 1; else if (sctx->gs_shader) { key->vs.as_es = 1; key->vs.es_enabled_outputs = sctx->gs_shader->inputs_read; } break; case PIPE_SHADER_TESS_CTRL: key->tcs.prim_mode = sctx->tes_shader->info.properties[TGSI_PROPERTY_TES_PRIM_MODE]; break; case PIPE_SHADER_TESS_EVAL: if (sctx->gs_shader) { key->tes.as_es = 1; key->tes.es_enabled_outputs = sctx->gs_shader->inputs_read; } break; case PIPE_SHADER_GEOMETRY: break; case PIPE_SHADER_FRAGMENT: { struct si_state_rasterizer *rs = sctx->queued.named.rasterizer; if (sel->info.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS]) key->ps.last_cbuf = MAX2(sctx->framebuffer.state.nr_cbufs, 1) - 1; key->ps.export_16bpc = sctx->framebuffer.export_16bpc; if (rs) { bool is_poly = (sctx->current_rast_prim >= PIPE_PRIM_TRIANGLES && sctx->current_rast_prim <= PIPE_PRIM_POLYGON) || sctx->current_rast_prim >= PIPE_PRIM_TRIANGLES_ADJACENCY; bool is_line = !is_poly && sctx->current_rast_prim != PIPE_PRIM_POINTS; key->ps.color_two_side = rs->two_side; if (sctx->queued.named.blend) { key->ps.alpha_to_one = sctx->queued.named.blend->alpha_to_one && rs->multisample_enable && !sctx->framebuffer.cb0_is_integer; } key->ps.poly_stipple = rs->poly_stipple_enable && is_poly; key->ps.poly_line_smoothing = ((is_poly && rs->poly_smooth) || (is_line && rs->line_smooth)) && sctx->framebuffer.nr_samples <= 1; } key->ps.alpha_func = PIPE_FUNC_ALWAYS; /* Alpha-test should be disabled if colorbuffer 0 is integer. */ if (sctx->queued.named.dsa && !sctx->framebuffer.cb0_is_integer) key->ps.alpha_func = sctx->queued.named.dsa->alpha_func; break; } default: assert(0); } } /* Select the hw shader variant depending on the current state. */ static int si_shader_select(struct pipe_context *ctx, struct si_shader_selector *sel) { struct si_context *sctx = (struct si_context *)ctx; union si_shader_key key; struct si_shader * shader = NULL; int r; si_shader_selector_key(ctx, sel, &key); /* Check if we don't need to change anything. * This path is also used for most shaders that don't need multiple * variants, it will cost just a computation of the key and this * test. */ if (likely(sel->current && memcmp(&sel->current->key, &key, sizeof(key)) == 0)) { return 0; } /* lookup if we have other variants in the list */ if (sel->num_shaders > 1) { struct si_shader *p = sel->current, *c = p->next_variant; while (c && memcmp(&c->key, &key, sizeof(key)) != 0) { p = c; c = c->next_variant; } if (c) { p->next_variant = c->next_variant; shader = c; } } if (shader) { shader->next_variant = sel->current; sel->current = shader; } else { shader = CALLOC(1, sizeof(struct si_shader)); shader->selector = sel; shader->key = key; shader->next_variant = sel->current; sel->current = shader; r = si_shader_create((struct si_screen*)ctx->screen, sctx->tm, shader); if (unlikely(r)) { R600_ERR("Failed to build shader variant (type=%u) %d\n", sel->type, r); sel->current = NULL; FREE(shader); return r; } si_shader_init_pm4_state(shader); sel->num_shaders++; p_atomic_inc(&sctx->screen->b.num_compilations); } return 0; } static void *si_create_shader_state(struct pipe_context *ctx, const struct pipe_shader_state *state, unsigned pipe_shader_type) { struct si_screen *sscreen = (struct si_screen *)ctx->screen; struct si_shader_selector *sel = CALLOC_STRUCT(si_shader_selector); int i; sel->type = pipe_shader_type; sel->tokens = tgsi_dup_tokens(state->tokens); sel->so = state->stream_output; tgsi_scan_shader(state->tokens, &sel->info); p_atomic_inc(&sscreen->b.num_shaders_created); switch (pipe_shader_type) { case PIPE_SHADER_GEOMETRY: sel->gs_output_prim = sel->info.properties[TGSI_PROPERTY_GS_OUTPUT_PRIM]; sel->gs_max_out_vertices = sel->info.properties[TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES]; sel->gs_num_invocations = sel->info.properties[TGSI_PROPERTY_GS_INVOCATIONS]; for (i = 0; i < sel->info.num_inputs; i++) { unsigned name = sel->info.input_semantic_name[i]; unsigned index = sel->info.input_semantic_index[i]; switch (name) { case TGSI_SEMANTIC_PRIMID: break; default: sel->inputs_read |= 1llu << si_shader_io_get_unique_index(name, index); } } break; case PIPE_SHADER_VERTEX: case PIPE_SHADER_TESS_CTRL: for (i = 0; i < sel->info.num_outputs; i++) { unsigned name = sel->info.output_semantic_name[i]; unsigned index = sel->info.output_semantic_index[i]; switch (name) { case TGSI_SEMANTIC_TESSINNER: case TGSI_SEMANTIC_TESSOUTER: case TGSI_SEMANTIC_PATCH: sel->patch_outputs_written |= 1llu << si_shader_io_get_unique_index(name, index); break; default: sel->outputs_written |= 1llu << si_shader_io_get_unique_index(name, index); } } break; } if (sscreen->b.debug_flags & DBG_PRECOMPILE) si_shader_select(ctx, sel); return sel; } static void *si_create_fs_state(struct pipe_context *ctx, const struct pipe_shader_state *state) { return si_create_shader_state(ctx, state, PIPE_SHADER_FRAGMENT); } static void *si_create_gs_state(struct pipe_context *ctx, const struct pipe_shader_state *state) { return si_create_shader_state(ctx, state, PIPE_SHADER_GEOMETRY); } static void *si_create_vs_state(struct pipe_context *ctx, const struct pipe_shader_state *state) { return si_create_shader_state(ctx, state, PIPE_SHADER_VERTEX); } static void *si_create_tcs_state(struct pipe_context *ctx, const struct pipe_shader_state *state) { return si_create_shader_state(ctx, state, PIPE_SHADER_TESS_CTRL); } static void *si_create_tes_state(struct pipe_context *ctx, const struct pipe_shader_state *state) { return si_create_shader_state(ctx, state, PIPE_SHADER_TESS_EVAL); } static void si_bind_vs_shader(struct pipe_context *ctx, void *state) { struct si_context *sctx = (struct si_context *)ctx; struct si_shader_selector *sel = state; if (sctx->vs_shader == sel || !sel) return; sctx->vs_shader = sel; si_mark_atom_dirty(sctx, &sctx->clip_regs); } static void si_bind_gs_shader(struct pipe_context *ctx, void *state) { struct si_context *sctx = (struct si_context *)ctx; struct si_shader_selector *sel = state; bool enable_changed = !!sctx->gs_shader != !!sel; if (sctx->gs_shader == sel) return; sctx->gs_shader = sel; si_mark_atom_dirty(sctx, &sctx->clip_regs); sctx->last_rast_prim = -1; /* reset this so that it gets updated */ if (enable_changed) si_shader_change_notify(sctx); } static void si_bind_tcs_shader(struct pipe_context *ctx, void *state) { struct si_context *sctx = (struct si_context *)ctx; struct si_shader_selector *sel = state; bool enable_changed = !!sctx->tcs_shader != !!sel; if (sctx->tcs_shader == sel) return; sctx->tcs_shader = sel; if (enable_changed) sctx->last_tcs = NULL; /* invalidate derived tess state */ } static void si_bind_tes_shader(struct pipe_context *ctx, void *state) { struct si_context *sctx = (struct si_context *)ctx; struct si_shader_selector *sel = state; bool enable_changed = !!sctx->tes_shader != !!sel; if (sctx->tes_shader == sel) return; sctx->tes_shader = sel; si_mark_atom_dirty(sctx, &sctx->clip_regs); sctx->last_rast_prim = -1; /* reset this so that it gets updated */ if (enable_changed) { si_shader_change_notify(sctx); sctx->last_tes_sh_base = -1; /* invalidate derived tess state */ } } static void si_make_dummy_ps(struct si_context *sctx) { if (!sctx->dummy_pixel_shader) { sctx->dummy_pixel_shader = util_make_fragment_cloneinput_shader(&sctx->b.b, 0, TGSI_SEMANTIC_GENERIC, TGSI_INTERPOLATE_CONSTANT); } } static void si_bind_ps_shader(struct pipe_context *ctx, void *state) { struct si_context *sctx = (struct si_context *)ctx; struct si_shader_selector *sel = state; /* skip if supplied shader is one already in use */ if (sctx->ps_shader == sel) return; /* use a dummy shader if binding a NULL shader */ if (!sel) { si_make_dummy_ps(sctx); sel = sctx->dummy_pixel_shader; } sctx->ps_shader = sel; } static void si_delete_shader_selector(struct pipe_context *ctx, struct si_shader_selector *sel) { struct si_context *sctx = (struct si_context *)ctx; struct si_shader *p = sel->current, *c; while (p) { c = p->next_variant; switch (sel->type) { case PIPE_SHADER_VERTEX: if (p->key.vs.as_ls) si_pm4_delete_state(sctx, ls, p->pm4); else if (p->key.vs.as_es) si_pm4_delete_state(sctx, es, p->pm4); else si_pm4_delete_state(sctx, vs, p->pm4); break; case PIPE_SHADER_TESS_CTRL: si_pm4_delete_state(sctx, hs, p->pm4); break; case PIPE_SHADER_TESS_EVAL: if (p->key.tes.as_es) si_pm4_delete_state(sctx, es, p->pm4); else si_pm4_delete_state(sctx, vs, p->pm4); break; case PIPE_SHADER_GEOMETRY: si_pm4_delete_state(sctx, gs, p->pm4); si_pm4_delete_state(sctx, vs, p->gs_copy_shader->pm4); break; case PIPE_SHADER_FRAGMENT: si_pm4_delete_state(sctx, ps, p->pm4); break; } si_shader_destroy(ctx, p); free(p); p = c; } free(sel->tokens); free(sel); } static void si_delete_vs_shader(struct pipe_context *ctx, void *state) { struct si_context *sctx = (struct si_context *)ctx; struct si_shader_selector *sel = (struct si_shader_selector *)state; if (sctx->vs_shader == sel) { sctx->vs_shader = NULL; } si_delete_shader_selector(ctx, sel); } static void si_delete_gs_shader(struct pipe_context *ctx, void *state) { struct si_context *sctx = (struct si_context *)ctx; struct si_shader_selector *sel = (struct si_shader_selector *)state; if (sctx->gs_shader == sel) { sctx->gs_shader = NULL; } si_delete_shader_selector(ctx, sel); } static void si_delete_ps_shader(struct pipe_context *ctx, void *state) { struct si_context *sctx = (struct si_context *)ctx; struct si_shader_selector *sel = (struct si_shader_selector *)state; if (sctx->ps_shader == sel) { sctx->ps_shader = NULL; } si_delete_shader_selector(ctx, sel); } static void si_delete_tcs_shader(struct pipe_context *ctx, void *state) { struct si_context *sctx = (struct si_context *)ctx; struct si_shader_selector *sel = (struct si_shader_selector *)state; if (sctx->tcs_shader == sel) { sctx->tcs_shader = NULL; } si_delete_shader_selector(ctx, sel); } static void si_delete_tes_shader(struct pipe_context *ctx, void *state) { struct si_context *sctx = (struct si_context *)ctx; struct si_shader_selector *sel = (struct si_shader_selector *)state; if (sctx->tes_shader == sel) { sctx->tes_shader = NULL; } si_delete_shader_selector(ctx, sel); } static void si_update_spi_map(struct si_context *sctx) { struct si_shader *ps = sctx->ps_shader->current; struct si_shader *vs = si_get_vs_state(sctx); struct tgsi_shader_info *psinfo = &ps->selector->info; struct tgsi_shader_info *vsinfo = &vs->selector->info; struct si_pm4_state *pm4 = CALLOC_STRUCT(si_pm4_state); unsigned i, j, tmp; for (i = 0; i < psinfo->num_inputs; i++) { unsigned name = psinfo->input_semantic_name[i]; unsigned index = psinfo->input_semantic_index[i]; unsigned interpolate = psinfo->input_interpolate[i]; unsigned param_offset = ps->ps_input_param_offset[i]; if (name == TGSI_SEMANTIC_POSITION || name == TGSI_SEMANTIC_FACE) /* Read from preloaded VGPRs, not parameters */ continue; bcolor: tmp = 0; if (interpolate == TGSI_INTERPOLATE_CONSTANT || (interpolate == TGSI_INTERPOLATE_COLOR && sctx->flatshade)) tmp |= S_028644_FLAT_SHADE(1); if (name == TGSI_SEMANTIC_PCOORD || (name == TGSI_SEMANTIC_TEXCOORD && sctx->sprite_coord_enable & (1 << index))) { tmp |= S_028644_PT_SPRITE_TEX(1); } for (j = 0; j < vsinfo->num_outputs; j++) { if (name == vsinfo->output_semantic_name[j] && index == vsinfo->output_semantic_index[j]) { tmp |= S_028644_OFFSET(vs->vs_output_param_offset[j]); break; } } if (j == vsinfo->num_outputs && !G_028644_PT_SPRITE_TEX(tmp)) { /* No corresponding output found, load defaults into input. * Don't set any other bits. * (FLAT_SHADE=1 completely changes behavior) */ tmp = S_028644_OFFSET(0x20); } si_pm4_set_reg(pm4, R_028644_SPI_PS_INPUT_CNTL_0 + param_offset * 4, tmp); if (name == TGSI_SEMANTIC_COLOR && ps->key.ps.color_two_side) { name = TGSI_SEMANTIC_BCOLOR; param_offset++; goto bcolor; } } si_pm4_set_state(sctx, spi, pm4); } /* Initialize state related to ESGS / GSVS ring buffers */ static void si_init_gs_rings(struct si_context *sctx) { unsigned esgs_ring_size = 128 * 1024; unsigned gsvs_ring_size = 64 * 1024 * 1024; assert(!sctx->gs_rings); sctx->gs_rings = CALLOC_STRUCT(si_pm4_state); sctx->esgs_ring = pipe_buffer_create(sctx->b.b.screen, PIPE_BIND_CUSTOM, PIPE_USAGE_DEFAULT, esgs_ring_size); sctx->gsvs_ring = pipe_buffer_create(sctx->b.b.screen, PIPE_BIND_CUSTOM, PIPE_USAGE_DEFAULT, gsvs_ring_size); if (sctx->b.chip_class >= CIK) { si_pm4_set_reg(sctx->gs_rings, R_030900_VGT_ESGS_RING_SIZE, esgs_ring_size / 256); si_pm4_set_reg(sctx->gs_rings, R_030904_VGT_GSVS_RING_SIZE, gsvs_ring_size / 256); } else { si_pm4_set_reg(sctx->gs_rings, R_0088C8_VGT_ESGS_RING_SIZE, esgs_ring_size / 256); si_pm4_set_reg(sctx->gs_rings, R_0088CC_VGT_GSVS_RING_SIZE, gsvs_ring_size / 256); } si_set_ring_buffer(&sctx->b.b, PIPE_SHADER_VERTEX, SI_RING_ESGS, sctx->esgs_ring, 0, esgs_ring_size, true, true, 4, 64, 0); si_set_ring_buffer(&sctx->b.b, PIPE_SHADER_GEOMETRY, SI_RING_ESGS, sctx->esgs_ring, 0, esgs_ring_size, false, false, 0, 0, 0); si_set_ring_buffer(&sctx->b.b, PIPE_SHADER_VERTEX, SI_RING_GSVS, sctx->gsvs_ring, 0, gsvs_ring_size, false, false, 0, 0, 0); } static void si_update_gs_rings(struct si_context *sctx) { unsigned gs_vert_itemsize = sctx->gs_shader->info.num_outputs * 16; unsigned gs_max_vert_out = sctx->gs_shader->gs_max_out_vertices; unsigned gsvs_itemsize = gs_vert_itemsize * gs_max_vert_out; uint64_t offset; si_set_ring_buffer(&sctx->b.b, PIPE_SHADER_GEOMETRY, SI_RING_GSVS, sctx->gsvs_ring, gsvs_itemsize, 64, true, true, 4, 16, 0); offset = gsvs_itemsize * 64; si_set_ring_buffer(&sctx->b.b, PIPE_SHADER_GEOMETRY, SI_RING_GSVS_1, sctx->gsvs_ring, gsvs_itemsize, 64, true, true, 4, 16, offset); offset = (gsvs_itemsize * 2) * 64; si_set_ring_buffer(&sctx->b.b, PIPE_SHADER_GEOMETRY, SI_RING_GSVS_2, sctx->gsvs_ring, gsvs_itemsize, 64, true, true, 4, 16, offset); offset = (gsvs_itemsize * 3) * 64; si_set_ring_buffer(&sctx->b.b, PIPE_SHADER_GEOMETRY, SI_RING_GSVS_3, sctx->gsvs_ring, gsvs_itemsize, 64, true, true, 4, 16, offset); } /** * @returns 1 if \p sel has been updated to use a new scratch buffer and 0 * otherwise. */ static unsigned si_update_scratch_buffer(struct si_context *sctx, struct si_shader_selector *sel) { struct si_shader *shader; uint64_t scratch_va = sctx->scratch_buffer->gpu_address; if (!sel) return 0; shader = sel->current; /* This shader doesn't need a scratch buffer */ if (shader->scratch_bytes_per_wave == 0) return 0; /* This shader is already configured to use the current * scratch buffer. */ if (shader->scratch_bo == sctx->scratch_buffer) return 0; assert(sctx->scratch_buffer); si_shader_apply_scratch_relocs(sctx, shader, scratch_va); /* Replace the shader bo with a new bo that has the relocs applied. */ si_shader_binary_upload(sctx->screen, shader); /* Update the shader state to use the new shader bo. */ si_shader_init_pm4_state(shader); r600_resource_reference(&shader->scratch_bo, sctx->scratch_buffer); return 1; } static unsigned si_get_current_scratch_buffer_size(struct si_context *sctx) { if (!sctx->scratch_buffer) return 0; return sctx->scratch_buffer->b.b.width0; } static unsigned si_get_scratch_buffer_bytes_per_wave(struct si_context *sctx, struct si_shader_selector *sel) { if (!sel) return 0; return sel->current->scratch_bytes_per_wave; } static unsigned si_get_max_scratch_bytes_per_wave(struct si_context *sctx) { unsigned bytes = 0; bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx, sctx->ps_shader)); bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx, sctx->gs_shader)); bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx, sctx->vs_shader)); bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx, sctx->tcs_shader)); bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx, sctx->tes_shader)); return bytes; } static void si_update_spi_tmpring_size(struct si_context *sctx) { unsigned current_scratch_buffer_size = si_get_current_scratch_buffer_size(sctx); unsigned scratch_bytes_per_wave = si_get_max_scratch_bytes_per_wave(sctx); unsigned scratch_needed_size = scratch_bytes_per_wave * sctx->scratch_waves; if (scratch_needed_size > 0) { if (scratch_needed_size > current_scratch_buffer_size) { /* Create a bigger scratch buffer */ pipe_resource_reference( (struct pipe_resource**)&sctx->scratch_buffer, NULL); sctx->scratch_buffer = si_resource_create_custom(&sctx->screen->b.b, PIPE_USAGE_DEFAULT, scratch_needed_size); } /* Update the shaders, so they are using the latest scratch. The * scratch buffer may have been changed since these shaders were * last used, so we still need to try to update them, even if * they require scratch buffers smaller than the current size. */ if (si_update_scratch_buffer(sctx, sctx->ps_shader)) si_pm4_bind_state(sctx, ps, sctx->ps_shader->current->pm4); if (si_update_scratch_buffer(sctx, sctx->gs_shader)) si_pm4_bind_state(sctx, gs, sctx->gs_shader->current->pm4); if (si_update_scratch_buffer(sctx, sctx->tcs_shader)) si_pm4_bind_state(sctx, hs, sctx->tcs_shader->current->pm4); /* VS can be bound as LS, ES, or VS. */ if (sctx->tes_shader) { if (si_update_scratch_buffer(sctx, sctx->vs_shader)) si_pm4_bind_state(sctx, ls, sctx->vs_shader->current->pm4); } else if (sctx->gs_shader) { if (si_update_scratch_buffer(sctx, sctx->vs_shader)) si_pm4_bind_state(sctx, es, sctx->vs_shader->current->pm4); } else { if (si_update_scratch_buffer(sctx, sctx->vs_shader)) si_pm4_bind_state(sctx, vs, sctx->vs_shader->current->pm4); } /* TES can be bound as ES or VS. */ if (sctx->gs_shader) { if (si_update_scratch_buffer(sctx, sctx->tes_shader)) si_pm4_bind_state(sctx, es, sctx->tes_shader->current->pm4); } else { if (si_update_scratch_buffer(sctx, sctx->tes_shader)) si_pm4_bind_state(sctx, vs, sctx->tes_shader->current->pm4); } } /* The LLVM shader backend should be reporting aligned scratch_sizes. */ assert((scratch_needed_size & ~0x3FF) == scratch_needed_size && "scratch size should already be aligned correctly."); sctx->spi_tmpring_size = S_0286E8_WAVES(sctx->scratch_waves) | S_0286E8_WAVESIZE(scratch_bytes_per_wave >> 10); } static void si_init_tess_factor_ring(struct si_context *sctx) { assert(!sctx->tf_state); sctx->tf_state = CALLOC_STRUCT(si_pm4_state); sctx->tf_ring = pipe_buffer_create(sctx->b.b.screen, PIPE_BIND_CUSTOM, PIPE_USAGE_DEFAULT, 32768 * sctx->screen->b.info.max_se); sctx->b.clear_buffer(&sctx->b.b, sctx->tf_ring, 0, sctx->tf_ring->width0, fui(0), false); assert(((sctx->tf_ring->width0 / 4) & C_030938_SIZE) == 0); if (sctx->b.chip_class >= CIK) { si_pm4_set_reg(sctx->tf_state, R_030938_VGT_TF_RING_SIZE, S_030938_SIZE(sctx->tf_ring->width0 / 4)); si_pm4_set_reg(sctx->tf_state, R_030940_VGT_TF_MEMORY_BASE, r600_resource(sctx->tf_ring)->gpu_address >> 8); } else { si_pm4_set_reg(sctx->tf_state, R_008988_VGT_TF_RING_SIZE, S_008988_SIZE(sctx->tf_ring->width0 / 4)); si_pm4_set_reg(sctx->tf_state, R_0089B8_VGT_TF_MEMORY_BASE, r600_resource(sctx->tf_ring)->gpu_address >> 8); } si_pm4_add_bo(sctx->tf_state, r600_resource(sctx->tf_ring), RADEON_USAGE_READWRITE, RADEON_PRIO_SHADER_RESOURCE_RW); si_pm4_bind_state(sctx, tf_ring, sctx->tf_state); si_set_ring_buffer(&sctx->b.b, PIPE_SHADER_TESS_CTRL, SI_RING_TESS_FACTOR, sctx->tf_ring, 0, sctx->tf_ring->width0, false, false, 0, 0, 0); sctx->b.flags |= SI_CONTEXT_VGT_FLUSH; } /** * This is used when TCS is NULL in the VS->TCS->TES chain. In this case, * VS passes its outputs to TES directly, so the fixed-function shader only * has to write TESSOUTER and TESSINNER. */ static void si_generate_fixed_func_tcs(struct si_context *sctx) { struct ureg_src const0, const1; struct ureg_dst tessouter, tessinner; struct ureg_program *ureg = ureg_create(TGSI_PROCESSOR_TESS_CTRL); if (!ureg) return; /* if we get here, we're screwed */ assert(!sctx->fixed_func_tcs_shader); ureg_DECL_constant2D(ureg, 0, 1, SI_DRIVER_STATE_CONST_BUF); const0 = ureg_src_dimension(ureg_src_register(TGSI_FILE_CONSTANT, 0), SI_DRIVER_STATE_CONST_BUF); const1 = ureg_src_dimension(ureg_src_register(TGSI_FILE_CONSTANT, 1), SI_DRIVER_STATE_CONST_BUF); tessouter = ureg_DECL_output(ureg, TGSI_SEMANTIC_TESSOUTER, 0); tessinner = ureg_DECL_output(ureg, TGSI_SEMANTIC_TESSINNER, 0); ureg_MOV(ureg, tessouter, const0); ureg_MOV(ureg, tessinner, const1); ureg_END(ureg); sctx->fixed_func_tcs_shader = ureg_create_shader_and_destroy(ureg, &sctx->b.b); assert(sctx->fixed_func_tcs_shader); } static void si_update_vgt_shader_config(struct si_context *sctx) { /* Calculate the index of the config. * 0 = VS, 1 = VS+GS, 2 = VS+Tess, 3 = VS+Tess+GS */ unsigned index = 2*!!sctx->tes_shader + !!sctx->gs_shader; struct si_pm4_state **pm4 = &sctx->vgt_shader_config[index]; if (!*pm4) { uint32_t stages = 0; *pm4 = CALLOC_STRUCT(si_pm4_state); if (sctx->tes_shader) { stages |= S_028B54_LS_EN(V_028B54_LS_STAGE_ON) | S_028B54_HS_EN(1); if (sctx->gs_shader) stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS) | S_028B54_GS_EN(1) | S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER); else stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_DS); } else if (sctx->gs_shader) { stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL) | S_028B54_GS_EN(1) | S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER); } si_pm4_set_reg(*pm4, R_028B54_VGT_SHADER_STAGES_EN, stages); if (!sctx->gs_shader) si_pm4_set_reg(*pm4, R_028A40_VGT_GS_MODE, 0); } si_pm4_bind_state(sctx, vgt_shader_config, *pm4); } static void si_update_so(struct si_context *sctx, struct si_shader_selector *shader) { struct pipe_stream_output_info *so = &shader->so; uint32_t enabled_stream_buffers_mask = 0; int i; for (i = 0; i < so->num_outputs; i++) enabled_stream_buffers_mask |= (1 << so->output[i].output_buffer) << (so->output[i].stream * 4); sctx->b.streamout.enabled_stream_buffers_mask = enabled_stream_buffers_mask; sctx->b.streamout.stride_in_dw = shader->so.stride; } void si_update_shaders(struct si_context *sctx) { struct pipe_context *ctx = (struct pipe_context*)sctx; struct si_state_rasterizer *rs = sctx->queued.named.rasterizer; /* Update stages before GS. */ if (sctx->tes_shader) { if (!sctx->tf_state) si_init_tess_factor_ring(sctx); /* VS as LS */ si_shader_select(ctx, sctx->vs_shader); si_pm4_bind_state(sctx, ls, sctx->vs_shader->current->pm4); if (sctx->tcs_shader) { si_shader_select(ctx, sctx->tcs_shader); si_pm4_bind_state(sctx, hs, sctx->tcs_shader->current->pm4); } else { if (!sctx->fixed_func_tcs_shader) si_generate_fixed_func_tcs(sctx); si_shader_select(ctx, sctx->fixed_func_tcs_shader); si_pm4_bind_state(sctx, hs, sctx->fixed_func_tcs_shader->current->pm4); } si_shader_select(ctx, sctx->tes_shader); if (sctx->gs_shader) { /* TES as ES */ si_pm4_bind_state(sctx, es, sctx->tes_shader->current->pm4); } else { /* TES as VS */ si_pm4_bind_state(sctx, vs, sctx->tes_shader->current->pm4); si_update_so(sctx, sctx->tes_shader); } } else if (sctx->gs_shader) { /* VS as ES */ si_shader_select(ctx, sctx->vs_shader); si_pm4_bind_state(sctx, es, sctx->vs_shader->current->pm4); } else { /* VS as VS */ si_shader_select(ctx, sctx->vs_shader); si_pm4_bind_state(sctx, vs, sctx->vs_shader->current->pm4); si_update_so(sctx, sctx->vs_shader); } /* Update GS. */ if (sctx->gs_shader) { si_shader_select(ctx, sctx->gs_shader); si_pm4_bind_state(sctx, gs, sctx->gs_shader->current->pm4); si_pm4_bind_state(sctx, vs, sctx->gs_shader->current->gs_copy_shader->pm4); si_update_so(sctx, sctx->gs_shader); if (!sctx->gs_rings) si_init_gs_rings(sctx); if (sctx->emitted.named.gs_rings != sctx->gs_rings) sctx->b.flags |= SI_CONTEXT_VGT_FLUSH; si_pm4_bind_state(sctx, gs_rings, sctx->gs_rings); si_update_gs_rings(sctx); } else { si_pm4_bind_state(sctx, gs_rings, NULL); si_pm4_bind_state(sctx, gs, NULL); si_pm4_bind_state(sctx, es, NULL); } si_update_vgt_shader_config(sctx); si_shader_select(ctx, sctx->ps_shader); if (!sctx->ps_shader->current) { struct si_shader_selector *sel; /* use a dummy shader if compiling the shader (variant) failed */ si_make_dummy_ps(sctx); sel = sctx->dummy_pixel_shader; si_shader_select(ctx, sel); sctx->ps_shader->current = sel->current; } si_pm4_bind_state(sctx, ps, sctx->ps_shader->current->pm4); if (si_pm4_state_changed(sctx, ps) || si_pm4_state_changed(sctx, vs) || sctx->sprite_coord_enable != rs->sprite_coord_enable || sctx->flatshade != rs->flatshade) { sctx->sprite_coord_enable = rs->sprite_coord_enable; sctx->flatshade = rs->flatshade; si_update_spi_map(sctx); } if (si_pm4_state_changed(sctx, ps) || si_pm4_state_changed(sctx, vs) || si_pm4_state_changed(sctx, gs)) { si_update_spi_tmpring_size(sctx); } if (sctx->ps_db_shader_control != sctx->ps_shader->current->db_shader_control) { sctx->ps_db_shader_control = sctx->ps_shader->current->db_shader_control; si_mark_atom_dirty(sctx, &sctx->db_render_state); } if (sctx->smoothing_enabled != sctx->ps_shader->current->key.ps.poly_line_smoothing) { sctx->smoothing_enabled = sctx->ps_shader->current->key.ps.poly_line_smoothing; si_mark_atom_dirty(sctx, &sctx->msaa_config); if (sctx->b.chip_class == SI) si_mark_atom_dirty(sctx, &sctx->db_render_state); } } void si_init_shader_functions(struct si_context *sctx) { sctx->b.b.create_vs_state = si_create_vs_state; sctx->b.b.create_tcs_state = si_create_tcs_state; sctx->b.b.create_tes_state = si_create_tes_state; sctx->b.b.create_gs_state = si_create_gs_state; sctx->b.b.create_fs_state = si_create_fs_state; sctx->b.b.bind_vs_state = si_bind_vs_shader; sctx->b.b.bind_tcs_state = si_bind_tcs_shader; sctx->b.b.bind_tes_state = si_bind_tes_shader; sctx->b.b.bind_gs_state = si_bind_gs_shader; sctx->b.b.bind_fs_state = si_bind_ps_shader; sctx->b.b.delete_vs_state = si_delete_vs_shader; sctx->b.b.delete_tcs_state = si_delete_tcs_shader; sctx->b.b.delete_tes_state = si_delete_tes_shader; sctx->b.b.delete_gs_state = si_delete_gs_shader; sctx->b.b.delete_fs_state = si_delete_ps_shader; }