/* * Copyright 2012 Advanced Micro Devices, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * on the rights to use, copy, modify, merge, publish, distribute, sub * license, and/or sell copies of the Software, and to permit persons to whom * the Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "ac_exp_param.h" #include "ac_shader_util.h" #include "compiler/nir/nir_serialize.h" #include "nir/tgsi_to_nir.h" #include "si_build_pm4.h" #include "sid.h" #include "util/crc32.h" #include "util/disk_cache.h" #include "util/hash_table.h" #include "util/mesa-sha1.h" #include "util/u_async_debug.h" #include "util/u_memory.h" #include "util/u_prim.h" #include "tgsi/tgsi_from_mesa.h" /* SHADER_CACHE */ /** * Return the IR key for the shader cache. */ void si_get_ir_cache_key(struct si_shader_selector *sel, bool ngg, bool es, unsigned char ir_sha1_cache_key[20]) { struct blob blob = {}; unsigned ir_size; void *ir_binary; if (sel->nir_binary) { ir_binary = sel->nir_binary; ir_size = sel->nir_size; } else { assert(sel->nir); blob_init(&blob); nir_serialize(&blob, sel->nir, true); ir_binary = blob.data; ir_size = blob.size; } /* These settings affect the compilation, but they are not derived * from the input shader IR. */ unsigned shader_variant_flags = 0; if (ngg) shader_variant_flags |= 1 << 0; if (sel->nir) shader_variant_flags |= 1 << 1; if (si_get_wave_size(sel->screen, sel->info.stage, ngg, es) == 32) shader_variant_flags |= 1 << 2; if (sel->info.stage == MESA_SHADER_FRAGMENT && /* Derivatives imply helper invocations so check for needs_quad_helper_invocations. */ sel->info.base.fs.needs_quad_helper_invocations && sel->info.base.fs.uses_discard && sel->screen->debug_flags & DBG(FS_CORRECT_DERIVS_AFTER_KILL)) shader_variant_flags |= 1 << 3; /* use_ngg_culling disables NGG passthrough for non-culling shaders to reduce context * rolls, which can be changed with AMD_DEBUG=nonggc or AMD_DEBUG=nggc. */ if (sel->screen->use_ngg_culling) shader_variant_flags |= 1 << 4; /* bit gap */ if (sel->screen->options.no_infinite_interp) shader_variant_flags |= 1 << 7; if (sel->screen->options.clamp_div_by_zero) shader_variant_flags |= 1 << 8; if (sel->screen->debug_flags & DBG(GISEL)) shader_variant_flags |= 1 << 9; if ((sel->info.stage == MESA_SHADER_VERTEX || sel->info.stage == MESA_SHADER_TESS_EVAL || sel->info.stage == MESA_SHADER_GEOMETRY) && !es && sel->screen->options.vrs2x2) shader_variant_flags |= 1 << 10; if (sel->screen->options.inline_uniforms) shader_variant_flags |= 1 << 11; struct mesa_sha1 ctx; _mesa_sha1_init(&ctx); _mesa_sha1_update(&ctx, &shader_variant_flags, 4); _mesa_sha1_update(&ctx, ir_binary, ir_size); if (sel->info.stage == MESA_SHADER_VERTEX || sel->info.stage == MESA_SHADER_TESS_EVAL || sel->info.stage == MESA_SHADER_GEOMETRY) _mesa_sha1_update(&ctx, &sel->so, sizeof(sel->so)); _mesa_sha1_final(&ctx, ir_sha1_cache_key); if (ir_binary == blob.data) blob_finish(&blob); } /** Copy "data" to "ptr" and return the next dword following copied data. */ static uint32_t *write_data(uint32_t *ptr, const void *data, unsigned size) { /* data may be NULL if size == 0 */ if (size) memcpy(ptr, data, size); ptr += DIV_ROUND_UP(size, 4); return ptr; } /** Read data from "ptr". Return the next dword following the data. */ static uint32_t *read_data(uint32_t *ptr, void *data, unsigned size) { memcpy(data, ptr, size); ptr += DIV_ROUND_UP(size, 4); return ptr; } /** * Write the size as uint followed by the data. Return the next dword * following the copied data. */ static uint32_t *write_chunk(uint32_t *ptr, const void *data, unsigned size) { *ptr++ = size; return write_data(ptr, data, size); } /** * Read the size as uint followed by the data. Return both via parameters. * Return the next dword following the data. */ static uint32_t *read_chunk(uint32_t *ptr, void **data, unsigned *size) { *size = *ptr++; assert(*data == NULL); if (!*size) return ptr; *data = malloc(*size); return read_data(ptr, *data, *size); } /** * Return the shader binary in a buffer. The first 4 bytes contain its size * as integer. */ static void *si_get_shader_binary(struct si_shader *shader) { /* There is always a size of data followed by the data itself. */ unsigned llvm_ir_size = shader->binary.llvm_ir_string ? strlen(shader->binary.llvm_ir_string) + 1 : 0; /* Refuse to allocate overly large buffers and guard against integer * overflow. */ if (shader->binary.elf_size > UINT_MAX / 4 || llvm_ir_size > UINT_MAX / 4) return NULL; unsigned size = 4 + /* total size */ 4 + /* CRC32 of the data below */ align(sizeof(shader->config), 4) + align(sizeof(shader->info), 4) + 4 + align(shader->binary.elf_size, 4) + 4 + align(llvm_ir_size, 4); void *buffer = CALLOC(1, size); uint32_t *ptr = (uint32_t *)buffer; if (!buffer) return NULL; *ptr++ = size; ptr++; /* CRC32 is calculated at the end. */ ptr = write_data(ptr, &shader->config, sizeof(shader->config)); ptr = write_data(ptr, &shader->info, sizeof(shader->info)); ptr = write_chunk(ptr, shader->binary.elf_buffer, shader->binary.elf_size); ptr = write_chunk(ptr, shader->binary.llvm_ir_string, llvm_ir_size); assert((char *)ptr - (char *)buffer == (ptrdiff_t)size); /* Compute CRC32. */ ptr = (uint32_t *)buffer; ptr++; *ptr = util_hash_crc32(ptr + 1, size - 8); return buffer; } static bool si_load_shader_binary(struct si_shader *shader, void *binary) { uint32_t *ptr = (uint32_t *)binary; uint32_t size = *ptr++; uint32_t crc32 = *ptr++; unsigned chunk_size; unsigned elf_size; if (util_hash_crc32(ptr, size - 8) != crc32) { fprintf(stderr, "radeonsi: binary shader has invalid CRC32\n"); return false; } ptr = read_data(ptr, &shader->config, sizeof(shader->config)); ptr = read_data(ptr, &shader->info, sizeof(shader->info)); ptr = read_chunk(ptr, (void **)&shader->binary.elf_buffer, &elf_size); shader->binary.elf_size = elf_size; ptr = read_chunk(ptr, (void **)&shader->binary.llvm_ir_string, &chunk_size); return true; } /** * Insert a shader into the cache. It's assumed the shader is not in the cache. * Use si_shader_cache_load_shader before calling this. */ void si_shader_cache_insert_shader(struct si_screen *sscreen, unsigned char ir_sha1_cache_key[20], struct si_shader *shader, bool insert_into_disk_cache) { void *hw_binary; struct hash_entry *entry; uint8_t key[CACHE_KEY_SIZE]; bool memory_cache_full = sscreen->shader_cache_size >= sscreen->shader_cache_max_size; if (!insert_into_disk_cache && memory_cache_full) return; entry = _mesa_hash_table_search(sscreen->shader_cache, ir_sha1_cache_key); if (entry) return; /* already added */ hw_binary = si_get_shader_binary(shader); if (!hw_binary) return; if (!memory_cache_full) { if (_mesa_hash_table_insert(sscreen->shader_cache, mem_dup(ir_sha1_cache_key, 20), hw_binary) == NULL) { FREE(hw_binary); return; } /* The size is stored at the start of the binary */ sscreen->shader_cache_size += *(uint32_t*)hw_binary; } if (sscreen->disk_shader_cache && insert_into_disk_cache) { disk_cache_compute_key(sscreen->disk_shader_cache, ir_sha1_cache_key, 20, key); disk_cache_put(sscreen->disk_shader_cache, key, hw_binary, *((uint32_t *)hw_binary), NULL); } if (memory_cache_full) FREE(hw_binary); } bool si_shader_cache_load_shader(struct si_screen *sscreen, unsigned char ir_sha1_cache_key[20], struct si_shader *shader) { struct hash_entry *entry = _mesa_hash_table_search(sscreen->shader_cache, ir_sha1_cache_key); if (entry) { if (si_load_shader_binary(shader, entry->data)) { p_atomic_inc(&sscreen->num_memory_shader_cache_hits); return true; } } p_atomic_inc(&sscreen->num_memory_shader_cache_misses); if (!sscreen->disk_shader_cache) return false; unsigned char sha1[CACHE_KEY_SIZE]; disk_cache_compute_key(sscreen->disk_shader_cache, ir_sha1_cache_key, 20, sha1); size_t binary_size; uint8_t *buffer = (uint8_t*)disk_cache_get(sscreen->disk_shader_cache, sha1, &binary_size); if (buffer) { if (binary_size >= sizeof(uint32_t) && *((uint32_t *)buffer) == binary_size) { if (si_load_shader_binary(shader, buffer)) { free(buffer); si_shader_cache_insert_shader(sscreen, ir_sha1_cache_key, shader, false); p_atomic_inc(&sscreen->num_disk_shader_cache_hits); return true; } } else { /* Something has gone wrong discard the item from the cache and * rebuild/link from source. */ assert(!"Invalid radeonsi shader disk cache item!"); disk_cache_remove(sscreen->disk_shader_cache, sha1); } } free(buffer); p_atomic_inc(&sscreen->num_disk_shader_cache_misses); return false; } static uint32_t si_shader_cache_key_hash(const void *key) { /* Take the first dword of SHA1. */ return *(uint32_t *)key; } static bool si_shader_cache_key_equals(const void *a, const void *b) { /* Compare SHA1s. */ return memcmp(a, b, 20) == 0; } static void si_destroy_shader_cache_entry(struct hash_entry *entry) { FREE((void *)entry->key); FREE(entry->data); } bool si_init_shader_cache(struct si_screen *sscreen) { (void)simple_mtx_init(&sscreen->shader_cache_mutex, mtx_plain); sscreen->shader_cache = _mesa_hash_table_create(NULL, si_shader_cache_key_hash, si_shader_cache_key_equals); sscreen->shader_cache_size = 0; /* Maximum size: 64MB on 32 bits, 1GB else */ sscreen->shader_cache_max_size = ((sizeof(void *) == 4) ? 64 : 1024) * 1024 * 1024; return sscreen->shader_cache != NULL; } void si_destroy_shader_cache(struct si_screen *sscreen) { if (sscreen->shader_cache) _mesa_hash_table_destroy(sscreen->shader_cache, si_destroy_shader_cache_entry); simple_mtx_destroy(&sscreen->shader_cache_mutex); } /* SHADER STATES */ bool si_shader_mem_ordered(struct si_shader *shader) { if (shader->selector->screen->info.chip_class < GFX10) return false; const struct si_shader_info *info = &shader->selector->info; const struct si_shader_info *prev_info = shader->previous_stage_sel ? &shader->previous_stage_sel->info : NULL; bool sampler_or_bvh = info->uses_vmem_return_type_sampler_or_bvh; bool other = info->uses_vmem_return_type_other || info->uses_indirect_descriptor || shader->config.scratch_bytes_per_wave || (info->stage == MESA_SHADER_FRAGMENT && (info->base.fs.uses_fbfetch_output || shader->key.ps.part.prolog.poly_stipple)); if (prev_info) { sampler_or_bvh |= prev_info->uses_vmem_return_type_sampler_or_bvh; other |= prev_info->uses_vmem_return_type_other || prev_info->uses_indirect_descriptor; } /* Return true if both types of VMEM that return something are used. */ return sampler_or_bvh && other; } static void si_set_tesseval_regs(struct si_screen *sscreen, const struct si_shader_selector *tes, struct si_shader *shader) { const struct si_shader_info *info = &tes->info; unsigned tes_prim_mode = info->base.tess.primitive_mode; unsigned tes_spacing = info->base.tess.spacing; bool tes_vertex_order_cw = !info->base.tess.ccw; bool tes_point_mode = info->base.tess.point_mode; unsigned type, partitioning, topology, distribution_mode; switch (tes_prim_mode) { case GL_LINES: type = V_028B6C_TESS_ISOLINE; break; case GL_TRIANGLES: type = V_028B6C_TESS_TRIANGLE; break; case GL_QUADS: type = V_028B6C_TESS_QUAD; break; default: assert(0); return; } switch (tes_spacing) { case TESS_SPACING_FRACTIONAL_ODD: partitioning = V_028B6C_PART_FRAC_ODD; break; case TESS_SPACING_FRACTIONAL_EVEN: partitioning = V_028B6C_PART_FRAC_EVEN; break; case TESS_SPACING_EQUAL: partitioning = V_028B6C_PART_INTEGER; break; default: assert(0); return; } if (tes_point_mode) topology = V_028B6C_OUTPUT_POINT; else if (tes_prim_mode == GL_LINES) topology = V_028B6C_OUTPUT_LINE; else if (tes_vertex_order_cw) /* for some reason, this must be the other way around */ topology = V_028B6C_OUTPUT_TRIANGLE_CCW; else topology = V_028B6C_OUTPUT_TRIANGLE_CW; if (sscreen->info.has_distributed_tess) { if (sscreen->info.family == CHIP_FIJI || sscreen->info.family >= CHIP_POLARIS10) distribution_mode = V_028B6C_TRAPEZOIDS; else distribution_mode = V_028B6C_DONUTS; } else distribution_mode = V_028B6C_NO_DIST; shader->vgt_tf_param = S_028B6C_TYPE(type) | S_028B6C_PARTITIONING(partitioning) | S_028B6C_TOPOLOGY(topology) | S_028B6C_DISTRIBUTION_MODE(distribution_mode); } /* Polaris needs different VTX_REUSE_DEPTH settings depending on * whether the "fractional odd" tessellation spacing is used. * * Possible VGT configurations and which state should set the register: * * Reg set in | VGT shader configuration | Value * ------------------------------------------------------ * VS as VS | VS | 30 * VS as ES | ES -> GS -> VS | 30 * TES as VS | LS -> HS -> VS | 14 or 30 * TES as ES | LS -> HS -> ES -> GS -> VS | 14 or 30 */ static void polaris_set_vgt_vertex_reuse(struct si_screen *sscreen, struct si_shader_selector *sel, struct si_shader *shader) { if (sscreen->info.family < CHIP_POLARIS10 || sscreen->info.chip_class >= GFX10) return; /* VS as VS, or VS as ES: */ if ((sel->info.stage == MESA_SHADER_VERTEX && (!shader->key.ge.as_ls && !shader->is_gs_copy_shader)) || /* TES as VS, or TES as ES: */ sel->info.stage == MESA_SHADER_TESS_EVAL) { unsigned vtx_reuse_depth = 30; if (sel->info.stage == MESA_SHADER_TESS_EVAL && sel->info.base.tess.spacing == TESS_SPACING_FRACTIONAL_ODD) vtx_reuse_depth = 14; shader->vgt_vertex_reuse_block_cntl = vtx_reuse_depth; } } static struct si_pm4_state *si_get_shader_pm4_state(struct si_shader *shader) { si_pm4_clear_state(&shader->pm4); shader->pm4.is_shader = true; return &shader->pm4; } static unsigned si_get_num_vs_user_sgprs(struct si_shader *shader, unsigned num_always_on_user_sgprs) { struct si_shader_selector *vs = shader->previous_stage_sel ? shader->previous_stage_sel : shader->selector; unsigned num_vbos_in_user_sgprs = vs->num_vbos_in_user_sgprs; /* 1 SGPR is reserved for the vertex buffer pointer. */ assert(num_always_on_user_sgprs <= SI_SGPR_VS_VB_DESCRIPTOR_FIRST - 1); if (num_vbos_in_user_sgprs) return SI_SGPR_VS_VB_DESCRIPTOR_FIRST + num_vbos_in_user_sgprs * 4; /* Add the pointer to VBO descriptors. */ return num_always_on_user_sgprs + 1; } /* Return VGPR_COMP_CNT for the API vertex shader. This can be hw LS, LSHS, ES, ESGS, VS. */ static unsigned si_get_vs_vgpr_comp_cnt(struct si_screen *sscreen, struct si_shader *shader, bool legacy_vs_prim_id) { assert(shader->selector->info.stage == MESA_SHADER_VERTEX || (shader->previous_stage_sel && shader->previous_stage_sel->info.stage == MESA_SHADER_VERTEX)); /* GFX6-9 LS (VertexID, RelAutoIndex, InstanceID / StepRate0, InstanceID) * GFX6-9 ES,VS (VertexID, InstanceID / StepRate0, VSPrimID, InstanceID) * GFX10 LS (VertexID, RelAutoIndex, UserVGPR1, UserVGPR2 or InstanceID) * GFX10 ES,VS (VertexID, UserVGPR1, UserVGPR2 or VSPrimID, UserVGPR3 or InstanceID) */ bool is_ls = shader->selector->info.stage == MESA_SHADER_TESS_CTRL || shader->key.ge.as_ls; unsigned max = 0; if (shader->info.uses_instanceid) { if (sscreen->info.chip_class >= GFX10) max = MAX2(max, 3); else if (is_ls) max = MAX2(max, 2); /* use (InstanceID / StepRate0) because StepRate0 == 1 */ else max = MAX2(max, 1); /* use (InstanceID / StepRate0) because StepRate0 == 1 */ } if (legacy_vs_prim_id) max = MAX2(max, 2); /* VSPrimID */ if (is_ls) max = MAX2(max, 1); /* RelAutoIndex */ return max; } static void si_shader_ls(struct si_screen *sscreen, struct si_shader *shader) { struct si_pm4_state *pm4; uint64_t va; assert(sscreen->info.chip_class <= GFX8); pm4 = si_get_shader_pm4_state(shader); if (!pm4) return; va = shader->bo->gpu_address; si_pm4_set_reg(pm4, R_00B520_SPI_SHADER_PGM_LO_LS, va >> 8); shader->config.rsrc1 = S_00B528_VGPRS((shader->config.num_vgprs - 1) / 4) | S_00B528_SGPRS((shader->config.num_sgprs - 1) / 8) | S_00B528_VGPR_COMP_CNT(si_get_vs_vgpr_comp_cnt(sscreen, shader, false)) | S_00B528_DX10_CLAMP(1) | S_00B528_FLOAT_MODE(shader->config.float_mode); shader->config.rsrc2 = S_00B52C_USER_SGPR(si_get_num_vs_user_sgprs(shader, SI_VS_NUM_USER_SGPR)) | S_00B52C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0); } static void si_shader_hs(struct si_screen *sscreen, struct si_shader *shader) { struct si_pm4_state *pm4; uint64_t va; pm4 = si_get_shader_pm4_state(shader); if (!pm4) return; va = shader->bo->gpu_address; if (sscreen->info.chip_class >= GFX9) { if (sscreen->info.chip_class >= GFX10) { si_pm4_set_reg(pm4, R_00B520_SPI_SHADER_PGM_LO_LS, va >> 8); } else { si_pm4_set_reg(pm4, R_00B410_SPI_SHADER_PGM_LO_LS, va >> 8); } unsigned num_user_sgprs = si_get_num_vs_user_sgprs(shader, GFX9_TCS_NUM_USER_SGPR); shader->config.rsrc2 = S_00B42C_USER_SGPR(num_user_sgprs) | S_00B42C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0); if (sscreen->info.chip_class >= GFX10) shader->config.rsrc2 |= S_00B42C_USER_SGPR_MSB_GFX10(num_user_sgprs >> 5); else shader->config.rsrc2 |= S_00B42C_USER_SGPR_MSB_GFX9(num_user_sgprs >> 5); } else { si_pm4_set_reg(pm4, R_00B420_SPI_SHADER_PGM_LO_HS, va >> 8); si_pm4_set_reg(pm4, R_00B424_SPI_SHADER_PGM_HI_HS, S_00B424_MEM_BASE(sscreen->info.address32_hi >> 8)); shader->config.rsrc2 = S_00B42C_USER_SGPR(GFX6_TCS_NUM_USER_SGPR) | S_00B42C_OC_LDS_EN(1) | S_00B42C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0); } si_pm4_set_reg( pm4, R_00B428_SPI_SHADER_PGM_RSRC1_HS, S_00B428_VGPRS((shader->config.num_vgprs - 1) / (sscreen->ge_wave_size == 32 ? 8 : 4)) | (sscreen->info.chip_class <= GFX9 ? S_00B428_SGPRS((shader->config.num_sgprs - 1) / 8) : 0) | S_00B428_DX10_CLAMP(1) | S_00B428_MEM_ORDERED(si_shader_mem_ordered(shader)) | S_00B428_WGP_MODE(sscreen->info.chip_class >= GFX10) | S_00B428_FLOAT_MODE(shader->config.float_mode) | S_00B428_LS_VGPR_COMP_CNT(sscreen->info.chip_class >= GFX9 ? si_get_vs_vgpr_comp_cnt(sscreen, shader, false) : 0)); if (sscreen->info.chip_class <= GFX8) { si_pm4_set_reg(pm4, R_00B42C_SPI_SHADER_PGM_RSRC2_HS, shader->config.rsrc2); } } static void si_emit_shader_es(struct si_context *sctx) { struct si_shader *shader = sctx->queued.named.es; if (!shader) return; radeon_begin(&sctx->gfx_cs); radeon_opt_set_context_reg(sctx, R_028AAC_VGT_ESGS_RING_ITEMSIZE, SI_TRACKED_VGT_ESGS_RING_ITEMSIZE, shader->selector->esgs_itemsize / 4); if (shader->selector->info.stage == MESA_SHADER_TESS_EVAL) radeon_opt_set_context_reg(sctx, R_028B6C_VGT_TF_PARAM, SI_TRACKED_VGT_TF_PARAM, shader->vgt_tf_param); if (shader->vgt_vertex_reuse_block_cntl) radeon_opt_set_context_reg(sctx, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL, SI_TRACKED_VGT_VERTEX_REUSE_BLOCK_CNTL, shader->vgt_vertex_reuse_block_cntl); radeon_end_update_context_roll(sctx); } static void si_shader_es(struct si_screen *sscreen, struct si_shader *shader) { struct si_pm4_state *pm4; unsigned num_user_sgprs; unsigned vgpr_comp_cnt; uint64_t va; unsigned oc_lds_en; assert(sscreen->info.chip_class <= GFX8); pm4 = si_get_shader_pm4_state(shader); if (!pm4) return; pm4->atom.emit = si_emit_shader_es; va = shader->bo->gpu_address; if (shader->selector->info.stage == MESA_SHADER_VERTEX) { vgpr_comp_cnt = si_get_vs_vgpr_comp_cnt(sscreen, shader, false); num_user_sgprs = si_get_num_vs_user_sgprs(shader, SI_VS_NUM_USER_SGPR); } else if (shader->selector->info.stage == MESA_SHADER_TESS_EVAL) { vgpr_comp_cnt = shader->selector->info.uses_primid ? 3 : 2; num_user_sgprs = SI_TES_NUM_USER_SGPR; } else unreachable("invalid shader selector type"); oc_lds_en = shader->selector->info.stage == MESA_SHADER_TESS_EVAL ? 1 : 0; si_pm4_set_reg(pm4, R_00B320_SPI_SHADER_PGM_LO_ES, va >> 8); si_pm4_set_reg(pm4, R_00B324_SPI_SHADER_PGM_HI_ES, S_00B324_MEM_BASE(sscreen->info.address32_hi >> 8)); si_pm4_set_reg(pm4, R_00B328_SPI_SHADER_PGM_RSRC1_ES, S_00B328_VGPRS((shader->config.num_vgprs - 1) / 4) | S_00B328_SGPRS((shader->config.num_sgprs - 1) / 8) | S_00B328_VGPR_COMP_CNT(vgpr_comp_cnt) | S_00B328_DX10_CLAMP(1) | S_00B328_FLOAT_MODE(shader->config.float_mode)); si_pm4_set_reg(pm4, R_00B32C_SPI_SHADER_PGM_RSRC2_ES, S_00B32C_USER_SGPR(num_user_sgprs) | S_00B32C_OC_LDS_EN(oc_lds_en) | S_00B32C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0)); if (shader->selector->info.stage == MESA_SHADER_TESS_EVAL) si_set_tesseval_regs(sscreen, shader->selector, shader); polaris_set_vgt_vertex_reuse(sscreen, shader->selector, shader); } void gfx9_get_gs_info(struct si_shader_selector *es, struct si_shader_selector *gs, struct gfx9_gs_info *out) { unsigned gs_num_invocations = MAX2(gs->info.base.gs.invocations, 1); unsigned input_prim = gs->info.base.gs.input_primitive; bool uses_adjacency = input_prim >= PIPE_PRIM_LINES_ADJACENCY && input_prim <= PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY; /* All these are in dwords: */ /* We can't allow using the whole LDS, because GS waves compete with * other shader stages for LDS space. */ const unsigned max_lds_size = 8 * 1024; const unsigned esgs_itemsize = es->esgs_itemsize / 4; unsigned esgs_lds_size; /* All these are per subgroup: */ const unsigned max_out_prims = 32 * 1024; const unsigned max_es_verts = 255; const unsigned ideal_gs_prims = 64; unsigned max_gs_prims, gs_prims; unsigned min_es_verts, es_verts, worst_case_es_verts; if (uses_adjacency || gs_num_invocations > 1) max_gs_prims = 127 / gs_num_invocations; else max_gs_prims = 255; /* MAX_PRIMS_PER_SUBGROUP = gs_prims * max_vert_out * gs_invocations. * Make sure we don't go over the maximum value. */ if (gs->info.base.gs.vertices_out > 0) { max_gs_prims = MIN2(max_gs_prims, max_out_prims / (gs->info.base.gs.vertices_out * gs_num_invocations)); } assert(max_gs_prims > 0); /* If the primitive has adjacency, halve the number of vertices * that will be reused in multiple primitives. */ min_es_verts = gs->gs_input_verts_per_prim / (uses_adjacency ? 2 : 1); gs_prims = MIN2(ideal_gs_prims, max_gs_prims); worst_case_es_verts = MIN2(min_es_verts * gs_prims, max_es_verts); /* Compute ESGS LDS size based on the worst case number of ES vertices * needed to create the target number of GS prims per subgroup. */ esgs_lds_size = esgs_itemsize * worst_case_es_verts; /* If total LDS usage is too big, refactor partitions based on ratio * of ESGS item sizes. */ if (esgs_lds_size > max_lds_size) { /* Our target GS Prims Per Subgroup was too large. Calculate * the maximum number of GS Prims Per Subgroup that will fit * into LDS, capped by the maximum that the hardware can support. */ gs_prims = MIN2((max_lds_size / (esgs_itemsize * min_es_verts)), max_gs_prims); assert(gs_prims > 0); worst_case_es_verts = MIN2(min_es_verts * gs_prims, max_es_verts); esgs_lds_size = esgs_itemsize * worst_case_es_verts; assert(esgs_lds_size <= max_lds_size); } /* Now calculate remaining ESGS information. */ if (esgs_lds_size) es_verts = MIN2(esgs_lds_size / esgs_itemsize, max_es_verts); else es_verts = max_es_verts; /* Vertices for adjacency primitives are not always reused, so restore * it for ES_VERTS_PER_SUBGRP. */ min_es_verts = gs->gs_input_verts_per_prim; /* For normal primitives, the VGT only checks if they are past the ES * verts per subgroup after allocating a full GS primitive and if they * are, kick off a new subgroup. But if those additional ES verts are * unique (e.g. not reused) we need to make sure there is enough LDS * space to account for those ES verts beyond ES_VERTS_PER_SUBGRP. */ es_verts -= min_es_verts - 1; out->es_verts_per_subgroup = es_verts; out->gs_prims_per_subgroup = gs_prims; out->gs_inst_prims_in_subgroup = gs_prims * gs_num_invocations; out->max_prims_per_subgroup = out->gs_inst_prims_in_subgroup * gs->info.base.gs.vertices_out; out->esgs_ring_size = esgs_lds_size; assert(out->max_prims_per_subgroup <= max_out_prims); } static void si_emit_shader_gs(struct si_context *sctx) { struct si_shader *shader = sctx->queued.named.gs; if (!shader) return; radeon_begin(&sctx->gfx_cs); /* R_028A60_VGT_GSVS_RING_OFFSET_1, R_028A64_VGT_GSVS_RING_OFFSET_2 * R_028A68_VGT_GSVS_RING_OFFSET_3 */ radeon_opt_set_context_reg3( sctx, R_028A60_VGT_GSVS_RING_OFFSET_1, SI_TRACKED_VGT_GSVS_RING_OFFSET_1, shader->ctx_reg.gs.vgt_gsvs_ring_offset_1, shader->ctx_reg.gs.vgt_gsvs_ring_offset_2, shader->ctx_reg.gs.vgt_gsvs_ring_offset_3); /* R_028AB0_VGT_GSVS_RING_ITEMSIZE */ radeon_opt_set_context_reg(sctx, R_028AB0_VGT_GSVS_RING_ITEMSIZE, SI_TRACKED_VGT_GSVS_RING_ITEMSIZE, shader->ctx_reg.gs.vgt_gsvs_ring_itemsize); /* R_028B38_VGT_GS_MAX_VERT_OUT */ radeon_opt_set_context_reg(sctx, R_028B38_VGT_GS_MAX_VERT_OUT, SI_TRACKED_VGT_GS_MAX_VERT_OUT, shader->ctx_reg.gs.vgt_gs_max_vert_out); /* R_028B5C_VGT_GS_VERT_ITEMSIZE, R_028B60_VGT_GS_VERT_ITEMSIZE_1 * R_028B64_VGT_GS_VERT_ITEMSIZE_2, R_028B68_VGT_GS_VERT_ITEMSIZE_3 */ radeon_opt_set_context_reg4( sctx, R_028B5C_VGT_GS_VERT_ITEMSIZE, SI_TRACKED_VGT_GS_VERT_ITEMSIZE, shader->ctx_reg.gs.vgt_gs_vert_itemsize, shader->ctx_reg.gs.vgt_gs_vert_itemsize_1, shader->ctx_reg.gs.vgt_gs_vert_itemsize_2, shader->ctx_reg.gs.vgt_gs_vert_itemsize_3); /* R_028B90_VGT_GS_INSTANCE_CNT */ radeon_opt_set_context_reg(sctx, R_028B90_VGT_GS_INSTANCE_CNT, SI_TRACKED_VGT_GS_INSTANCE_CNT, shader->ctx_reg.gs.vgt_gs_instance_cnt); if (sctx->chip_class >= GFX9) { /* R_028A44_VGT_GS_ONCHIP_CNTL */ radeon_opt_set_context_reg(sctx, R_028A44_VGT_GS_ONCHIP_CNTL, SI_TRACKED_VGT_GS_ONCHIP_CNTL, shader->ctx_reg.gs.vgt_gs_onchip_cntl); /* R_028A94_VGT_GS_MAX_PRIMS_PER_SUBGROUP */ radeon_opt_set_context_reg(sctx, R_028A94_VGT_GS_MAX_PRIMS_PER_SUBGROUP, SI_TRACKED_VGT_GS_MAX_PRIMS_PER_SUBGROUP, shader->ctx_reg.gs.vgt_gs_max_prims_per_subgroup); /* R_028AAC_VGT_ESGS_RING_ITEMSIZE */ radeon_opt_set_context_reg(sctx, R_028AAC_VGT_ESGS_RING_ITEMSIZE, SI_TRACKED_VGT_ESGS_RING_ITEMSIZE, shader->ctx_reg.gs.vgt_esgs_ring_itemsize); if (shader->key.ge.part.gs.es->info.stage == MESA_SHADER_TESS_EVAL) radeon_opt_set_context_reg(sctx, R_028B6C_VGT_TF_PARAM, SI_TRACKED_VGT_TF_PARAM, shader->vgt_tf_param); if (shader->vgt_vertex_reuse_block_cntl) radeon_opt_set_context_reg(sctx, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL, SI_TRACKED_VGT_VERTEX_REUSE_BLOCK_CNTL, shader->vgt_vertex_reuse_block_cntl); } radeon_end_update_context_roll(sctx); /* These don't cause any context rolls. */ radeon_begin_again(&sctx->gfx_cs); if (sctx->chip_class >= GFX7) { radeon_opt_set_sh_reg(sctx, R_00B21C_SPI_SHADER_PGM_RSRC3_GS, SI_TRACKED_SPI_SHADER_PGM_RSRC3_GS, shader->ctx_reg.gs.spi_shader_pgm_rsrc3_gs); } if (sctx->chip_class >= GFX10) { radeon_opt_set_sh_reg(sctx, R_00B204_SPI_SHADER_PGM_RSRC4_GS, SI_TRACKED_SPI_SHADER_PGM_RSRC4_GS, shader->ctx_reg.gs.spi_shader_pgm_rsrc4_gs); } radeon_end(); } static void si_shader_gs(struct si_screen *sscreen, struct si_shader *shader) { struct si_shader_selector *sel = shader->selector; const ubyte *num_components = sel->info.num_stream_output_components; unsigned gs_num_invocations = sel->info.base.gs.invocations; struct si_pm4_state *pm4; uint64_t va; unsigned max_stream = util_last_bit(sel->info.base.gs.active_stream_mask); unsigned offset; pm4 = si_get_shader_pm4_state(shader); if (!pm4) return; pm4->atom.emit = si_emit_shader_gs; offset = num_components[0] * sel->info.base.gs.vertices_out; shader->ctx_reg.gs.vgt_gsvs_ring_offset_1 = offset; if (max_stream >= 2) offset += num_components[1] * sel->info.base.gs.vertices_out; shader->ctx_reg.gs.vgt_gsvs_ring_offset_2 = offset; if (max_stream >= 3) offset += num_components[2] * sel->info.base.gs.vertices_out; shader->ctx_reg.gs.vgt_gsvs_ring_offset_3 = offset; if (max_stream >= 4) offset += num_components[3] * sel->info.base.gs.vertices_out; shader->ctx_reg.gs.vgt_gsvs_ring_itemsize = offset; /* The GSVS_RING_ITEMSIZE register takes 15 bits */ assert(offset < (1 << 15)); shader->ctx_reg.gs.vgt_gs_max_vert_out = sel->info.base.gs.vertices_out; shader->ctx_reg.gs.vgt_gs_vert_itemsize = num_components[0]; shader->ctx_reg.gs.vgt_gs_vert_itemsize_1 = (max_stream >= 2) ? num_components[1] : 0; shader->ctx_reg.gs.vgt_gs_vert_itemsize_2 = (max_stream >= 3) ? num_components[2] : 0; shader->ctx_reg.gs.vgt_gs_vert_itemsize_3 = (max_stream >= 4) ? num_components[3] : 0; shader->ctx_reg.gs.vgt_gs_instance_cnt = S_028B90_CNT(MIN2(gs_num_invocations, 127)) | S_028B90_ENABLE(gs_num_invocations > 0); /* Copy over fields from the GS copy shader to make them easily accessible from GS. */ shader->pa_cl_vs_out_cntl = sel->gs_copy_shader->pa_cl_vs_out_cntl; va = shader->bo->gpu_address; if (sscreen->info.chip_class >= GFX9) { unsigned input_prim = sel->info.base.gs.input_primitive; gl_shader_stage es_stage = shader->key.ge.part.gs.es->info.stage; unsigned es_vgpr_comp_cnt, gs_vgpr_comp_cnt; if (es_stage == MESA_SHADER_VERTEX) { es_vgpr_comp_cnt = si_get_vs_vgpr_comp_cnt(sscreen, shader, false); } else if (es_stage == MESA_SHADER_TESS_EVAL) es_vgpr_comp_cnt = shader->key.ge.part.gs.es->info.uses_primid ? 3 : 2; else unreachable("invalid shader selector type"); /* If offsets 4, 5 are used, GS_VGPR_COMP_CNT is ignored and * VGPR[0:4] are always loaded. */ if (sel->info.uses_invocationid) gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID. */ else if (sel->info.uses_primid) gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */ else if (input_prim >= PIPE_PRIM_TRIANGLES) gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */ else gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */ unsigned num_user_sgprs; if (es_stage == MESA_SHADER_VERTEX) num_user_sgprs = si_get_num_vs_user_sgprs(shader, GFX9_GS_NUM_USER_SGPR); else num_user_sgprs = GFX9_GS_NUM_USER_SGPR; if (sscreen->info.chip_class >= GFX10) { si_pm4_set_reg(pm4, R_00B320_SPI_SHADER_PGM_LO_ES, va >> 8); } else { si_pm4_set_reg(pm4, R_00B210_SPI_SHADER_PGM_LO_ES, va >> 8); } uint32_t rsrc1 = S_00B228_VGPRS((shader->config.num_vgprs - 1) / 4) | S_00B228_DX10_CLAMP(1) | S_00B228_MEM_ORDERED(si_shader_mem_ordered(shader)) | S_00B228_WGP_MODE(sscreen->info.chip_class >= GFX10) | S_00B228_FLOAT_MODE(shader->config.float_mode) | S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt); uint32_t rsrc2 = S_00B22C_USER_SGPR(num_user_sgprs) | S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) | S_00B22C_OC_LDS_EN(es_stage == MESA_SHADER_TESS_EVAL) | S_00B22C_LDS_SIZE(shader->config.lds_size) | S_00B22C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0); if (sscreen->info.chip_class >= GFX10) { rsrc2 |= S_00B22C_USER_SGPR_MSB_GFX10(num_user_sgprs >> 5); } else { rsrc1 |= S_00B228_SGPRS((shader->config.num_sgprs - 1) / 8); rsrc2 |= S_00B22C_USER_SGPR_MSB_GFX9(num_user_sgprs >> 5); } si_pm4_set_reg(pm4, R_00B228_SPI_SHADER_PGM_RSRC1_GS, rsrc1); si_pm4_set_reg(pm4, R_00B22C_SPI_SHADER_PGM_RSRC2_GS, rsrc2); shader->ctx_reg.gs.spi_shader_pgm_rsrc3_gs = S_00B21C_CU_EN(0xffff) | S_00B21C_WAVE_LIMIT(0x3F); shader->ctx_reg.gs.spi_shader_pgm_rsrc4_gs = S_00B204_CU_EN(0xffff) | S_00B204_SPI_SHADER_LATE_ALLOC_GS_GFX10(0); shader->ctx_reg.gs.vgt_gs_onchip_cntl = S_028A44_ES_VERTS_PER_SUBGRP(shader->gs_info.es_verts_per_subgroup) | S_028A44_GS_PRIMS_PER_SUBGRP(shader->gs_info.gs_prims_per_subgroup) | S_028A44_GS_INST_PRIMS_IN_SUBGRP(shader->gs_info.gs_inst_prims_in_subgroup); shader->ctx_reg.gs.vgt_gs_max_prims_per_subgroup = S_028A94_MAX_PRIMS_PER_SUBGROUP(shader->gs_info.max_prims_per_subgroup); shader->ctx_reg.gs.vgt_esgs_ring_itemsize = shader->key.ge.part.gs.es->esgs_itemsize / 4; if (es_stage == MESA_SHADER_TESS_EVAL) si_set_tesseval_regs(sscreen, shader->key.ge.part.gs.es, shader); polaris_set_vgt_vertex_reuse(sscreen, shader->key.ge.part.gs.es, shader); } else { shader->ctx_reg.gs.spi_shader_pgm_rsrc3_gs = S_00B21C_CU_EN(0xffff) | S_00B21C_WAVE_LIMIT(0x3F); si_pm4_set_reg(pm4, R_00B220_SPI_SHADER_PGM_LO_GS, va >> 8); si_pm4_set_reg(pm4, R_00B224_SPI_SHADER_PGM_HI_GS, S_00B224_MEM_BASE(sscreen->info.address32_hi >> 8)); si_pm4_set_reg(pm4, R_00B228_SPI_SHADER_PGM_RSRC1_GS, S_00B228_VGPRS((shader->config.num_vgprs - 1) / 4) | S_00B228_SGPRS((shader->config.num_sgprs - 1) / 8) | S_00B228_DX10_CLAMP(1) | S_00B228_FLOAT_MODE(shader->config.float_mode)); si_pm4_set_reg(pm4, R_00B22C_SPI_SHADER_PGM_RSRC2_GS, S_00B22C_USER_SGPR(GFX6_GS_NUM_USER_SGPR) | S_00B22C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0)); } } bool gfx10_is_ngg_passthrough(struct si_shader *shader) { struct si_shader_selector *sel = shader->selector; /* Never use NGG passthrough if culling is possible even when it's not used by this shader, * so that we don't get context rolls when enabling and disabling NGG passthrough. */ if (sel->screen->use_ngg_culling) return false; /* The definition of NGG passthrough is: * - user GS is turned off (no amplification, no GS instancing, and no culling) * - VGT_ESGS_RING_ITEMSIZE is ignored (behaving as if it was equal to 1) * - vertex indices are packed into 1 VGPR * - Dimgrey and later chips can optionally skip the gs_alloc_req message * * NGG passthrough still allows the use of LDS. */ return sel->info.stage != MESA_SHADER_GEOMETRY && !shader->key.ge.opt.ngg_culling; } /* Common tail code for NGG primitive shaders. */ static void gfx10_emit_shader_ngg_tail(struct si_context *sctx, struct si_shader *shader) { radeon_begin(&sctx->gfx_cs); radeon_opt_set_context_reg(sctx, R_0287FC_GE_MAX_OUTPUT_PER_SUBGROUP, SI_TRACKED_GE_MAX_OUTPUT_PER_SUBGROUP, shader->ctx_reg.ngg.ge_max_output_per_subgroup); radeon_opt_set_context_reg(sctx, R_028B4C_GE_NGG_SUBGRP_CNTL, SI_TRACKED_GE_NGG_SUBGRP_CNTL, shader->ctx_reg.ngg.ge_ngg_subgrp_cntl); radeon_opt_set_context_reg(sctx, R_028A84_VGT_PRIMITIVEID_EN, SI_TRACKED_VGT_PRIMITIVEID_EN, shader->ctx_reg.ngg.vgt_primitiveid_en); radeon_opt_set_context_reg(sctx, R_028A44_VGT_GS_ONCHIP_CNTL, SI_TRACKED_VGT_GS_ONCHIP_CNTL, shader->ctx_reg.ngg.vgt_gs_onchip_cntl); radeon_opt_set_context_reg(sctx, R_028B90_VGT_GS_INSTANCE_CNT, SI_TRACKED_VGT_GS_INSTANCE_CNT, shader->ctx_reg.ngg.vgt_gs_instance_cnt); radeon_opt_set_context_reg(sctx, R_028AAC_VGT_ESGS_RING_ITEMSIZE, SI_TRACKED_VGT_ESGS_RING_ITEMSIZE, shader->ctx_reg.ngg.vgt_esgs_ring_itemsize); radeon_opt_set_context_reg(sctx, R_0286C4_SPI_VS_OUT_CONFIG, SI_TRACKED_SPI_VS_OUT_CONFIG, shader->ctx_reg.ngg.spi_vs_out_config); radeon_opt_set_context_reg2( sctx, R_028708_SPI_SHADER_IDX_FORMAT, SI_TRACKED_SPI_SHADER_IDX_FORMAT, shader->ctx_reg.ngg.spi_shader_idx_format, shader->ctx_reg.ngg.spi_shader_pos_format); radeon_opt_set_context_reg(sctx, R_028818_PA_CL_VTE_CNTL, SI_TRACKED_PA_CL_VTE_CNTL, shader->ctx_reg.ngg.pa_cl_vte_cntl); radeon_opt_set_context_reg(sctx, R_028838_PA_CL_NGG_CNTL, SI_TRACKED_PA_CL_NGG_CNTL, shader->ctx_reg.ngg.pa_cl_ngg_cntl); radeon_end_update_context_roll(sctx); /* These don't cause a context roll. */ radeon_begin_again(&sctx->gfx_cs); radeon_opt_set_uconfig_reg(sctx, R_030980_GE_PC_ALLOC, SI_TRACKED_GE_PC_ALLOC, shader->ctx_reg.ngg.ge_pc_alloc); radeon_opt_set_sh_reg(sctx, R_00B21C_SPI_SHADER_PGM_RSRC3_GS, SI_TRACKED_SPI_SHADER_PGM_RSRC3_GS, shader->ctx_reg.ngg.spi_shader_pgm_rsrc3_gs); radeon_opt_set_sh_reg(sctx, R_00B204_SPI_SHADER_PGM_RSRC4_GS, SI_TRACKED_SPI_SHADER_PGM_RSRC4_GS, shader->ctx_reg.ngg.spi_shader_pgm_rsrc4_gs); radeon_end(); } static void gfx10_emit_shader_ngg_notess_nogs(struct si_context *sctx) { struct si_shader *shader = sctx->queued.named.gs; if (!shader) return; gfx10_emit_shader_ngg_tail(sctx, shader); } static void gfx10_emit_shader_ngg_tess_nogs(struct si_context *sctx) { struct si_shader *shader = sctx->queued.named.gs; if (!shader) return; radeon_begin(&sctx->gfx_cs); radeon_opt_set_context_reg(sctx, R_028B6C_VGT_TF_PARAM, SI_TRACKED_VGT_TF_PARAM, shader->vgt_tf_param); radeon_end_update_context_roll(sctx); gfx10_emit_shader_ngg_tail(sctx, shader); } static void gfx10_emit_shader_ngg_notess_gs(struct si_context *sctx) { struct si_shader *shader = sctx->queued.named.gs; if (!shader) return; radeon_begin(&sctx->gfx_cs); radeon_opt_set_context_reg(sctx, R_028B38_VGT_GS_MAX_VERT_OUT, SI_TRACKED_VGT_GS_MAX_VERT_OUT, shader->ctx_reg.ngg.vgt_gs_max_vert_out); radeon_end_update_context_roll(sctx); gfx10_emit_shader_ngg_tail(sctx, shader); } static void gfx10_emit_shader_ngg_tess_gs(struct si_context *sctx) { struct si_shader *shader = sctx->queued.named.gs; if (!shader) return; radeon_begin(&sctx->gfx_cs); radeon_opt_set_context_reg(sctx, R_028B38_VGT_GS_MAX_VERT_OUT, SI_TRACKED_VGT_GS_MAX_VERT_OUT, shader->ctx_reg.ngg.vgt_gs_max_vert_out); radeon_opt_set_context_reg(sctx, R_028B6C_VGT_TF_PARAM, SI_TRACKED_VGT_TF_PARAM, shader->vgt_tf_param); radeon_end_update_context_roll(sctx); gfx10_emit_shader_ngg_tail(sctx, shader); } unsigned si_get_input_prim(const struct si_shader_selector *gs, const union si_shader_key *key) { if (gs->info.stage == MESA_SHADER_GEOMETRY) return gs->info.base.gs.input_primitive; if (gs->info.stage == MESA_SHADER_TESS_EVAL) { if (gs->info.base.tess.point_mode) return PIPE_PRIM_POINTS; if (gs->info.base.tess.primitive_mode == GL_LINES) return PIPE_PRIM_LINES; return PIPE_PRIM_TRIANGLES; } if (key->ge.opt.ngg_culling & SI_NGG_CULL_LINES) return PIPE_PRIM_LINES; return PIPE_PRIM_TRIANGLES; /* worst case for all callers */ } static unsigned si_get_vs_out_cntl(const struct si_shader_selector *sel, const struct si_shader *shader, bool ngg) { /* Clip distances can be killed, but cull distances can't. */ unsigned clipcull_mask = (sel->clipdist_mask & ~shader->key.ge.opt.kill_clip_distances) | sel->culldist_mask; bool writes_psize = sel->info.writes_psize && !shader->key.ge.opt.kill_pointsize; bool misc_vec_ena = writes_psize || (sel->info.writes_edgeflag && !ngg) || sel->screen->options.vrs2x2 || sel->info.writes_layer || sel->info.writes_viewport_index; return S_02881C_VS_OUT_CCDIST0_VEC_ENA((clipcull_mask & 0x0F) != 0) | S_02881C_VS_OUT_CCDIST1_VEC_ENA((clipcull_mask & 0xF0) != 0) | S_02881C_USE_VTX_POINT_SIZE(writes_psize) | S_02881C_USE_VTX_EDGE_FLAG(sel->info.writes_edgeflag && !ngg) | S_02881C_USE_VTX_VRS_RATE(sel->screen->options.vrs2x2) | S_02881C_USE_VTX_RENDER_TARGET_INDX(sel->info.writes_layer) | S_02881C_USE_VTX_VIEWPORT_INDX(sel->info.writes_viewport_index) | S_02881C_VS_OUT_MISC_VEC_ENA(misc_vec_ena) | S_02881C_VS_OUT_MISC_SIDE_BUS_ENA(misc_vec_ena); } /** * Prepare the PM4 image for \p shader, which will run as a merged ESGS shader * in NGG mode. */ static void gfx10_shader_ngg(struct si_screen *sscreen, struct si_shader *shader) { const struct si_shader_selector *gs_sel = shader->selector; const struct si_shader_info *gs_info = &gs_sel->info; const gl_shader_stage gs_stage = shader->selector->info.stage; const struct si_shader_selector *es_sel = shader->previous_stage_sel ? shader->previous_stage_sel : shader->selector; const struct si_shader_info *es_info = &es_sel->info; const gl_shader_stage es_stage = es_sel->info.stage; unsigned num_user_sgprs; unsigned nparams, es_vgpr_comp_cnt, gs_vgpr_comp_cnt; uint64_t va; bool window_space = gs_info->stage == MESA_SHADER_VERTEX ? gs_info->base.vs.window_space_position : 0; bool es_enable_prim_id = shader->key.ge.mono.u.vs_export_prim_id || es_info->uses_primid; unsigned gs_num_invocations = MAX2(gs_sel->info.base.gs.invocations, 1); unsigned input_prim = si_get_input_prim(gs_sel, &shader->key); bool break_wave_at_eoi = false; struct si_pm4_state *pm4 = si_get_shader_pm4_state(shader); if (!pm4) return; if (es_stage == MESA_SHADER_TESS_EVAL) { pm4->atom.emit = gs_stage == MESA_SHADER_GEOMETRY ? gfx10_emit_shader_ngg_tess_gs : gfx10_emit_shader_ngg_tess_nogs; } else { pm4->atom.emit = gs_stage == MESA_SHADER_GEOMETRY ? gfx10_emit_shader_ngg_notess_gs : gfx10_emit_shader_ngg_notess_nogs; } va = shader->bo->gpu_address; if (es_stage == MESA_SHADER_VERTEX) { es_vgpr_comp_cnt = si_get_vs_vgpr_comp_cnt(sscreen, shader, false); if (es_info->base.vs.blit_sgprs_amd) { num_user_sgprs = SI_SGPR_VS_BLIT_DATA + es_info->base.vs.blit_sgprs_amd; } else { num_user_sgprs = si_get_num_vs_user_sgprs(shader, GFX9_GS_NUM_USER_SGPR); } } else { assert(es_stage == MESA_SHADER_TESS_EVAL); es_vgpr_comp_cnt = es_enable_prim_id ? 3 : 2; num_user_sgprs = GFX9_GS_NUM_USER_SGPR; if (es_enable_prim_id || gs_info->uses_primid) break_wave_at_eoi = true; } /* If offsets 4, 5 are used, GS_VGPR_COMP_CNT is ignored and * VGPR[0:4] are always loaded. * * Vertex shaders always need to load VGPR3, because they need to * pass edge flags for decomposed primitives (such as quads) to the PA * for the GL_LINE polygon mode to skip rendering lines on inner edges. */ if (gs_info->uses_invocationid || (gfx10_edgeflags_have_effect(shader) && !gfx10_is_ngg_passthrough(shader))) gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID, edge flags. */ else if ((gs_stage == MESA_SHADER_GEOMETRY && gs_info->uses_primid) || (gs_stage == MESA_SHADER_VERTEX && shader->key.ge.mono.u.vs_export_prim_id)) gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */ else if (input_prim >= PIPE_PRIM_TRIANGLES && !gfx10_is_ngg_passthrough(shader)) gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */ else gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */ unsigned wave_size = si_get_shader_wave_size(shader); unsigned late_alloc_wave64, cu_mask; ac_compute_late_alloc(&sscreen->info, true, shader->key.ge.opt.ngg_culling, shader->config.scratch_bytes_per_wave > 0, &late_alloc_wave64, &cu_mask); si_pm4_set_reg(pm4, R_00B320_SPI_SHADER_PGM_LO_ES, va >> 8); si_pm4_set_reg( pm4, R_00B228_SPI_SHADER_PGM_RSRC1_GS, S_00B228_VGPRS((shader->config.num_vgprs - 1) / (wave_size == 32 ? 8 : 4)) | S_00B228_FLOAT_MODE(shader->config.float_mode) | S_00B228_DX10_CLAMP(1) | S_00B228_MEM_ORDERED(si_shader_mem_ordered(shader)) | /* Disable the WGP mode on gfx10.3 because it can hang. (it happened on VanGogh) * Let's disable it on all chips that disable exactly 1 CU per SA for GS. */ S_00B228_WGP_MODE(sscreen->info.chip_class == GFX10) | S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt)); si_pm4_set_reg(pm4, R_00B22C_SPI_SHADER_PGM_RSRC2_GS, S_00B22C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0) | S_00B22C_USER_SGPR(num_user_sgprs) | S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) | S_00B22C_USER_SGPR_MSB_GFX10(num_user_sgprs >> 5) | S_00B22C_OC_LDS_EN(es_stage == MESA_SHADER_TESS_EVAL) | S_00B22C_LDS_SIZE(shader->config.lds_size)); shader->ctx_reg.ngg.spi_shader_pgm_rsrc3_gs = S_00B21C_CU_EN(cu_mask) | S_00B21C_WAVE_LIMIT(0x3F); shader->ctx_reg.ngg.spi_shader_pgm_rsrc4_gs = S_00B204_CU_EN(0xffff) | S_00B204_SPI_SHADER_LATE_ALLOC_GS_GFX10(late_alloc_wave64); nparams = MAX2(shader->info.nr_param_exports, 1); shader->ctx_reg.ngg.spi_vs_out_config = S_0286C4_VS_EXPORT_COUNT(nparams - 1) | S_0286C4_NO_PC_EXPORT(shader->info.nr_param_exports == 0); shader->ctx_reg.ngg.spi_shader_idx_format = S_028708_IDX0_EXPORT_FORMAT(V_028708_SPI_SHADER_1COMP); shader->ctx_reg.ngg.spi_shader_pos_format = S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) | S_02870C_POS1_EXPORT_FORMAT(shader->info.nr_pos_exports > 1 ? V_02870C_SPI_SHADER_4COMP : V_02870C_SPI_SHADER_NONE) | S_02870C_POS2_EXPORT_FORMAT(shader->info.nr_pos_exports > 2 ? V_02870C_SPI_SHADER_4COMP : V_02870C_SPI_SHADER_NONE) | S_02870C_POS3_EXPORT_FORMAT(shader->info.nr_pos_exports > 3 ? V_02870C_SPI_SHADER_4COMP : V_02870C_SPI_SHADER_NONE); shader->ctx_reg.ngg.vgt_primitiveid_en = S_028A84_PRIMITIVEID_EN(es_enable_prim_id) | S_028A84_NGG_DISABLE_PROVOK_REUSE(shader->key.ge.mono.u.vs_export_prim_id || gs_sel->info.writes_primid); if (gs_stage == MESA_SHADER_GEOMETRY) { shader->ctx_reg.ngg.vgt_esgs_ring_itemsize = es_sel->esgs_itemsize / 4; shader->ctx_reg.ngg.vgt_gs_max_vert_out = gs_sel->info.base.gs.vertices_out; } else { shader->ctx_reg.ngg.vgt_esgs_ring_itemsize = 1; } if (es_stage == MESA_SHADER_TESS_EVAL) si_set_tesseval_regs(sscreen, es_sel, shader); shader->ctx_reg.ngg.vgt_gs_onchip_cntl = S_028A44_ES_VERTS_PER_SUBGRP(shader->ngg.hw_max_esverts) | S_028A44_GS_PRIMS_PER_SUBGRP(shader->ngg.max_gsprims) | S_028A44_GS_INST_PRIMS_IN_SUBGRP(shader->ngg.max_gsprims * gs_num_invocations); shader->ctx_reg.ngg.ge_max_output_per_subgroup = S_0287FC_MAX_VERTS_PER_SUBGROUP(shader->ngg.max_out_verts); shader->ctx_reg.ngg.ge_ngg_subgrp_cntl = S_028B4C_PRIM_AMP_FACTOR(shader->ngg.prim_amp_factor) | S_028B4C_THDS_PER_SUBGRP(0); /* for fast launch */ shader->ctx_reg.ngg.vgt_gs_instance_cnt = S_028B90_CNT(gs_num_invocations) | S_028B90_ENABLE(gs_num_invocations > 1) | S_028B90_EN_MAX_VERT_OUT_PER_GS_INSTANCE(shader->ngg.max_vert_out_per_gs_instance); /* Output hw-generated edge flags if needed and pass them via the prim * export to prevent drawing lines on internal edges of decomposed * primitives (such as quads) with polygon mode = lines. */ shader->ctx_reg.ngg.pa_cl_ngg_cntl = S_028838_INDEX_BUF_EDGE_FLAG_ENA(gfx10_edgeflags_have_effect(shader)) | /* Reuse for NGG. */ S_028838_VERTEX_REUSE_DEPTH(sscreen->info.chip_class >= GFX10_3 ? 30 : 0); shader->pa_cl_vs_out_cntl = si_get_vs_out_cntl(shader->selector, shader, true); /* Oversubscribe PC. This improves performance when there are too many varyings. */ unsigned oversub_pc_factor = 1; if (shader->key.ge.opt.ngg_culling) { /* Be more aggressive with NGG culling. */ if (shader->info.nr_param_exports > 4) oversub_pc_factor = 4; else if (shader->info.nr_param_exports > 2) oversub_pc_factor = 3; else oversub_pc_factor = 2; } unsigned oversub_pc_lines = late_alloc_wave64 ? (sscreen->info.pc_lines / 4) * oversub_pc_factor : 0; shader->ctx_reg.ngg.ge_pc_alloc = S_030980_OVERSUB_EN(oversub_pc_lines > 0) | S_030980_NUM_PC_LINES(oversub_pc_lines - 1); shader->ge_cntl = S_03096C_PRIM_GRP_SIZE(shader->ngg.max_gsprims) | S_03096C_VERT_GRP_SIZE(shader->ngg.hw_max_esverts) | S_03096C_BREAK_WAVE_AT_EOI(break_wave_at_eoi); /* On gfx10, the GE only checks against the maximum number of ES verts after * allocating a full GS primitive. So we need to ensure that whenever * this check passes, there is enough space for a full primitive without * vertex reuse. VERT_GRP_SIZE=256 doesn't need this. We should always get 256 * if we have enough LDS. * * Tessellation is unaffected because it always sets GE_CNTL.VERT_GRP_SIZE = 0. */ if ((sscreen->info.chip_class == GFX10) && (es_stage == MESA_SHADER_VERTEX || gs_stage == MESA_SHADER_VERTEX) && /* = no tess */ shader->ngg.hw_max_esverts != 256 && shader->ngg.hw_max_esverts > 5) { /* This could be based on the input primitive type. 5 is the worst case * for primitive types with adjacency. */ shader->ge_cntl &= C_03096C_VERT_GRP_SIZE; shader->ge_cntl |= S_03096C_VERT_GRP_SIZE(shader->ngg.hw_max_esverts - 5); } if (window_space) { shader->ctx_reg.ngg.pa_cl_vte_cntl = S_028818_VTX_XY_FMT(1) | S_028818_VTX_Z_FMT(1); } else { shader->ctx_reg.ngg.pa_cl_vte_cntl = S_028818_VTX_W0_FMT(1) | S_028818_VPORT_X_SCALE_ENA(1) | S_028818_VPORT_X_OFFSET_ENA(1) | S_028818_VPORT_Y_SCALE_ENA(1) | S_028818_VPORT_Y_OFFSET_ENA(1) | S_028818_VPORT_Z_SCALE_ENA(1) | S_028818_VPORT_Z_OFFSET_ENA(1); } shader->ctx_reg.ngg.vgt_stages.u.ngg = 1; shader->ctx_reg.ngg.vgt_stages.u.streamout = gs_sel->so.num_outputs; shader->ctx_reg.ngg.vgt_stages.u.ngg_passthrough = gfx10_is_ngg_passthrough(shader); } static void si_emit_shader_vs(struct si_context *sctx) { struct si_shader *shader = sctx->queued.named.vs; if (!shader) return; radeon_begin(&sctx->gfx_cs); radeon_opt_set_context_reg(sctx, R_028A40_VGT_GS_MODE, SI_TRACKED_VGT_GS_MODE, shader->ctx_reg.vs.vgt_gs_mode); radeon_opt_set_context_reg(sctx, R_028A84_VGT_PRIMITIVEID_EN, SI_TRACKED_VGT_PRIMITIVEID_EN, shader->ctx_reg.vs.vgt_primitiveid_en); if (sctx->chip_class <= GFX8) { radeon_opt_set_context_reg(sctx, R_028AB4_VGT_REUSE_OFF, SI_TRACKED_VGT_REUSE_OFF, shader->ctx_reg.vs.vgt_reuse_off); } radeon_opt_set_context_reg(sctx, R_0286C4_SPI_VS_OUT_CONFIG, SI_TRACKED_SPI_VS_OUT_CONFIG, shader->ctx_reg.vs.spi_vs_out_config); radeon_opt_set_context_reg(sctx, R_02870C_SPI_SHADER_POS_FORMAT, SI_TRACKED_SPI_SHADER_POS_FORMAT, shader->ctx_reg.vs.spi_shader_pos_format); radeon_opt_set_context_reg(sctx, R_028818_PA_CL_VTE_CNTL, SI_TRACKED_PA_CL_VTE_CNTL, shader->ctx_reg.vs.pa_cl_vte_cntl); if (shader->selector->info.stage == MESA_SHADER_TESS_EVAL) radeon_opt_set_context_reg(sctx, R_028B6C_VGT_TF_PARAM, SI_TRACKED_VGT_TF_PARAM, shader->vgt_tf_param); if (shader->vgt_vertex_reuse_block_cntl) radeon_opt_set_context_reg(sctx, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL, SI_TRACKED_VGT_VERTEX_REUSE_BLOCK_CNTL, shader->vgt_vertex_reuse_block_cntl); /* Required programming for tessellation. (legacy pipeline only) */ if (sctx->chip_class >= GFX10 && shader->selector->info.stage == MESA_SHADER_TESS_EVAL) { radeon_opt_set_context_reg(sctx, R_028A44_VGT_GS_ONCHIP_CNTL, SI_TRACKED_VGT_GS_ONCHIP_CNTL, S_028A44_ES_VERTS_PER_SUBGRP(250) | S_028A44_GS_PRIMS_PER_SUBGRP(126) | S_028A44_GS_INST_PRIMS_IN_SUBGRP(126)); } radeon_end_update_context_roll(sctx); /* GE_PC_ALLOC is not a context register, so it doesn't cause a context roll. */ if (sctx->chip_class >= GFX10) { radeon_begin_again(&sctx->gfx_cs); radeon_opt_set_uconfig_reg(sctx, R_030980_GE_PC_ALLOC, SI_TRACKED_GE_PC_ALLOC, shader->ctx_reg.vs.ge_pc_alloc); radeon_end(); } } /** * Compute the state for \p shader, which will run as a vertex shader on the * hardware. * * If \p gs is non-NULL, it points to the geometry shader for which this shader * is the copy shader. */ static void si_shader_vs(struct si_screen *sscreen, struct si_shader *shader, struct si_shader_selector *gs) { const struct si_shader_info *info = &shader->selector->info; struct si_pm4_state *pm4; unsigned num_user_sgprs, vgpr_comp_cnt; uint64_t va; unsigned nparams, oc_lds_en; bool window_space = info->stage == MESA_SHADER_VERTEX ? info->base.vs.window_space_position : 0; bool enable_prim_id = shader->key.ge.mono.u.vs_export_prim_id || info->uses_primid; pm4 = si_get_shader_pm4_state(shader); if (!pm4) return; pm4->atom.emit = si_emit_shader_vs; /* We always write VGT_GS_MODE in the VS state, because every switch * between different shader pipelines involving a different GS or no * GS at all involves a switch of the VS (different GS use different * copy shaders). On the other hand, when the API switches from a GS to * no GS and then back to the same GS used originally, the GS state is * not sent again. */ if (!gs) { unsigned mode = V_028A40_GS_OFF; /* PrimID needs GS scenario A. */ if (enable_prim_id) mode = V_028A40_GS_SCENARIO_A; shader->ctx_reg.vs.vgt_gs_mode = S_028A40_MODE(mode); shader->ctx_reg.vs.vgt_primitiveid_en = enable_prim_id; } else { shader->ctx_reg.vs.vgt_gs_mode = ac_vgt_gs_mode(gs->info.base.gs.vertices_out, sscreen->info.chip_class); shader->ctx_reg.vs.vgt_primitiveid_en = 0; } if (sscreen->info.chip_class <= GFX8) { /* Reuse needs to be set off if we write oViewport. */ shader->ctx_reg.vs.vgt_reuse_off = S_028AB4_REUSE_OFF(info->writes_viewport_index); } va = shader->bo->gpu_address; if (gs) { vgpr_comp_cnt = 0; /* only VertexID is needed for GS-COPY. */ num_user_sgprs = SI_GSCOPY_NUM_USER_SGPR; } else if (shader->selector->info.stage == MESA_SHADER_VERTEX) { vgpr_comp_cnt = si_get_vs_vgpr_comp_cnt(sscreen, shader, enable_prim_id); if (info->base.vs.blit_sgprs_amd) { num_user_sgprs = SI_SGPR_VS_BLIT_DATA + info->base.vs.blit_sgprs_amd; } else { num_user_sgprs = si_get_num_vs_user_sgprs(shader, SI_VS_NUM_USER_SGPR); } } else if (shader->selector->info.stage == MESA_SHADER_TESS_EVAL) { vgpr_comp_cnt = enable_prim_id ? 3 : 2; num_user_sgprs = SI_TES_NUM_USER_SGPR; } else unreachable("invalid shader selector type"); /* VS is required to export at least one param. */ nparams = MAX2(shader->info.nr_param_exports, 1); shader->ctx_reg.vs.spi_vs_out_config = S_0286C4_VS_EXPORT_COUNT(nparams - 1); if (sscreen->info.chip_class >= GFX10) { shader->ctx_reg.vs.spi_vs_out_config |= S_0286C4_NO_PC_EXPORT(shader->info.nr_param_exports == 0); } shader->ctx_reg.vs.spi_shader_pos_format = S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) | S_02870C_POS1_EXPORT_FORMAT(shader->info.nr_pos_exports > 1 ? V_02870C_SPI_SHADER_4COMP : V_02870C_SPI_SHADER_NONE) | S_02870C_POS2_EXPORT_FORMAT(shader->info.nr_pos_exports > 2 ? V_02870C_SPI_SHADER_4COMP : V_02870C_SPI_SHADER_NONE) | S_02870C_POS3_EXPORT_FORMAT(shader->info.nr_pos_exports > 3 ? V_02870C_SPI_SHADER_4COMP : V_02870C_SPI_SHADER_NONE); unsigned late_alloc_wave64, cu_mask; ac_compute_late_alloc(&sscreen->info, false, false, shader->config.scratch_bytes_per_wave > 0, &late_alloc_wave64, &cu_mask); shader->ctx_reg.vs.ge_pc_alloc = S_030980_OVERSUB_EN(late_alloc_wave64 > 0) | S_030980_NUM_PC_LINES(sscreen->info.pc_lines / 4 - 1); shader->pa_cl_vs_out_cntl = si_get_vs_out_cntl(shader->selector, shader, false); oc_lds_en = shader->selector->info.stage == MESA_SHADER_TESS_EVAL ? 1 : 0; if (sscreen->info.chip_class >= GFX7) { si_pm4_set_reg(pm4, R_00B118_SPI_SHADER_PGM_RSRC3_VS, S_00B118_CU_EN(cu_mask) | S_00B118_WAVE_LIMIT(0x3F)); si_pm4_set_reg(pm4, R_00B11C_SPI_SHADER_LATE_ALLOC_VS, S_00B11C_LIMIT(late_alloc_wave64)); } si_pm4_set_reg(pm4, R_00B120_SPI_SHADER_PGM_LO_VS, va >> 8); si_pm4_set_reg(pm4, R_00B124_SPI_SHADER_PGM_HI_VS, S_00B124_MEM_BASE(sscreen->info.address32_hi >> 8)); uint32_t rsrc1 = S_00B128_VGPRS((shader->config.num_vgprs - 1) / (sscreen->ge_wave_size == 32 ? 8 : 4)) | S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt) | S_00B128_DX10_CLAMP(1) | S_00B128_MEM_ORDERED(si_shader_mem_ordered(shader)) | S_00B128_FLOAT_MODE(shader->config.float_mode); uint32_t rsrc2 = S_00B12C_USER_SGPR(num_user_sgprs) | S_00B12C_OC_LDS_EN(oc_lds_en) | S_00B12C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0); if (sscreen->info.chip_class >= GFX10) rsrc2 |= S_00B12C_USER_SGPR_MSB_GFX10(num_user_sgprs >> 5); else if (sscreen->info.chip_class == GFX9) rsrc2 |= S_00B12C_USER_SGPR_MSB_GFX9(num_user_sgprs >> 5); if (sscreen->info.chip_class <= GFX9) rsrc1 |= S_00B128_SGPRS((shader->config.num_sgprs - 1) / 8); if (!sscreen->use_ngg_streamout) { rsrc2 |= S_00B12C_SO_BASE0_EN(!!shader->selector->so.stride[0]) | S_00B12C_SO_BASE1_EN(!!shader->selector->so.stride[1]) | S_00B12C_SO_BASE2_EN(!!shader->selector->so.stride[2]) | S_00B12C_SO_BASE3_EN(!!shader->selector->so.stride[3]) | S_00B12C_SO_EN(!!shader->selector->so.num_outputs); } si_pm4_set_reg(pm4, R_00B128_SPI_SHADER_PGM_RSRC1_VS, rsrc1); si_pm4_set_reg(pm4, R_00B12C_SPI_SHADER_PGM_RSRC2_VS, rsrc2); if (window_space) shader->ctx_reg.vs.pa_cl_vte_cntl = S_028818_VTX_XY_FMT(1) | S_028818_VTX_Z_FMT(1); else shader->ctx_reg.vs.pa_cl_vte_cntl = S_028818_VTX_W0_FMT(1) | S_028818_VPORT_X_SCALE_ENA(1) | S_028818_VPORT_X_OFFSET_ENA(1) | S_028818_VPORT_Y_SCALE_ENA(1) | S_028818_VPORT_Y_OFFSET_ENA(1) | S_028818_VPORT_Z_SCALE_ENA(1) | S_028818_VPORT_Z_OFFSET_ENA(1); if (shader->selector->info.stage == MESA_SHADER_TESS_EVAL) si_set_tesseval_regs(sscreen, shader->selector, shader); polaris_set_vgt_vertex_reuse(sscreen, shader->selector, shader); } static unsigned si_get_ps_num_interp(struct si_shader *ps) { struct si_shader_info *info = &ps->selector->info; unsigned num_colors = !!(info->colors_read & 0x0f) + !!(info->colors_read & 0xf0); unsigned num_interp = ps->selector->info.num_inputs + (ps->key.ps.part.prolog.color_two_side ? num_colors : 0); assert(num_interp <= 32); return MIN2(num_interp, 32); } static unsigned si_get_spi_shader_col_format(struct si_shader *shader) { unsigned spi_shader_col_format = shader->key.ps.part.epilog.spi_shader_col_format; unsigned value = 0, num_mrts = 0; unsigned i, num_targets = (util_last_bit(spi_shader_col_format) + 3) / 4; /* Remove holes in spi_shader_col_format. */ for (i = 0; i < num_targets; i++) { unsigned spi_format = (spi_shader_col_format >> (i * 4)) & 0xf; if (spi_format) { value |= spi_format << (num_mrts * 4); num_mrts++; } } return value; } static void si_emit_shader_ps(struct si_context *sctx) { struct si_shader *shader = sctx->queued.named.ps; if (!shader) return; radeon_begin(&sctx->gfx_cs); /* R_0286CC_SPI_PS_INPUT_ENA, R_0286D0_SPI_PS_INPUT_ADDR*/ radeon_opt_set_context_reg2(sctx, R_0286CC_SPI_PS_INPUT_ENA, SI_TRACKED_SPI_PS_INPUT_ENA, shader->ctx_reg.ps.spi_ps_input_ena, shader->ctx_reg.ps.spi_ps_input_addr); radeon_opt_set_context_reg(sctx, R_0286E0_SPI_BARYC_CNTL, SI_TRACKED_SPI_BARYC_CNTL, shader->ctx_reg.ps.spi_baryc_cntl); radeon_opt_set_context_reg(sctx, R_0286D8_SPI_PS_IN_CONTROL, SI_TRACKED_SPI_PS_IN_CONTROL, shader->ctx_reg.ps.spi_ps_in_control); /* R_028710_SPI_SHADER_Z_FORMAT, R_028714_SPI_SHADER_COL_FORMAT */ radeon_opt_set_context_reg2(sctx, R_028710_SPI_SHADER_Z_FORMAT, SI_TRACKED_SPI_SHADER_Z_FORMAT, shader->ctx_reg.ps.spi_shader_z_format, shader->ctx_reg.ps.spi_shader_col_format); radeon_opt_set_context_reg(sctx, R_02823C_CB_SHADER_MASK, SI_TRACKED_CB_SHADER_MASK, shader->ctx_reg.ps.cb_shader_mask); radeon_end_update_context_roll(sctx); } static void si_shader_ps(struct si_screen *sscreen, struct si_shader *shader) { struct si_shader_info *info = &shader->selector->info; struct si_pm4_state *pm4; unsigned spi_ps_in_control, spi_shader_col_format, cb_shader_mask; unsigned spi_baryc_cntl = S_0286E0_FRONT_FACE_ALL_BITS(1); uint64_t va; unsigned input_ena = shader->config.spi_ps_input_ena; /* we need to enable at least one of them, otherwise we hang the GPU */ assert(G_0286CC_PERSP_SAMPLE_ENA(input_ena) || G_0286CC_PERSP_CENTER_ENA(input_ena) || G_0286CC_PERSP_CENTROID_ENA(input_ena) || G_0286CC_PERSP_PULL_MODEL_ENA(input_ena) || G_0286CC_LINEAR_SAMPLE_ENA(input_ena) || G_0286CC_LINEAR_CENTER_ENA(input_ena) || G_0286CC_LINEAR_CENTROID_ENA(input_ena) || G_0286CC_LINE_STIPPLE_TEX_ENA(input_ena)); /* POS_W_FLOAT_ENA requires one of the perspective weights. */ assert(!G_0286CC_POS_W_FLOAT_ENA(input_ena) || G_0286CC_PERSP_SAMPLE_ENA(input_ena) || G_0286CC_PERSP_CENTER_ENA(input_ena) || G_0286CC_PERSP_CENTROID_ENA(input_ena) || G_0286CC_PERSP_PULL_MODEL_ENA(input_ena)); /* Validate interpolation optimization flags (read as implications). */ assert(!shader->key.ps.part.prolog.bc_optimize_for_persp || (G_0286CC_PERSP_CENTER_ENA(input_ena) && G_0286CC_PERSP_CENTROID_ENA(input_ena))); assert(!shader->key.ps.part.prolog.bc_optimize_for_linear || (G_0286CC_LINEAR_CENTER_ENA(input_ena) && G_0286CC_LINEAR_CENTROID_ENA(input_ena))); assert(!shader->key.ps.part.prolog.force_persp_center_interp || (!G_0286CC_PERSP_SAMPLE_ENA(input_ena) && !G_0286CC_PERSP_CENTROID_ENA(input_ena))); assert(!shader->key.ps.part.prolog.force_linear_center_interp || (!G_0286CC_LINEAR_SAMPLE_ENA(input_ena) && !G_0286CC_LINEAR_CENTROID_ENA(input_ena))); assert(!shader->key.ps.part.prolog.force_persp_sample_interp || (!G_0286CC_PERSP_CENTER_ENA(input_ena) && !G_0286CC_PERSP_CENTROID_ENA(input_ena))); assert(!shader->key.ps.part.prolog.force_linear_sample_interp || (!G_0286CC_LINEAR_CENTER_ENA(input_ena) && !G_0286CC_LINEAR_CENTROID_ENA(input_ena))); /* Validate cases when the optimizations are off (read as implications). */ assert(shader->key.ps.part.prolog.bc_optimize_for_persp || !G_0286CC_PERSP_CENTER_ENA(input_ena) || !G_0286CC_PERSP_CENTROID_ENA(input_ena)); assert(shader->key.ps.part.prolog.bc_optimize_for_linear || !G_0286CC_LINEAR_CENTER_ENA(input_ena) || !G_0286CC_LINEAR_CENTROID_ENA(input_ena)); pm4 = si_get_shader_pm4_state(shader); if (!pm4) return; /* If multiple state sets are allowed to be in a bin, break the batch on a new PS. */ if (sscreen->dpbb_allowed && (sscreen->pbb_context_states_per_bin > 1 || sscreen->pbb_persistent_states_per_bin > 1)) { si_pm4_cmd_add(pm4, PKT3(PKT3_EVENT_WRITE, 0, 0)); si_pm4_cmd_add(pm4, EVENT_TYPE(V_028A90_BREAK_BATCH) | EVENT_INDEX(0)); } pm4->atom.emit = si_emit_shader_ps; /* SPI_BARYC_CNTL.POS_FLOAT_LOCATION * Possible vaules: * 0 -> Position = pixel center * 1 -> Position = pixel centroid * 2 -> Position = at sample position * * From GLSL 4.5 specification, section 7.1: * "The variable gl_FragCoord is available as an input variable from * within fragment shaders and it holds the window relative coordinates * (x, y, z, 1/w) values for the fragment. If multi-sampling, this * value can be for any location within the pixel, or one of the * fragment samples. The use of centroid does not further restrict * this value to be inside the current primitive." * * Meaning that centroid has no effect and we can return anything within * the pixel. Thus, return the value at sample position, because that's * the most accurate one shaders can get. */ spi_baryc_cntl |= S_0286E0_POS_FLOAT_LOCATION(2); if (info->base.fs.pixel_center_integer) spi_baryc_cntl |= S_0286E0_POS_FLOAT_ULC(1); spi_shader_col_format = si_get_spi_shader_col_format(shader); cb_shader_mask = ac_get_cb_shader_mask(shader->key.ps.part.epilog.spi_shader_col_format); /* Ensure that some export memory is always allocated, for two reasons: * * 1) Correctness: The hardware ignores the EXEC mask if no export * memory is allocated, so KILL and alpha test do not work correctly * without this. * 2) Performance: Every shader needs at least a NULL export, even when * it writes no color/depth output. The NULL export instruction * stalls without this setting. * * Don't add this to CB_SHADER_MASK. * * GFX10 supports pixel shaders without exports by setting both * the color and Z formats to SPI_SHADER_ZERO. The hw will skip export * instructions if any are present. */ if ((sscreen->info.chip_class <= GFX9 || info->base.fs.uses_discard || shader->key.ps.part.epilog.alpha_func != PIPE_FUNC_ALWAYS) && !spi_shader_col_format && !info->writes_z && !info->writes_stencil && !info->writes_samplemask) spi_shader_col_format = V_028714_SPI_SHADER_32_R; shader->ctx_reg.ps.spi_ps_input_ena = input_ena; shader->ctx_reg.ps.spi_ps_input_addr = shader->config.spi_ps_input_addr; unsigned num_interp = si_get_ps_num_interp(shader); /* Set interpolation controls. */ spi_ps_in_control = S_0286D8_NUM_INTERP(num_interp) | S_0286D8_PS_W32_EN(sscreen->ps_wave_size == 32); shader->ctx_reg.ps.num_interp = num_interp; shader->ctx_reg.ps.spi_baryc_cntl = spi_baryc_cntl; shader->ctx_reg.ps.spi_ps_in_control = spi_ps_in_control; shader->ctx_reg.ps.spi_shader_z_format = ac_get_spi_shader_z_format(info->writes_z, info->writes_stencil, info->writes_samplemask); shader->ctx_reg.ps.spi_shader_col_format = spi_shader_col_format; shader->ctx_reg.ps.cb_shader_mask = cb_shader_mask; va = shader->bo->gpu_address; si_pm4_set_reg(pm4, R_00B020_SPI_SHADER_PGM_LO_PS, va >> 8); si_pm4_set_reg(pm4, R_00B024_SPI_SHADER_PGM_HI_PS, S_00B024_MEM_BASE(sscreen->info.address32_hi >> 8)); uint32_t rsrc1 = S_00B028_VGPRS((shader->config.num_vgprs - 1) / (sscreen->ps_wave_size == 32 ? 8 : 4)) | S_00B028_DX10_CLAMP(1) | S_00B028_MEM_ORDERED(si_shader_mem_ordered(shader)) | S_00B028_FLOAT_MODE(shader->config.float_mode); if (sscreen->info.chip_class < GFX10) { rsrc1 |= S_00B028_SGPRS((shader->config.num_sgprs - 1) / 8); } si_pm4_set_reg(pm4, R_00B028_SPI_SHADER_PGM_RSRC1_PS, rsrc1); si_pm4_set_reg(pm4, R_00B02C_SPI_SHADER_PGM_RSRC2_PS, S_00B02C_EXTRA_LDS_SIZE(shader->config.lds_size) | S_00B02C_USER_SGPR(SI_PS_NUM_USER_SGPR) | S_00B32C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0)); } static void si_shader_init_pm4_state(struct si_screen *sscreen, struct si_shader *shader) { assert(shader->wave_size); switch (shader->selector->info.stage) { case MESA_SHADER_VERTEX: if (shader->key.ge.as_ls) si_shader_ls(sscreen, shader); else if (shader->key.ge.as_es) si_shader_es(sscreen, shader); else if (shader->key.ge.as_ngg) gfx10_shader_ngg(sscreen, shader); else si_shader_vs(sscreen, shader, NULL); break; case MESA_SHADER_TESS_CTRL: si_shader_hs(sscreen, shader); break; case MESA_SHADER_TESS_EVAL: if (shader->key.ge.as_es) si_shader_es(sscreen, shader); else if (shader->key.ge.as_ngg) gfx10_shader_ngg(sscreen, shader); else si_shader_vs(sscreen, shader, NULL); break; case MESA_SHADER_GEOMETRY: if (shader->key.ge.as_ngg) gfx10_shader_ngg(sscreen, shader); else si_shader_gs(sscreen, shader); break; case MESA_SHADER_FRAGMENT: si_shader_ps(sscreen, shader); break; default: assert(0); } } static void si_clear_vs_key_inputs(struct si_context *sctx, union si_shader_key *key, struct si_vs_prolog_bits *prolog_key) { prolog_key->instance_divisor_is_one = 0; prolog_key->instance_divisor_is_fetched = 0; key->ge.mono.vs_fetch_opencode = 0; memset(key->ge.mono.vs_fix_fetch, 0, sizeof(key->ge.mono.vs_fix_fetch)); } void si_vs_key_update_inputs(struct si_context *sctx) { struct si_shader_selector *vs = sctx->shader.vs.cso; struct si_vertex_elements *elts = sctx->vertex_elements; union si_shader_key *key = &sctx->shader.vs.key; if (!vs) return; if (vs->info.base.vs.blit_sgprs_amd) { si_clear_vs_key_inputs(sctx, key, &key->ge.part.vs.prolog); key->ge.opt.prefer_mono = 0; sctx->uses_nontrivial_vs_prolog = false; return; } bool uses_nontrivial_vs_prolog = false; if (elts->instance_divisor_is_one || elts->instance_divisor_is_fetched) uses_nontrivial_vs_prolog = true; key->ge.part.vs.prolog.instance_divisor_is_one = elts->instance_divisor_is_one; key->ge.part.vs.prolog.instance_divisor_is_fetched = elts->instance_divisor_is_fetched; key->ge.opt.prefer_mono = elts->instance_divisor_is_fetched; unsigned count_mask = (1 << vs->info.num_inputs) - 1; unsigned fix = elts->fix_fetch_always & count_mask; unsigned opencode = elts->fix_fetch_opencode & count_mask; if (sctx->vertex_buffer_unaligned & elts->vb_alignment_check_mask) { uint32_t mask = elts->fix_fetch_unaligned & count_mask; while (mask) { unsigned i = u_bit_scan(&mask); unsigned log_hw_load_size = 1 + ((elts->hw_load_is_dword >> i) & 1); unsigned vbidx = elts->vertex_buffer_index[i]; struct pipe_vertex_buffer *vb = &sctx->vertex_buffer[vbidx]; unsigned align_mask = (1 << log_hw_load_size) - 1; if (vb->buffer_offset & align_mask || vb->stride & align_mask) { fix |= 1 << i; opencode |= 1 << i; } } } memset(key->ge.mono.vs_fix_fetch, 0, sizeof(key->ge.mono.vs_fix_fetch)); while (fix) { unsigned i = u_bit_scan(&fix); uint8_t fix_fetch = elts->fix_fetch[i]; key->ge.mono.vs_fix_fetch[i].bits = fix_fetch; if (fix_fetch) uses_nontrivial_vs_prolog = true; } key->ge.mono.vs_fetch_opencode = opencode; if (opencode) uses_nontrivial_vs_prolog = true; sctx->uses_nontrivial_vs_prolog = uses_nontrivial_vs_prolog; /* draw_vertex_state (display lists) requires a trivial VS prolog that ignores * the current vertex buffers and vertex elements. * * We just computed the prolog key because we needed to set uses_nontrivial_vs_prolog, * so that we know whether the VS prolog should be updated when we switch from * draw_vertex_state to draw_vbo. Now clear the VS prolog for draw_vertex_state. * This should happen rarely because the VS prolog should be trivial in most * cases. */ if (uses_nontrivial_vs_prolog && sctx->force_trivial_vs_prolog) si_clear_vs_key_inputs(sctx, key, &key->ge.part.vs.prolog); } void si_get_vs_key_inputs(struct si_context *sctx, union si_shader_key *key, struct si_vs_prolog_bits *prolog_key) { prolog_key->instance_divisor_is_one = sctx->shader.vs.key.ge.part.vs.prolog.instance_divisor_is_one; prolog_key->instance_divisor_is_fetched = sctx->shader.vs.key.ge.part.vs.prolog.instance_divisor_is_fetched; key->ge.mono.vs_fetch_opencode = sctx->shader.vs.key.ge.mono.vs_fetch_opencode; memcpy(key->ge.mono.vs_fix_fetch, sctx->shader.vs.key.ge.mono.vs_fix_fetch, sizeof(key->ge.mono.vs_fix_fetch)); } void si_update_ps_inputs_read_or_disabled(struct si_context *sctx) { struct si_shader_selector *ps = sctx->shader.ps.cso; /* Find out if PS is disabled. */ bool ps_disabled = true; if (ps) { bool ps_modifies_zs = ps->info.base.fs.uses_discard || ps->info.writes_z || ps->info.writes_stencil || ps->info.writes_samplemask || sctx->queued.named.blend->alpha_to_coverage || sctx->queued.named.dsa->alpha_func != PIPE_FUNC_ALWAYS; unsigned ps_colormask = si_get_total_colormask(sctx); ps_disabled = sctx->queued.named.rasterizer->rasterizer_discard || (!ps_colormask && !ps_modifies_zs && !ps->info.base.writes_memory); } sctx->ps_inputs_read_or_disabled = ps_disabled ? 0 : ps->inputs_read; } static void si_get_vs_key_outputs(struct si_context *sctx, struct si_shader_selector *vs, union si_shader_key *key) { key->ge.opt.kill_clip_distances = vs->clipdist_mask & ~sctx->queued.named.rasterizer->clip_plane_enable; /* Find out which VS outputs aren't used by the PS. */ uint64_t outputs_written = vs->outputs_written_before_ps; uint64_t linked = outputs_written & sctx->ps_inputs_read_or_disabled; key->ge.opt.kill_outputs = ~linked & outputs_written; key->ge.opt.ngg_culling = sctx->ngg_culling; key->ge.mono.u.vs_export_prim_id = vs->info.stage != MESA_SHADER_GEOMETRY && sctx->shader.ps.cso && sctx->shader.ps.cso->info.uses_primid; key->ge.opt.kill_pointsize = vs->info.writes_psize && sctx->current_rast_prim != PIPE_PRIM_POINTS && !sctx->queued.named.rasterizer->polygon_mode_is_points; } static void si_clear_vs_key_outputs(struct si_context *sctx, struct si_shader_selector *vs, union si_shader_key *key) { key->ge.opt.kill_clip_distances = 0; key->ge.opt.kill_outputs = 0; key->ge.opt.ngg_culling = 0; key->ge.mono.u.vs_export_prim_id = 0; key->ge.opt.kill_pointsize = 0; } void si_ps_key_update_framebuffer(struct si_context *sctx) { struct si_shader_selector *sel = sctx->shader.ps.cso; union si_shader_key *key = &sctx->shader.ps.key; if (!sel) return; if (sel->info.color0_writes_all_cbufs && sel->info.colors_written == 0x1) key->ps.part.epilog.last_cbuf = MAX2(sctx->framebuffer.state.nr_cbufs, 1) - 1; else key->ps.part.epilog.last_cbuf = 0; /* ps_uses_fbfetch is true only if the color buffer is bound. */ if (sctx->ps_uses_fbfetch) { struct pipe_surface *cb0 = sctx->framebuffer.state.cbufs[0]; struct pipe_resource *tex = cb0->texture; /* 1D textures are allocated and used as 2D on GFX9. */ key->ps.mono.fbfetch_msaa = sctx->framebuffer.nr_samples > 1; key->ps.mono.fbfetch_is_1D = sctx->chip_class != GFX9 && (tex->target == PIPE_TEXTURE_1D || tex->target == PIPE_TEXTURE_1D_ARRAY); key->ps.mono.fbfetch_layered = tex->target == PIPE_TEXTURE_1D_ARRAY || tex->target == PIPE_TEXTURE_2D_ARRAY || tex->target == PIPE_TEXTURE_CUBE || tex->target == PIPE_TEXTURE_CUBE_ARRAY || tex->target == PIPE_TEXTURE_3D; } else { key->ps.mono.fbfetch_msaa = 0; key->ps.mono.fbfetch_is_1D = 0; key->ps.mono.fbfetch_layered = 0; } } void si_ps_key_update_framebuffer_blend(struct si_context *sctx) { struct si_shader_selector *sel = sctx->shader.ps.cso; union si_shader_key *key = &sctx->shader.ps.key; struct si_state_blend *blend = sctx->queued.named.blend; if (!sel) return; /* Select the shader color format based on whether * blending or alpha are needed. */ key->ps.part.epilog.spi_shader_col_format = (blend->blend_enable_4bit & blend->need_src_alpha_4bit & sctx->framebuffer.spi_shader_col_format_blend_alpha) | (blend->blend_enable_4bit & ~blend->need_src_alpha_4bit & sctx->framebuffer.spi_shader_col_format_blend) | (~blend->blend_enable_4bit & blend->need_src_alpha_4bit & sctx->framebuffer.spi_shader_col_format_alpha) | (~blend->blend_enable_4bit & ~blend->need_src_alpha_4bit & sctx->framebuffer.spi_shader_col_format); key->ps.part.epilog.spi_shader_col_format &= blend->cb_target_enabled_4bit; /* The output for dual source blending should have * the same format as the first output. */ if (blend->dual_src_blend) { key->ps.part.epilog.spi_shader_col_format |= (key->ps.part.epilog.spi_shader_col_format & 0xf) << 4; } /* If alpha-to-coverage is enabled, we have to export alpha * even if there is no color buffer. */ if (!(key->ps.part.epilog.spi_shader_col_format & 0xf) && blend->alpha_to_coverage) key->ps.part.epilog.spi_shader_col_format |= V_028710_SPI_SHADER_32_AR; /* On GFX6 and GFX7 except Hawaii, the CB doesn't clamp outputs * to the range supported by the type if a channel has less * than 16 bits and the export format is 16_ABGR. */ if (sctx->chip_class <= GFX7 && sctx->family != CHIP_HAWAII) { key->ps.part.epilog.color_is_int8 = sctx->framebuffer.color_is_int8; key->ps.part.epilog.color_is_int10 = sctx->framebuffer.color_is_int10; } /* Disable unwritten outputs (if WRITE_ALL_CBUFS isn't enabled). */ if (!key->ps.part.epilog.last_cbuf) { key->ps.part.epilog.spi_shader_col_format &= sel->colors_written_4bit; key->ps.part.epilog.color_is_int8 &= sel->info.colors_written; key->ps.part.epilog.color_is_int10 &= sel->info.colors_written; } /* Eliminate shader code computing output values that are unused. * This enables dead code elimination between shader parts. * Check if any output is eliminated. */ if (sel->colors_written_4bit & ~(sctx->framebuffer.colorbuf_enabled_4bit & blend->cb_target_enabled_4bit)) key->ps.opt.prefer_mono = 1; else key->ps.opt.prefer_mono = 0; } void si_ps_key_update_blend_rasterizer(struct si_context *sctx) { union si_shader_key *key = &sctx->shader.ps.key; struct si_state_blend *blend = sctx->queued.named.blend; struct si_state_rasterizer *rs = sctx->queued.named.rasterizer; key->ps.part.epilog.alpha_to_one = blend->alpha_to_one && rs->multisample_enable; } void si_ps_key_update_rasterizer(struct si_context *sctx) { struct si_shader_selector *sel = sctx->shader.ps.cso; union si_shader_key *key = &sctx->shader.ps.key; struct si_state_rasterizer *rs = sctx->queued.named.rasterizer; if (!sel) return; key->ps.part.prolog.color_two_side = rs->two_side && sel->info.colors_read; key->ps.part.prolog.flatshade_colors = rs->flatshade && sel->info.uses_interp_color; key->ps.part.epilog.clamp_color = rs->clamp_fragment_color; } void si_ps_key_update_dsa(struct si_context *sctx) { union si_shader_key *key = &sctx->shader.ps.key; key->ps.part.epilog.alpha_func = sctx->queued.named.dsa->alpha_func; } static void si_ps_key_update_primtype_shader_rasterizer_framebuffer(struct si_context *sctx) { union si_shader_key *key = &sctx->shader.ps.key; struct si_state_rasterizer *rs = sctx->queued.named.rasterizer; bool is_poly = !util_prim_is_points_or_lines(sctx->current_rast_prim); bool is_line = util_prim_is_lines(sctx->current_rast_prim); key->ps.part.prolog.poly_stipple = rs->poly_stipple_enable && is_poly; key->ps.part.epilog.poly_line_smoothing = ((is_poly && rs->poly_smooth) || (is_line && rs->line_smooth)) && sctx->framebuffer.nr_samples <= 1; } void si_ps_key_update_sample_shading(struct si_context *sctx) { struct si_shader_selector *sel = sctx->shader.ps.cso; union si_shader_key *key = &sctx->shader.ps.key; if (!sel) return; if (sctx->ps_iter_samples > 1 && sel->info.reads_samplemask) key->ps.part.prolog.samplemask_log_ps_iter = util_logbase2(sctx->ps_iter_samples); else key->ps.part.prolog.samplemask_log_ps_iter = 0; } void si_ps_key_update_framebuffer_rasterizer_sample_shading(struct si_context *sctx) { struct si_shader_selector *sel = sctx->shader.ps.cso; union si_shader_key *key = &sctx->shader.ps.key; struct si_state_rasterizer *rs = sctx->queued.named.rasterizer; if (!sel) return; bool uses_persp_center = sel->info.uses_persp_center || (!rs->flatshade && sel->info.uses_persp_center_color); bool uses_persp_centroid = sel->info.uses_persp_centroid || (!rs->flatshade && sel->info.uses_persp_centroid_color); bool uses_persp_sample = sel->info.uses_persp_sample || (!rs->flatshade && sel->info.uses_persp_sample_color); if (rs->force_persample_interp && rs->multisample_enable && sctx->framebuffer.nr_samples > 1 && sctx->ps_iter_samples > 1) { key->ps.part.prolog.force_persp_sample_interp = uses_persp_center || uses_persp_centroid; key->ps.part.prolog.force_linear_sample_interp = sel->info.uses_linear_center || sel->info.uses_linear_centroid; key->ps.part.prolog.force_persp_center_interp = 0; key->ps.part.prolog.force_linear_center_interp = 0; key->ps.part.prolog.bc_optimize_for_persp = 0; key->ps.part.prolog.bc_optimize_for_linear = 0; key->ps.mono.interpolate_at_sample_force_center = 0; } else if (rs->multisample_enable && sctx->framebuffer.nr_samples > 1) { key->ps.part.prolog.force_persp_sample_interp = 0; key->ps.part.prolog.force_linear_sample_interp = 0; key->ps.part.prolog.force_persp_center_interp = 0; key->ps.part.prolog.force_linear_center_interp = 0; key->ps.part.prolog.bc_optimize_for_persp = uses_persp_center && uses_persp_centroid; key->ps.part.prolog.bc_optimize_for_linear = sel->info.uses_linear_center && sel->info.uses_linear_centroid; key->ps.mono.interpolate_at_sample_force_center = 0; } else { key->ps.part.prolog.force_persp_sample_interp = 0; key->ps.part.prolog.force_linear_sample_interp = 0; /* Make sure SPI doesn't compute more than 1 pair * of (i,j), which is the optimization here. */ key->ps.part.prolog.force_persp_center_interp = uses_persp_center + uses_persp_centroid + uses_persp_sample > 1; key->ps.part.prolog.force_linear_center_interp = sel->info.uses_linear_center + sel->info.uses_linear_centroid + sel->info.uses_linear_sample > 1; key->ps.part.prolog.bc_optimize_for_persp = 0; key->ps.part.prolog.bc_optimize_for_linear = 0; key->ps.mono.interpolate_at_sample_force_center = sel->info.uses_interp_at_sample; } } /* Compute the key for the hw shader variant */ static inline void si_shader_selector_key(struct pipe_context *ctx, struct si_shader_selector *sel, union si_shader_key *key) { struct si_context *sctx = (struct si_context *)ctx; switch (sel->info.stage) { case MESA_SHADER_VERTEX: if (!sctx->shader.tes.cso && !sctx->shader.gs.cso) si_get_vs_key_outputs(sctx, sel, key); else si_clear_vs_key_outputs(sctx, sel, key); break; case MESA_SHADER_TESS_CTRL: if (sctx->chip_class >= GFX9) { si_get_vs_key_inputs(sctx, key, &key->ge.part.tcs.ls_prolog); key->ge.part.tcs.ls = sctx->shader.vs.cso; } break; case MESA_SHADER_TESS_EVAL: if (!sctx->shader.gs.cso) si_get_vs_key_outputs(sctx, sel, key); else si_clear_vs_key_outputs(sctx, sel, key); break; case MESA_SHADER_GEOMETRY: if (sctx->chip_class >= GFX9) { if (sctx->shader.tes.cso) { si_clear_vs_key_inputs(sctx, key, &key->ge.part.gs.vs_prolog); key->ge.part.gs.es = sctx->shader.tes.cso; } else { si_get_vs_key_inputs(sctx, key, &key->ge.part.gs.vs_prolog); key->ge.part.gs.es = sctx->shader.vs.cso; } /* Only NGG can eliminate GS outputs, because the code is shared with VS. */ if (sctx->ngg) si_get_vs_key_outputs(sctx, sel, key); else si_clear_vs_key_outputs(sctx, sel, key); } break; case MESA_SHADER_FRAGMENT: si_ps_key_update_primtype_shader_rasterizer_framebuffer(sctx); break; default: assert(0); } } static void si_build_shader_variant(struct si_shader *shader, int thread_index, bool low_priority) { struct si_shader_selector *sel = shader->selector; struct si_screen *sscreen = sel->screen; struct ac_llvm_compiler *compiler; struct pipe_debug_callback *debug = &shader->compiler_ctx_state.debug; if (thread_index >= 0) { if (low_priority) { assert(thread_index < (int)ARRAY_SIZE(sscreen->compiler_lowp)); compiler = &sscreen->compiler_lowp[thread_index]; } else { assert(thread_index < (int)ARRAY_SIZE(sscreen->compiler)); compiler = &sscreen->compiler[thread_index]; } if (!debug->async) debug = NULL; } else { assert(!low_priority); compiler = shader->compiler_ctx_state.compiler; } if (!compiler->passes) si_init_compiler(sscreen, compiler); if (unlikely(!si_create_shader_variant(sscreen, compiler, shader, debug))) { PRINT_ERR("Failed to build shader variant (type=%u)\n", sel->info.stage); shader->compilation_failed = true; return; } if (shader->compiler_ctx_state.is_debug_context) { FILE *f = open_memstream(&shader->shader_log, &shader->shader_log_size); if (f) { si_shader_dump(sscreen, shader, NULL, f, false); fclose(f); } } si_shader_init_pm4_state(sscreen, shader); } static void si_build_shader_variant_low_priority(void *job, void *gdata, int thread_index) { struct si_shader *shader = (struct si_shader *)job; assert(thread_index >= 0); si_build_shader_variant(shader, thread_index, true); } /* This should be const, but C++ doesn't allow implicit zero-initialization with const. */ static union si_shader_key zeroed; static bool si_check_missing_main_part(struct si_screen *sscreen, struct si_shader_selector *sel, struct si_compiler_ctx_state *compiler_state, const union si_shader_key *key) { struct si_shader **mainp = si_get_main_shader_part(sel, key); if (!*mainp) { struct si_shader *main_part = CALLOC_STRUCT(si_shader); if (!main_part) return false; /* We can leave the fence as permanently signaled because the * main part becomes visible globally only after it has been * compiled. */ util_queue_fence_init(&main_part->ready); main_part->selector = sel; if (sel->info.stage <= MESA_SHADER_GEOMETRY) { main_part->key.ge.as_es = key->ge.as_es; main_part->key.ge.as_ls = key->ge.as_ls; main_part->key.ge.as_ngg = key->ge.as_ngg; } main_part->is_monolithic = false; main_part->wave_size = si_get_shader_wave_size(main_part); if (!si_compile_shader(sscreen, compiler_state->compiler, main_part, &compiler_state->debug)) { FREE(main_part); return false; } *mainp = main_part; } return true; } /* A helper to copy *key to *local_key and return local_key. */ template static ALWAYS_INLINE const SHADER_KEY_TYPE * use_local_key_copy(const SHADER_KEY_TYPE *key, SHADER_KEY_TYPE *local_key, unsigned key_size) { if (key != local_key) memcpy(local_key, key, key_size); return local_key; } #define NO_INLINE_UNIFORMS false /** * Select a shader variant according to the shader key. * * \param optimized_or_none If the key describes an optimized shader variant and * the compilation isn't finished, don't select any * shader and return an error. * * This uses a C++ template to compute the optimal memcmp size at compile time, which is important * for getting inlined memcmp. The memcmp size depends on the shader key type and whether inlined * uniforms are enabled. */ template static int si_shader_select_with_key(struct si_context *sctx, struct si_shader_ctx_state *state, const SHADER_KEY_TYPE *key, int thread_index, bool optimized_or_none) { struct si_screen *sscreen = sctx->screen; struct si_shader_selector *sel = state->cso; struct si_shader_selector *previous_stage_sel = NULL; struct si_shader *current = state->current; struct si_shader *iter, *shader = NULL; const SHADER_KEY_TYPE *zeroed_key = (SHADER_KEY_TYPE*)&zeroed; /* "opt" must be the last field and "inlined_uniform_values" must be the last field inside opt. * If there is padding, insert the padding manually before opt or inside opt. */ STATIC_ASSERT(offsetof(SHADER_KEY_TYPE, opt) + sizeof(key->opt) == sizeof(*key)); STATIC_ASSERT(offsetof(SHADER_KEY_TYPE, opt.inlined_uniform_values) + sizeof(key->opt.inlined_uniform_values) == sizeof(*key)); const unsigned key_size_no_uniforms = sizeof(*key) - sizeof(key->opt.inlined_uniform_values); /* Don't compare inlined_uniform_values if uniform inlining is disabled. */ const unsigned key_size = INLINE_UNIFORMS ? sizeof(*key) : key_size_no_uniforms; const unsigned key_opt_size = INLINE_UNIFORMS ? sizeof(key->opt) : sizeof(key->opt) - sizeof(key->opt.inlined_uniform_values); /* si_shader_select_with_key must not modify 'key' because it would affect future shaders. * If we need to modify it for this specific shader (eg: to disable optimizations), we * use a copy. */ SHADER_KEY_TYPE local_key; if (unlikely(sscreen->debug_flags & DBG(NO_OPT_VARIANT))) { /* Disable shader variant optimizations. */ key = use_local_key_copy(key, &local_key, key_size); memset(&local_key.opt, 0, key_opt_size); } again: /* Check if we don't need to change anything. * This path is also used for most shaders that don't need multiple * variants, it will cost just a computation of the key and this * test. */ if (likely(current && memcmp(¤t->key, key, key_size) == 0)) { if (unlikely(!util_queue_fence_is_signalled(¤t->ready))) { if (current->is_optimized) { if (optimized_or_none) return -1; key = use_local_key_copy(key, &local_key, key_size); memset(&local_key.opt, 0, key_opt_size); goto current_not_ready; } util_queue_fence_wait(¤t->ready); } return current->compilation_failed ? -1 : 0; } current_not_ready: /* This must be done before the mutex is locked, because async GS * compilation calls this function too, and therefore must enter * the mutex first. * * Only wait if we are in a draw call. Don't wait if we are * in a compiler thread. */ if (thread_index < 0) util_queue_fence_wait(&sel->ready); simple_mtx_lock(&sel->mutex); int variant_count = 0; const int max_inline_uniforms_variants = 5; /* Find the shader variant. */ for (iter = sel->first_variant; iter; iter = iter->next_variant) { const SHADER_KEY_TYPE *iter_key = (const SHADER_KEY_TYPE *)&iter->key; if (memcmp(iter_key, key, key_size_no_uniforms) == 0) { /* Check the inlined uniform values separately, and count * the number of variants based on them. */ if (key->opt.inline_uniforms && memcmp(iter_key->opt.inlined_uniform_values, key->opt.inlined_uniform_values, MAX_INLINABLE_UNIFORMS * 4) != 0) { if (variant_count++ > max_inline_uniforms_variants) { key = use_local_key_copy(key, &local_key, key_size); /* Too many variants. Disable inlining for this shader. */ local_key.opt.inline_uniforms = 0; memset(local_key.opt.inlined_uniform_values, 0, MAX_INLINABLE_UNIFORMS * 4); simple_mtx_unlock(&sel->mutex); goto again; } continue; } simple_mtx_unlock(&sel->mutex); if (unlikely(!util_queue_fence_is_signalled(&iter->ready))) { /* If it's an optimized shader and its compilation has * been started but isn't done, use the unoptimized * shader so as not to cause a stall due to compilation. */ if (iter->is_optimized) { if (optimized_or_none) return -1; key = use_local_key_copy(key, &local_key, key_size); memset(&local_key.opt, 0, key_opt_size); goto again; } util_queue_fence_wait(&iter->ready); } if (iter->compilation_failed) { return -1; /* skip the draw call */ } state->current = iter; return 0; } } /* Build a new shader. */ shader = CALLOC_STRUCT(si_shader); if (!shader) { simple_mtx_unlock(&sel->mutex); return -ENOMEM; } util_queue_fence_init(&shader->ready); if (!sctx->compiler.passes) si_init_compiler(sctx->screen, &sctx->compiler); shader->selector = sel; *((SHADER_KEY_TYPE*)&shader->key) = *key; shader->wave_size = si_get_shader_wave_size(shader); shader->compiler_ctx_state.compiler = &sctx->compiler; shader->compiler_ctx_state.debug = sctx->debug; shader->compiler_ctx_state.is_debug_context = sctx->is_debug; /* If this is a merged shader, get the first shader's selector. */ if (sscreen->info.chip_class >= GFX9) { if (sel->info.stage == MESA_SHADER_TESS_CTRL) previous_stage_sel = ((struct si_shader_key_ge*)key)->part.tcs.ls; else if (sel->info.stage == MESA_SHADER_GEOMETRY) previous_stage_sel = ((struct si_shader_key_ge*)key)->part.gs.es; /* We need to wait for the previous shader. */ if (previous_stage_sel && thread_index < 0) util_queue_fence_wait(&previous_stage_sel->ready); } bool is_pure_monolithic = sscreen->use_monolithic_shaders || memcmp(&key->mono, &zeroed_key->mono, sizeof(key->mono)) != 0; /* Compile the main shader part if it doesn't exist. This can happen * if the initial guess was wrong. */ if (!is_pure_monolithic) { bool ok = true; /* Make sure the main shader part is present. This is needed * for shaders that can be compiled as VS, LS, or ES, and only * one of them is compiled at creation. * * It is also needed for GS, which can be compiled as non-NGG * and NGG. * * For merged shaders, check that the starting shader's main * part is present. */ if (previous_stage_sel) { union si_shader_key shader1_key = zeroed; if (sel->info.stage == MESA_SHADER_TESS_CTRL) { shader1_key.ge.as_ls = 1; } else if (sel->info.stage == MESA_SHADER_GEOMETRY) { shader1_key.ge.as_es = 1; shader1_key.ge.as_ngg = ((struct si_shader_key_ge*)key)->as_ngg; /* for Wave32 vs Wave64 */ } else { assert(0); } simple_mtx_lock(&previous_stage_sel->mutex); ok = si_check_missing_main_part(sscreen, previous_stage_sel, &shader->compiler_ctx_state, &shader1_key); simple_mtx_unlock(&previous_stage_sel->mutex); } if (ok) { ok = si_check_missing_main_part(sscreen, sel, &shader->compiler_ctx_state, (union si_shader_key*)key); } if (!ok) { FREE(shader); simple_mtx_unlock(&sel->mutex); return -ENOMEM; /* skip the draw call */ } } /* Keep the reference to the 1st shader of merged shaders, so that * Gallium can't destroy it before we destroy the 2nd shader. * * Set sctx = NULL, because it's unused if we're not releasing * the shader, and we don't have any sctx here. */ si_shader_selector_reference(NULL, &shader->previous_stage_sel, previous_stage_sel); /* Monolithic-only shaders don't make a distinction between optimized * and unoptimized. */ shader->is_monolithic = is_pure_monolithic || memcmp(&key->opt, &zeroed_key->opt, key_opt_size) != 0; shader->is_optimized = !is_pure_monolithic && memcmp(&key->opt, &zeroed_key->opt, key_opt_size) != 0; /* If it's an optimized shader, compile it asynchronously. */ if (shader->is_optimized && thread_index < 0) { /* Compile it asynchronously. */ util_queue_add_job(&sscreen->shader_compiler_queue_low_priority, shader, &shader->ready, si_build_shader_variant_low_priority, NULL, 0); /* Add only after the ready fence was reset, to guard against a * race with si_bind_XX_shader. */ if (!sel->last_variant) { sel->first_variant = shader; sel->last_variant = shader; } else { sel->last_variant->next_variant = shader; sel->last_variant = shader; } /* Use the default (unoptimized) shader for now. */ key = use_local_key_copy(key, &local_key, key_size); memset(&local_key.opt, 0, key_opt_size); simple_mtx_unlock(&sel->mutex); if (sscreen->options.sync_compile) util_queue_fence_wait(&shader->ready); if (optimized_or_none) return -1; goto again; } /* Reset the fence before adding to the variant list. */ util_queue_fence_reset(&shader->ready); if (!sel->last_variant) { sel->first_variant = shader; sel->last_variant = shader; } else { sel->last_variant->next_variant = shader; sel->last_variant = shader; } simple_mtx_unlock(&sel->mutex); assert(!shader->is_optimized); si_build_shader_variant(shader, thread_index, false); util_queue_fence_signal(&shader->ready); if (!shader->compilation_failed) state->current = shader; return shader->compilation_failed ? -1 : 0; } int si_shader_select(struct pipe_context *ctx, struct si_shader_ctx_state *state) { struct si_context *sctx = (struct si_context *)ctx; si_shader_selector_key(ctx, state->cso, &state->key); if (state->cso->info.stage == MESA_SHADER_FRAGMENT) { if (state->key.ps.opt.inline_uniforms) return si_shader_select_with_key(sctx, state, &state->key.ps, -1, false); else return si_shader_select_with_key(sctx, state, &state->key.ps, -1, false); } else { if (state->key.ge.opt.inline_uniforms) { return si_shader_select_with_key(sctx, state, &state->key.ge, -1, false); } else { return si_shader_select_with_key(sctx, state, &state->key.ge, -1, false); } } } static void si_parse_next_shader_property(const struct si_shader_info *info, bool streamout, union si_shader_key *key) { gl_shader_stage next_shader = info->base.next_stage; switch (info->stage) { case MESA_SHADER_VERTEX: switch (next_shader) { case MESA_SHADER_GEOMETRY: key->ge.as_es = 1; break; case MESA_SHADER_TESS_CTRL: case MESA_SHADER_TESS_EVAL: key->ge.as_ls = 1; break; default: /* If POSITION isn't written, it can only be a HW VS * if streamout is used. If streamout isn't used, * assume that it's a HW LS. (the next shader is TCS) * This heuristic is needed for separate shader objects. */ if (!info->writes_position && !streamout) key->ge.as_ls = 1; } break; case MESA_SHADER_TESS_EVAL: if (next_shader == MESA_SHADER_GEOMETRY || !info->writes_position) key->ge.as_es = 1; break; default:; } } /** * Compile the main shader part or the monolithic shader as part of * si_shader_selector initialization. Since it can be done asynchronously, * there is no way to report compile failures to applications. */ static void si_init_shader_selector_async(void *job, void *gdata, int thread_index) { struct si_shader_selector *sel = (struct si_shader_selector *)job; struct si_screen *sscreen = sel->screen; struct ac_llvm_compiler *compiler; struct pipe_debug_callback *debug = &sel->compiler_ctx_state.debug; assert(!debug->debug_message || debug->async); assert(thread_index >= 0); assert(thread_index < (int)ARRAY_SIZE(sscreen->compiler)); compiler = &sscreen->compiler[thread_index]; if (!compiler->passes) si_init_compiler(sscreen, compiler); /* The GS copy shader is always pre-compiled. */ if (sel->info.stage == MESA_SHADER_GEOMETRY && (!sscreen->use_ngg || !sscreen->use_ngg_streamout || /* also for PRIMITIVES_GENERATED */ sel->tess_turns_off_ngg)) { sel->gs_copy_shader = si_generate_gs_copy_shader(sscreen, compiler, sel, debug); if (!sel->gs_copy_shader) { fprintf(stderr, "radeonsi: can't create GS copy shader\n"); return; } si_shader_vs(sscreen, sel->gs_copy_shader, sel); } /* Serialize NIR to save memory. Monolithic shader variants * have to deserialize NIR before compilation. */ if (sel->nir) { struct blob blob; size_t size; blob_init(&blob); /* true = remove optional debugging data to increase * the likehood of getting more shader cache hits. * It also drops variable names, so we'll save more memory. */ nir_serialize(&blob, sel->nir, true); blob_finish_get_buffer(&blob, &sel->nir_binary, &size); sel->nir_size = size; } /* Compile the main shader part for use with a prolog and/or epilog. * If this fails, the driver will try to compile a monolithic shader * on demand. */ if (!sscreen->use_monolithic_shaders) { struct si_shader *shader = CALLOC_STRUCT(si_shader); unsigned char ir_sha1_cache_key[20]; if (!shader) { fprintf(stderr, "radeonsi: can't allocate a main shader part\n"); return; } /* We can leave the fence signaled because use of the default * main part is guarded by the selector's ready fence. */ util_queue_fence_init(&shader->ready); shader->selector = sel; shader->is_monolithic = false; si_parse_next_shader_property(&sel->info, sel->so.num_outputs != 0, &shader->key); if (sel->info.stage <= MESA_SHADER_GEOMETRY && sscreen->use_ngg && (!sel->so.num_outputs || sscreen->use_ngg_streamout) && ((sel->info.stage == MESA_SHADER_VERTEX && !shader->key.ge.as_ls) || sel->info.stage == MESA_SHADER_TESS_EVAL || sel->info.stage == MESA_SHADER_GEOMETRY)) shader->key.ge.as_ngg = 1; shader->wave_size = si_get_shader_wave_size(shader); if (sel->nir) { if (sel->info.stage <= MESA_SHADER_GEOMETRY) si_get_ir_cache_key(sel, shader->key.ge.as_ngg, shader->key.ge.as_es, ir_sha1_cache_key); else si_get_ir_cache_key(sel, false, false, ir_sha1_cache_key); } /* Try to load the shader from the shader cache. */ simple_mtx_lock(&sscreen->shader_cache_mutex); if (si_shader_cache_load_shader(sscreen, ir_sha1_cache_key, shader)) { simple_mtx_unlock(&sscreen->shader_cache_mutex); si_shader_dump_stats_for_shader_db(sscreen, shader, debug); } else { simple_mtx_unlock(&sscreen->shader_cache_mutex); /* Compile the shader if it hasn't been loaded from the cache. */ if (!si_compile_shader(sscreen, compiler, shader, debug)) { FREE(shader); fprintf(stderr, "radeonsi: can't compile a main shader part\n"); return; } simple_mtx_lock(&sscreen->shader_cache_mutex); si_shader_cache_insert_shader(sscreen, ir_sha1_cache_key, shader, true); simple_mtx_unlock(&sscreen->shader_cache_mutex); } *si_get_main_shader_part(sel, &shader->key) = shader; /* Unset "outputs_written" flags for outputs converted to * DEFAULT_VAL, so that later inter-shader optimizations don't * try to eliminate outputs that don't exist in the final * shader. * * This is only done if non-monolithic shaders are enabled. */ if ((sel->info.stage == MESA_SHADER_VERTEX || sel->info.stage == MESA_SHADER_TESS_EVAL || sel->info.stage == MESA_SHADER_GEOMETRY) && !shader->key.ge.as_ls && !shader->key.ge.as_es) { unsigned i; for (i = 0; i < sel->info.num_outputs; i++) { unsigned semantic = sel->info.output_semantic[i]; unsigned ps_input_cntl = shader->info.vs_output_ps_input_cntl[semantic]; /* OFFSET=0x20 means DEFAULT_VAL, which means VS doesn't export it. */ if (G_028644_OFFSET(ps_input_cntl) != 0x20) continue; unsigned id; /* Remove the output from the mask. */ if ((semantic <= VARYING_SLOT_VAR31 || semantic >= VARYING_SLOT_VAR0_16BIT) && semantic != VARYING_SLOT_POS && semantic != VARYING_SLOT_PSIZ && semantic != VARYING_SLOT_CLIP_VERTEX && semantic != VARYING_SLOT_EDGE) { id = si_shader_io_get_unique_index(semantic, true); sel->outputs_written_before_ps &= ~(1ull << id); } } } } /* Free NIR. We only keep serialized NIR after this point. */ if (sel->nir) { ralloc_free(sel->nir); sel->nir = NULL; } } void si_schedule_initial_compile(struct si_context *sctx, gl_shader_stage stage, struct util_queue_fence *ready_fence, struct si_compiler_ctx_state *compiler_ctx_state, void *job, util_queue_execute_func execute) { util_queue_fence_init(ready_fence); struct util_async_debug_callback async_debug; bool debug = (sctx->debug.debug_message && !sctx->debug.async) || sctx->is_debug || si_can_dump_shader(sctx->screen, stage); if (debug) { u_async_debug_init(&async_debug); compiler_ctx_state->debug = async_debug.base; } util_queue_add_job(&sctx->screen->shader_compiler_queue, job, ready_fence, execute, NULL, 0); if (debug) { util_queue_fence_wait(ready_fence); u_async_debug_drain(&async_debug, &sctx->debug); u_async_debug_cleanup(&async_debug); } if (sctx->screen->options.sync_compile) util_queue_fence_wait(ready_fence); } /* Return descriptor slot usage masks from the given shader info. */ void si_get_active_slot_masks(const struct si_shader_info *info, uint64_t *const_and_shader_buffers, uint64_t *samplers_and_images) { unsigned start, num_shaderbufs, num_constbufs, num_images, num_msaa_images, num_samplers; num_shaderbufs = info->base.num_ssbos; num_constbufs = info->base.num_ubos; /* two 8-byte images share one 16-byte slot */ num_images = align(info->base.num_images, 2); num_msaa_images = align(util_last_bit(info->base.msaa_images), 2); num_samplers = BITSET_LAST_BIT(info->base.textures_used); /* The layout is: sb[last] ... sb[0], cb[0] ... cb[last] */ start = si_get_shaderbuf_slot(num_shaderbufs - 1); *const_and_shader_buffers = u_bit_consecutive64(start, num_shaderbufs + num_constbufs); /* The layout is: * - fmask[last] ... fmask[0] go to [15-last .. 15] * - image[last] ... image[0] go to [31-last .. 31] * - sampler[0] ... sampler[last] go to [32 .. 32+last*2] * * FMASKs for images are placed separately, because MSAA images are rare, * and so we can benefit from a better cache hit rate if we keep image * descriptors together. */ if (num_msaa_images) num_images = SI_NUM_IMAGES + num_msaa_images; /* add FMASK descriptors */ start = si_get_image_slot(num_images - 1) / 2; *samplers_and_images = u_bit_consecutive64(start, num_images / 2 + num_samplers); } static void *si_create_shader_selector(struct pipe_context *ctx, const struct pipe_shader_state *state) { struct si_screen *sscreen = (struct si_screen *)ctx->screen; struct si_context *sctx = (struct si_context *)ctx; struct si_shader_selector *sel = CALLOC_STRUCT(si_shader_selector); int i; if (!sel) return NULL; sel->screen = sscreen; sel->compiler_ctx_state.debug = sctx->debug; sel->compiler_ctx_state.is_debug_context = sctx->is_debug; sel->so = state->stream_output; if (state->type == PIPE_SHADER_IR_TGSI) { sel->nir = tgsi_to_nir(state->tokens, ctx->screen, true); } else { assert(state->type == PIPE_SHADER_IR_NIR); sel->nir = (nir_shader*)state->ir.nir; } si_nir_scan_shader(sel->nir, &sel->info); const enum pipe_shader_type type = pipe_shader_type_from_mesa(sel->info.stage); sel->pipe_shader_type = type; sel->const_and_shader_buf_descriptors_index = si_const_and_shader_buffer_descriptors_idx(type); sel->sampler_and_images_descriptors_index = si_sampler_and_image_descriptors_idx(type); p_atomic_inc(&sscreen->num_shaders_created); si_get_active_slot_masks(&sel->info, &sel->active_const_and_shader_buffers, &sel->active_samplers_and_images); /* Record which streamout buffers are enabled. */ for (unsigned i = 0; i < sel->so.num_outputs; i++) { sel->enabled_streamout_buffer_mask |= (1 << sel->so.output[i].output_buffer) << (sel->so.output[i].stream * 4); } sel->num_vs_inputs = sel->info.stage == MESA_SHADER_VERTEX && !sel->info.base.vs.blit_sgprs_amd ? sel->info.num_inputs : 0; unsigned num_vbos_in_sgprs = si_num_vbos_in_user_sgprs_inline(sscreen->info.chip_class); sel->num_vbos_in_user_sgprs = MIN2(sel->num_vs_inputs, num_vbos_in_sgprs); /* The prolog is a no-op if there are no inputs. */ sel->vs_needs_prolog = sel->info.stage == MESA_SHADER_VERTEX && sel->info.num_inputs && !sel->info.base.vs.blit_sgprs_amd; if (sel->info.stage == MESA_SHADER_VERTEX || sel->info.stage == MESA_SHADER_TESS_CTRL || sel->info.stage == MESA_SHADER_TESS_EVAL || sel->info.stage == MESA_SHADER_GEOMETRY) { if (sel->info.stage == MESA_SHADER_TESS_CTRL) { /* Always reserve space for these. */ sel->patch_outputs_written |= (1ull << si_shader_io_get_unique_index_patch(VARYING_SLOT_TESS_LEVEL_INNER)) | (1ull << si_shader_io_get_unique_index_patch(VARYING_SLOT_TESS_LEVEL_OUTER)); } for (i = 0; i < sel->info.num_outputs; i++) { unsigned semantic = sel->info.output_semantic[i]; if (semantic == VARYING_SLOT_TESS_LEVEL_INNER || semantic == VARYING_SLOT_TESS_LEVEL_OUTER || (semantic >= VARYING_SLOT_PATCH0 && semantic < VARYING_SLOT_TESS_MAX)) { sel->patch_outputs_written |= 1ull << si_shader_io_get_unique_index_patch(semantic); } else if ((semantic <= VARYING_SLOT_VAR31 || semantic >= VARYING_SLOT_VAR0_16BIT) && semantic != VARYING_SLOT_EDGE) { sel->outputs_written |= 1ull << si_shader_io_get_unique_index(semantic, false); /* Ignore outputs that are not passed from VS to PS. */ if (semantic != VARYING_SLOT_POS && semantic != VARYING_SLOT_PSIZ && semantic != VARYING_SLOT_CLIP_VERTEX) { sel->outputs_written_before_ps |= 1ull << si_shader_io_get_unique_index(semantic, true); } } } } switch (sel->info.stage) { case MESA_SHADER_GEOMETRY: /* Only possibilities: POINTS, LINE_STRIP, TRIANGLES */ sel->rast_prim = (enum pipe_prim_type)sel->info.base.gs.output_primitive; if (util_rast_prim_is_triangles(sel->rast_prim)) sel->rast_prim = PIPE_PRIM_TRIANGLES; sel->gsvs_vertex_size = sel->info.num_outputs * 16; sel->max_gsvs_emit_size = sel->gsvs_vertex_size * sel->info.base.gs.vertices_out; sel->gs_input_verts_per_prim = u_vertices_per_prim((enum pipe_prim_type)sel->info.base.gs.input_primitive); /* EN_MAX_VERT_OUT_PER_GS_INSTANCE does not work with tesselation so * we can't split workgroups. Disable ngg if any of the following conditions is true: * - num_invocations * gs.vertices_out > 256 * - LDS usage is too high */ sel->tess_turns_off_ngg = sscreen->info.chip_class >= GFX10 && (sel->info.base.gs.invocations * sel->info.base.gs.vertices_out > 256 || sel->info.base.gs.invocations * sel->info.base.gs.vertices_out * (sel->info.num_outputs * 4 + 1) > 6500 /* max dw per GS primitive */); break; case MESA_SHADER_VERTEX: case MESA_SHADER_TESS_CTRL: case MESA_SHADER_TESS_EVAL: sel->esgs_itemsize = util_last_bit64(sel->outputs_written) * 16; sel->lshs_vertex_stride = sel->esgs_itemsize; /* Add 1 dword to reduce LDS bank conflicts, so that each vertex * will start on a different bank. (except for the maximum 32*16). */ if (sel->lshs_vertex_stride < 32 * 16) sel->lshs_vertex_stride += 4; /* For the ESGS ring in LDS, add 1 dword to reduce LDS bank * conflicts, i.e. each vertex will start at a different bank. */ if (sctx->chip_class >= GFX9) sel->esgs_itemsize += 4; assert(((sel->esgs_itemsize / 4) & C_028AAC_ITEMSIZE) == 0); sel->tcs_vgpr_only_inputs = ~sel->info.base.tess.tcs_cross_invocation_inputs_read & ~sel->info.base.inputs_read_indirectly & sel->info.base.inputs_read; /* Only for TES: */ if (sel->info.stage == MESA_SHADER_TESS_EVAL) { if (sel->info.base.tess.point_mode) sel->rast_prim = PIPE_PRIM_POINTS; else if (sel->info.base.tess.primitive_mode == GL_LINES) sel->rast_prim = PIPE_PRIM_LINE_STRIP; else sel->rast_prim = PIPE_PRIM_TRIANGLES; } else { sel->rast_prim = PIPE_PRIM_TRIANGLES; } break; case MESA_SHADER_FRAGMENT: for (i = 0; i < sel->info.num_inputs; i++) { unsigned semantic = sel->info.input[i].semantic; if ((semantic <= VARYING_SLOT_VAR31 || semantic >= VARYING_SLOT_VAR0_16BIT) && semantic != VARYING_SLOT_PNTC) { sel->inputs_read |= 1ull << si_shader_io_get_unique_index(semantic, true); } } for (i = 0; i < 8; i++) if (sel->info.colors_written & (1 << i)) sel->colors_written_4bit |= 0xf << (4 * i); for (i = 0; i < sel->info.num_inputs; i++) { if (sel->info.input[i].semantic == VARYING_SLOT_COL0) sel->color_attr_index[0] = i; else if (sel->info.input[i].semantic == VARYING_SLOT_COL1) sel->color_attr_index[1] = i; } break; default:; } bool ngg_culling_allowed = sscreen->info.chip_class >= GFX10 && sscreen->use_ngg_culling && sel->info.writes_position && !sel->info.writes_viewport_index && /* cull only against viewport 0 */ !sel->info.base.writes_memory && /* NGG GS supports culling with streamout because it culls after streamout. */ (sel->info.stage == MESA_SHADER_GEOMETRY || !sel->so.num_outputs) && (sel->info.stage != MESA_SHADER_GEOMETRY || sel->info.num_stream_output_components[0]) && (sel->info.stage != MESA_SHADER_VERTEX || (!sel->info.base.vs.blit_sgprs_amd && !sel->info.base.vs.window_space_position)); sel->ngg_cull_vert_threshold = UINT_MAX; /* disabled (changed below) */ if (ngg_culling_allowed) { if (sel->info.stage == MESA_SHADER_VERTEX) { if (sscreen->debug_flags & DBG(ALWAYS_NGG_CULLING_ALL)) sel->ngg_cull_vert_threshold = 0; /* always enabled */ else sel->ngg_cull_vert_threshold = 128; } else if (sel->info.stage == MESA_SHADER_TESS_EVAL || sel->info.stage == MESA_SHADER_GEOMETRY) { if (sel->rast_prim != PIPE_PRIM_POINTS) sel->ngg_cull_vert_threshold = 0; /* always enabled */ } } sel->clipdist_mask = sel->info.writes_clipvertex ? SIX_BITS : u_bit_consecutive(0, sel->info.base.clip_distance_array_size); sel->culldist_mask = u_bit_consecutive(0, sel->info.base.cull_distance_array_size) << sel->info.base.clip_distance_array_size; /* DB_SHADER_CONTROL */ sel->db_shader_control = S_02880C_Z_EXPORT_ENABLE(sel->info.writes_z) | S_02880C_STENCIL_TEST_VAL_EXPORT_ENABLE(sel->info.writes_stencil) | S_02880C_MASK_EXPORT_ENABLE(sel->info.writes_samplemask) | S_02880C_KILL_ENABLE(sel->info.base.fs.uses_discard); if (sel->info.stage == MESA_SHADER_FRAGMENT) { switch (sel->info.base.fs.depth_layout) { case FRAG_DEPTH_LAYOUT_GREATER: sel->db_shader_control |= S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_GREATER_THAN_Z); break; case FRAG_DEPTH_LAYOUT_LESS: sel->db_shader_control |= S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_LESS_THAN_Z); break; default:; } /* Z_ORDER, EXEC_ON_HIER_FAIL and EXEC_ON_NOOP should be set as following: * * | early Z/S | writes_mem | allow_ReZ? | Z_ORDER | EXEC_ON_HIER_FAIL | EXEC_ON_NOOP * --|-----------|------------|------------|--------------------|-------------------|------------- * 1a| false | false | true | EarlyZ_Then_ReZ | 0 | 0 * 1b| false | false | false | EarlyZ_Then_LateZ | 0 | 0 * 2 | false | true | n/a | LateZ | 1 | 0 * 3 | true | false | n/a | EarlyZ_Then_LateZ | 0 | 0 * 4 | true | true | n/a | EarlyZ_Then_LateZ | 0 | 1 * * In cases 3 and 4, HW will force Z_ORDER to EarlyZ regardless of what's set in the register. * In case 2, NOOP_CULL is a don't care field. In case 2, 3 and 4, ReZ doesn't make sense. * * Don't use ReZ without profiling !!! * * ReZ decreases performance by 15% in DiRT: Showdown on Ultra settings, which has pretty complex * shaders. */ if (sel->info.base.fs.early_fragment_tests) { /* Cases 3, 4. */ sel->db_shader_control |= S_02880C_DEPTH_BEFORE_SHADER(1) | S_02880C_Z_ORDER(V_02880C_EARLY_Z_THEN_LATE_Z) | S_02880C_EXEC_ON_NOOP(sel->info.base.writes_memory); } else if (sel->info.base.writes_memory) { /* Case 2. */ sel->db_shader_control |= S_02880C_Z_ORDER(V_02880C_LATE_Z) | S_02880C_EXEC_ON_HIER_FAIL(1); } else { /* Case 1. */ sel->db_shader_control |= S_02880C_Z_ORDER(V_02880C_EARLY_Z_THEN_LATE_Z); } if (sel->info.base.fs.post_depth_coverage) sel->db_shader_control |= S_02880C_PRE_SHADER_DEPTH_COVERAGE_ENABLE(1); } (void)simple_mtx_init(&sel->mutex, mtx_plain); si_schedule_initial_compile(sctx, sel->info.stage, &sel->ready, &sel->compiler_ctx_state, sel, si_init_shader_selector_async); return sel; } static void *si_create_shader(struct pipe_context *ctx, const struct pipe_shader_state *state) { struct si_context *sctx = (struct si_context *)ctx; struct si_screen *sscreen = (struct si_screen *)ctx->screen; bool cache_hit; struct si_shader_selector *sel = (struct si_shader_selector *)util_live_shader_cache_get( ctx, &sscreen->live_shader_cache, state, &cache_hit); if (sel && cache_hit && sctx->debug.debug_message) { if (sel->main_shader_part) si_shader_dump_stats_for_shader_db(sscreen, sel->main_shader_part, &sctx->debug); if (sel->main_shader_part_ls) si_shader_dump_stats_for_shader_db(sscreen, sel->main_shader_part_ls, &sctx->debug); if (sel->main_shader_part_es) si_shader_dump_stats_for_shader_db(sscreen, sel->main_shader_part_es, &sctx->debug); if (sel->main_shader_part_ngg) si_shader_dump_stats_for_shader_db(sscreen, sel->main_shader_part_ngg, &sctx->debug); if (sel->main_shader_part_ngg_es) si_shader_dump_stats_for_shader_db(sscreen, sel->main_shader_part_ngg_es, &sctx->debug); } return sel; } static void si_update_streamout_state(struct si_context *sctx) { struct si_shader_selector *shader_with_so = si_get_vs(sctx)->cso; if (!shader_with_so) return; sctx->streamout.enabled_stream_buffers_mask = shader_with_so->enabled_streamout_buffer_mask; sctx->streamout.stride_in_dw = shader_with_so->so.stride; } static void si_update_clip_regs(struct si_context *sctx, struct si_shader_selector *old_hw_vs, struct si_shader *old_hw_vs_variant, struct si_shader_selector *next_hw_vs, struct si_shader *next_hw_vs_variant) { if (next_hw_vs && (!old_hw_vs || (old_hw_vs->info.stage == MESA_SHADER_VERTEX && old_hw_vs->info.base.vs.window_space_position) != (next_hw_vs->info.stage == MESA_SHADER_VERTEX && next_hw_vs->info.base.vs.window_space_position) || old_hw_vs->clipdist_mask != next_hw_vs->clipdist_mask || old_hw_vs->culldist_mask != next_hw_vs->culldist_mask || !old_hw_vs_variant || !next_hw_vs_variant || old_hw_vs_variant->pa_cl_vs_out_cntl != next_hw_vs_variant->pa_cl_vs_out_cntl)) si_mark_atom_dirty(sctx, &sctx->atoms.s.clip_regs); } static void si_update_rasterized_prim(struct si_context *sctx) { enum pipe_prim_type rast_prim; if (sctx->shader.gs.cso) { /* Only possibilities: POINTS, LINE_STRIP, TRIANGLES */ rast_prim = sctx->shader.gs.cso->rast_prim; } else if (sctx->shader.tes.cso) { /* Only possibilities: POINTS, LINE_STRIP, TRIANGLES */ rast_prim = sctx->shader.tes.cso->rast_prim; } else { /* Determined by draw calls. */ return; } if (rast_prim != sctx->current_rast_prim) { if (util_prim_is_points_or_lines(sctx->current_rast_prim) != util_prim_is_points_or_lines(rast_prim)) si_mark_atom_dirty(sctx, &sctx->atoms.s.guardband); sctx->current_rast_prim = rast_prim; } } static void si_update_common_shader_state(struct si_context *sctx, struct si_shader_selector *sel, enum pipe_shader_type type) { si_set_active_descriptors_for_shader(sctx, sel); sctx->uses_bindless_samplers = si_shader_uses_bindless_samplers(sctx->shader.vs.cso) || si_shader_uses_bindless_samplers(sctx->shader.gs.cso) || si_shader_uses_bindless_samplers(sctx->shader.ps.cso) || si_shader_uses_bindless_samplers(sctx->shader.tcs.cso) || si_shader_uses_bindless_samplers(sctx->shader.tes.cso); sctx->uses_bindless_images = si_shader_uses_bindless_images(sctx->shader.vs.cso) || si_shader_uses_bindless_images(sctx->shader.gs.cso) || si_shader_uses_bindless_images(sctx->shader.ps.cso) || si_shader_uses_bindless_images(sctx->shader.tcs.cso) || si_shader_uses_bindless_images(sctx->shader.tes.cso); if (type == PIPE_SHADER_VERTEX || type == PIPE_SHADER_TESS_EVAL || type == PIPE_SHADER_GEOMETRY) sctx->ngg_culling = 0; /* this will be enabled on the first draw if needed */ si_invalidate_inlinable_uniforms(sctx, type); sctx->do_update_shaders = true; } static void si_bind_vs_shader(struct pipe_context *ctx, void *state) { struct si_context *sctx = (struct si_context *)ctx; struct si_shader_selector *old_hw_vs = si_get_vs(sctx)->cso; struct si_shader *old_hw_vs_variant = si_get_vs(sctx)->current; struct si_shader_selector *sel = (struct si_shader_selector*)state; if (sctx->shader.vs.cso == sel) return; sctx->shader.vs.cso = sel; sctx->shader.vs.current = sel ? sel->first_variant : NULL; sctx->num_vs_blit_sgprs = sel ? sel->info.base.vs.blit_sgprs_amd : 0; sctx->vs_uses_draw_id = sel ? sel->info.uses_drawid : false; sctx->fixed_func_tcs_shader.key.ge.mono.u.ff_tcs_inputs_to_copy = sel ? sel->outputs_written : 0; if (si_update_ngg(sctx)) si_shader_change_notify(sctx); si_update_common_shader_state(sctx, sel, PIPE_SHADER_VERTEX); si_select_draw_vbo(sctx); si_update_vs_viewport_state(sctx); si_update_streamout_state(sctx); si_update_clip_regs(sctx, old_hw_vs, old_hw_vs_variant, si_get_vs(sctx)->cso, si_get_vs(sctx)->current); si_update_rasterized_prim(sctx); si_vs_key_update_inputs(sctx); } static void si_update_tess_uses_prim_id(struct si_context *sctx) { sctx->ia_multi_vgt_param_key.u.tess_uses_prim_id = (sctx->shader.tes.cso && sctx->shader.tes.cso->info.uses_primid) || (sctx->shader.tcs.cso && sctx->shader.tcs.cso->info.uses_primid) || (sctx->shader.gs.cso && sctx->shader.gs.cso->info.uses_primid) || (sctx->shader.ps.cso && !sctx->shader.gs.cso && sctx->shader.ps.cso->info.uses_primid); } bool si_update_ngg(struct si_context *sctx) { if (!sctx->screen->use_ngg) { assert(!sctx->ngg); return false; } bool new_ngg = true; if (sctx->shader.gs.cso && sctx->shader.tes.cso && sctx->shader.gs.cso->tess_turns_off_ngg) { new_ngg = false; } else if (!sctx->screen->use_ngg_streamout) { struct si_shader_selector *last = si_get_vs(sctx)->cso; if ((last && last->so.num_outputs) || sctx->streamout.prims_gen_query_enabled) new_ngg = false; } if (new_ngg != sctx->ngg) { /* Transitioning from NGG to legacy GS requires VGT_FLUSH on Navi10-14. * VGT_FLUSH is also emitted at the beginning of IBs when legacy GS ring * pointers are set. */ if (sctx->screen->info.has_vgt_flush_ngg_legacy_bug && !new_ngg) { sctx->flags |= SI_CONTEXT_VGT_FLUSH; if (sctx->chip_class == GFX10) { /* Workaround for https://gitlab.freedesktop.org/mesa/mesa/-/issues/2941 */ si_flush_gfx_cs(sctx, RADEON_FLUSH_ASYNC_START_NEXT_GFX_IB_NOW, NULL); } } sctx->ngg = new_ngg; sctx->last_gs_out_prim = -1; /* reset this so that it gets updated */ si_select_draw_vbo(sctx); return true; } return false; } static void si_bind_gs_shader(struct pipe_context *ctx, void *state) { struct si_context *sctx = (struct si_context *)ctx; struct si_shader_selector *old_hw_vs = si_get_vs(sctx)->cso; struct si_shader *old_hw_vs_variant = si_get_vs(sctx)->current; struct si_shader_selector *sel = (struct si_shader_selector*)state; bool enable_changed = !!sctx->shader.gs.cso != !!sel; bool ngg_changed; if (sctx->shader.gs.cso == sel) return; sctx->shader.gs.cso = sel; sctx->shader.gs.current = sel ? sel->first_variant : NULL; sctx->ia_multi_vgt_param_key.u.uses_gs = sel != NULL; si_update_common_shader_state(sctx, sel, PIPE_SHADER_GEOMETRY); si_select_draw_vbo(sctx); sctx->last_gs_out_prim = -1; /* reset this so that it gets updated */ ngg_changed = si_update_ngg(sctx); if (ngg_changed || enable_changed) si_shader_change_notify(sctx); if (enable_changed) { if (sctx->ia_multi_vgt_param_key.u.uses_tess) si_update_tess_uses_prim_id(sctx); } si_update_vs_viewport_state(sctx); si_update_streamout_state(sctx); si_update_clip_regs(sctx, old_hw_vs, old_hw_vs_variant, si_get_vs(sctx)->cso, si_get_vs(sctx)->current); si_update_rasterized_prim(sctx); } static void si_bind_tcs_shader(struct pipe_context *ctx, void *state) { struct si_context *sctx = (struct si_context *)ctx; struct si_shader_selector *sel = (struct si_shader_selector*)state; bool enable_changed = !!sctx->shader.tcs.cso != !!sel; if (sctx->shader.tcs.cso == sel) return; sctx->shader.tcs.cso = sel; sctx->shader.tcs.current = sel ? sel->first_variant : NULL; sctx->shader.tcs.key.ge.part.tcs.epilog.invoc0_tess_factors_are_def = sel ? sel->info.tessfactors_are_def_in_all_invocs : 0; si_update_tess_uses_prim_id(sctx); si_update_common_shader_state(sctx, sel, PIPE_SHADER_TESS_CTRL); if (enable_changed) sctx->last_tcs = NULL; /* invalidate derived tess state */ } static void si_bind_tes_shader(struct pipe_context *ctx, void *state) { struct si_context *sctx = (struct si_context *)ctx; struct si_shader_selector *old_hw_vs = si_get_vs(sctx)->cso; struct si_shader *old_hw_vs_variant = si_get_vs(sctx)->current; struct si_shader_selector *sel = (struct si_shader_selector*)state; bool enable_changed = !!sctx->shader.tes.cso != !!sel; if (sctx->shader.tes.cso == sel) return; sctx->shader.tes.cso = sel; sctx->shader.tes.current = sel ? sel->first_variant : NULL; sctx->ia_multi_vgt_param_key.u.uses_tess = sel != NULL; si_update_tess_uses_prim_id(sctx); sctx->shader.tcs.key.ge.part.tcs.epilog.prim_mode = sctx->fixed_func_tcs_shader.key.ge.part.tcs.epilog.prim_mode = sel ? sel->info.base.tess.primitive_mode : 0; sctx->shader.tcs.key.ge.part.tcs.epilog.tes_reads_tess_factors = sctx->fixed_func_tcs_shader.key.ge.part.tcs.epilog.tes_reads_tess_factors = sel ? sel->info.reads_tess_factors : 0; si_update_common_shader_state(sctx, sel, PIPE_SHADER_TESS_EVAL); si_select_draw_vbo(sctx); sctx->last_gs_out_prim = -1; /* reset this so that it gets updated */ bool ngg_changed = si_update_ngg(sctx); if (ngg_changed || enable_changed) si_shader_change_notify(sctx); if (enable_changed) sctx->last_tes_sh_base = -1; /* invalidate derived tess state */ si_update_vs_viewport_state(sctx); si_update_streamout_state(sctx); si_update_clip_regs(sctx, old_hw_vs, old_hw_vs_variant, si_get_vs(sctx)->cso, si_get_vs(sctx)->current); si_update_rasterized_prim(sctx); } void si_update_ps_kill_enable(struct si_context *sctx) { if (!sctx->shader.ps.cso) return; unsigned db_shader_control = sctx->shader.ps.cso->db_shader_control | S_02880C_KILL_ENABLE(sctx->queued.named.dsa->alpha_func != PIPE_FUNC_ALWAYS); if (sctx->ps_db_shader_control != db_shader_control) { sctx->ps_db_shader_control = db_shader_control; si_mark_atom_dirty(sctx, &sctx->atoms.s.db_render_state); if (sctx->screen->dpbb_allowed) si_mark_atom_dirty(sctx, &sctx->atoms.s.dpbb_state); } } void si_update_vrs_flat_shading(struct si_context *sctx) { if (sctx->chip_class >= GFX10_3 && sctx->shader.ps.cso) { struct si_state_rasterizer *rs = sctx->queued.named.rasterizer; struct si_shader_info *info = &sctx->shader.ps.cso->info; bool allow_flat_shading = info->allow_flat_shading; if (allow_flat_shading && (rs->line_smooth || rs->poly_smooth || rs->poly_stipple_enable || (!rs->flatshade && info->uses_interp_color))) allow_flat_shading = false; if (sctx->allow_flat_shading != allow_flat_shading) { sctx->allow_flat_shading = allow_flat_shading; si_mark_atom_dirty(sctx, &sctx->atoms.s.db_render_state); } } } static void si_bind_ps_shader(struct pipe_context *ctx, void *state) { struct si_context *sctx = (struct si_context *)ctx; struct si_shader_selector *old_sel = sctx->shader.ps.cso; struct si_shader_selector *sel = (struct si_shader_selector*)state; /* skip if supplied shader is one already in use */ if (old_sel == sel) return; sctx->shader.ps.cso = sel; sctx->shader.ps.current = sel ? sel->first_variant : NULL; si_update_common_shader_state(sctx, sel, PIPE_SHADER_FRAGMENT); if (sel) { if (sctx->ia_multi_vgt_param_key.u.uses_tess) si_update_tess_uses_prim_id(sctx); if (!old_sel || old_sel->info.colors_written != sel->info.colors_written) si_mark_atom_dirty(sctx, &sctx->atoms.s.cb_render_state); if (sctx->screen->has_out_of_order_rast && (!old_sel || old_sel->info.base.writes_memory != sel->info.base.writes_memory || old_sel->info.base.fs.early_fragment_tests != sel->info.base.fs.early_fragment_tests)) si_mark_atom_dirty(sctx, &sctx->atoms.s.msaa_config); } si_update_ps_colorbuf0_slot(sctx); si_ps_key_update_framebuffer(sctx); si_ps_key_update_framebuffer_blend(sctx); si_ps_key_update_blend_rasterizer(sctx); si_ps_key_update_rasterizer(sctx); si_ps_key_update_dsa(sctx); si_ps_key_update_sample_shading(sctx); si_ps_key_update_framebuffer_rasterizer_sample_shading(sctx); si_update_ps_inputs_read_or_disabled(sctx); si_update_ps_kill_enable(sctx); si_update_vrs_flat_shading(sctx); } static void si_delete_shader(struct si_context *sctx, struct si_shader *shader) { if (shader->is_optimized) { util_queue_drop_job(&sctx->screen->shader_compiler_queue_low_priority, &shader->ready); } util_queue_fence_destroy(&shader->ready); /* If destroyed shaders were not unbound, the next compiled * shader variant could get the same pointer address and so * binding it to the same shader stage would be considered * a no-op, causing random behavior. */ int state_index = -1; switch (shader->selector->info.stage) { case MESA_SHADER_VERTEX: if (shader->key.ge.as_ls) { if (sctx->chip_class <= GFX8) state_index = SI_STATE_IDX(ls); } else if (shader->key.ge.as_es) { if (sctx->chip_class <= GFX8) state_index = SI_STATE_IDX(es); } else if (shader->key.ge.as_ngg) { state_index = SI_STATE_IDX(gs); } else { state_index = SI_STATE_IDX(vs); } break; case MESA_SHADER_TESS_CTRL: state_index = SI_STATE_IDX(hs); break; case MESA_SHADER_TESS_EVAL: if (shader->key.ge.as_es) { if (sctx->chip_class <= GFX8) state_index = SI_STATE_IDX(es); } else if (shader->key.ge.as_ngg) { state_index = SI_STATE_IDX(gs); } else { state_index = SI_STATE_IDX(vs); } break; case MESA_SHADER_GEOMETRY: if (shader->is_gs_copy_shader) state_index = SI_STATE_IDX(vs); else state_index = SI_STATE_IDX(gs); break; case MESA_SHADER_FRAGMENT: state_index = SI_STATE_IDX(ps); break; default:; } si_shader_selector_reference(sctx, &shader->previous_stage_sel, NULL); si_shader_destroy(shader); si_pm4_free_state(sctx, &shader->pm4, state_index); } static void si_destroy_shader_selector(struct pipe_context *ctx, void *cso) { struct si_context *sctx = (struct si_context *)ctx; struct si_shader_selector *sel = (struct si_shader_selector *)cso; struct si_shader *p = sel->first_variant, *c; enum pipe_shader_type type = pipe_shader_type_from_mesa(sel->info.stage); util_queue_drop_job(&sctx->screen->shader_compiler_queue, &sel->ready); if (sctx->shaders[type].cso == sel) { sctx->shaders[type].cso = NULL; sctx->shaders[type].current = NULL; } while (p) { c = p->next_variant; si_delete_shader(sctx, p); p = c; } if (sel->main_shader_part) si_delete_shader(sctx, sel->main_shader_part); if (sel->main_shader_part_ls) si_delete_shader(sctx, sel->main_shader_part_ls); if (sel->main_shader_part_es) si_delete_shader(sctx, sel->main_shader_part_es); if (sel->main_shader_part_ngg) si_delete_shader(sctx, sel->main_shader_part_ngg); if (sel->gs_copy_shader) si_delete_shader(sctx, sel->gs_copy_shader); util_queue_fence_destroy(&sel->ready); simple_mtx_destroy(&sel->mutex); ralloc_free(sel->nir); free(sel->nir_binary); free(sel); } static void si_delete_shader_selector(struct pipe_context *ctx, void *state) { struct si_context *sctx = (struct si_context *)ctx; struct si_shader_selector *sel = (struct si_shader_selector *)state; si_shader_selector_reference(sctx, &sel, NULL); } /** * Writing CONFIG or UCONFIG VGT registers requires VGT_FLUSH before that. */ static void si_cs_preamble_add_vgt_flush(struct si_context *sctx) { /* We shouldn't get here if registers are shadowed. */ assert(!sctx->shadowed_regs); if (sctx->cs_preamble_has_vgt_flush) return; /* Done by Vulkan before VGT_FLUSH. */ si_pm4_cmd_add(sctx->cs_preamble_state, PKT3(PKT3_EVENT_WRITE, 0, 0)); si_pm4_cmd_add(sctx->cs_preamble_state, EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4)); /* VGT_FLUSH is required even if VGT is idle. It resets VGT pointers. */ si_pm4_cmd_add(sctx->cs_preamble_state, PKT3(PKT3_EVENT_WRITE, 0, 0)); si_pm4_cmd_add(sctx->cs_preamble_state, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0)); sctx->cs_preamble_has_vgt_flush = true; } /** * Writing CONFIG or UCONFIG VGT registers requires VGT_FLUSH before that. */ static void si_emit_vgt_flush(struct radeon_cmdbuf *cs) { radeon_begin(cs); /* This is required before VGT_FLUSH. */ radeon_emit(PKT3(PKT3_EVENT_WRITE, 0, 0)); radeon_emit(EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4)); /* VGT_FLUSH is required even if VGT is idle. It resets VGT pointers. */ radeon_emit(PKT3(PKT3_EVENT_WRITE, 0, 0)); radeon_emit(EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0)); radeon_end(); } /* Initialize state related to ESGS / GSVS ring buffers */ bool si_update_gs_ring_buffers(struct si_context *sctx) { struct si_shader_selector *es = sctx->shader.tes.cso ? sctx->shader.tes.cso : sctx->shader.vs.cso; struct si_shader_selector *gs = sctx->shader.gs.cso; struct si_pm4_state *pm4; /* Chip constants. */ unsigned num_se = sctx->screen->info.max_se; unsigned wave_size = 64; unsigned max_gs_waves = 32 * num_se; /* max 32 per SE on GCN */ /* On GFX6-GFX7, the value comes from VGT_GS_VERTEX_REUSE = 16. * On GFX8+, the value comes from VGT_VERTEX_REUSE_BLOCK_CNTL = 30 (+2). */ unsigned gs_vertex_reuse = (sctx->chip_class >= GFX8 ? 32 : 16) * num_se; unsigned alignment = 256 * num_se; /* The maximum size is 63.999 MB per SE. */ unsigned max_size = ((unsigned)(63.999 * 1024 * 1024) & ~255) * num_se; /* Calculate the minimum size. */ unsigned min_esgs_ring_size = align(es->esgs_itemsize * gs_vertex_reuse * wave_size, alignment); /* These are recommended sizes, not minimum sizes. */ unsigned esgs_ring_size = max_gs_waves * 2 * wave_size * es->esgs_itemsize * gs->gs_input_verts_per_prim; unsigned gsvs_ring_size = max_gs_waves * 2 * wave_size * gs->max_gsvs_emit_size; min_esgs_ring_size = align(min_esgs_ring_size, alignment); esgs_ring_size = align(esgs_ring_size, alignment); gsvs_ring_size = align(gsvs_ring_size, alignment); esgs_ring_size = CLAMP(esgs_ring_size, min_esgs_ring_size, max_size); gsvs_ring_size = MIN2(gsvs_ring_size, max_size); /* Some rings don't have to be allocated if shaders don't use them. * (e.g. no varyings between ES and GS or GS and VS) * * GFX9 doesn't have the ESGS ring. */ bool update_esgs = sctx->chip_class <= GFX8 && esgs_ring_size && (!sctx->esgs_ring || sctx->esgs_ring->width0 < esgs_ring_size); bool update_gsvs = gsvs_ring_size && (!sctx->gsvs_ring || sctx->gsvs_ring->width0 < gsvs_ring_size); if (!update_esgs && !update_gsvs) return true; if (update_esgs) { pipe_resource_reference(&sctx->esgs_ring, NULL); sctx->esgs_ring = pipe_aligned_buffer_create(sctx->b.screen, SI_RESOURCE_FLAG_UNMAPPABLE | SI_RESOURCE_FLAG_DRIVER_INTERNAL, PIPE_USAGE_DEFAULT, esgs_ring_size, sctx->screen->info.pte_fragment_size); if (!sctx->esgs_ring) return false; } if (update_gsvs) { pipe_resource_reference(&sctx->gsvs_ring, NULL); sctx->gsvs_ring = pipe_aligned_buffer_create(sctx->b.screen, SI_RESOURCE_FLAG_UNMAPPABLE | SI_RESOURCE_FLAG_DRIVER_INTERNAL, PIPE_USAGE_DEFAULT, gsvs_ring_size, sctx->screen->info.pte_fragment_size); if (!sctx->gsvs_ring) return false; } /* Set ring bindings. */ if (sctx->esgs_ring) { assert(sctx->chip_class <= GFX8); si_set_ring_buffer(sctx, SI_ES_RING_ESGS, sctx->esgs_ring, 0, sctx->esgs_ring->width0, true, true, 4, 64, 0); si_set_ring_buffer(sctx, SI_GS_RING_ESGS, sctx->esgs_ring, 0, sctx->esgs_ring->width0, false, false, 0, 0, 0); } if (sctx->gsvs_ring) { si_set_ring_buffer(sctx, SI_RING_GSVS, sctx->gsvs_ring, 0, sctx->gsvs_ring->width0, false, false, 0, 0, 0); } if (sctx->shadowed_regs) { /* These registers will be shadowed, so set them only once. */ struct radeon_cmdbuf *cs = &sctx->gfx_cs; assert(sctx->chip_class >= GFX7); si_emit_vgt_flush(cs); radeon_begin(cs); /* Set the GS registers. */ if (sctx->esgs_ring) { assert(sctx->chip_class <= GFX8); radeon_set_uconfig_reg(R_030900_VGT_ESGS_RING_SIZE, sctx->esgs_ring->width0 / 256); } if (sctx->gsvs_ring) { radeon_set_uconfig_reg(R_030904_VGT_GSVS_RING_SIZE, sctx->gsvs_ring->width0 / 256); } radeon_end(); return true; } /* The codepath without register shadowing. */ /* Create the "cs_preamble_gs_rings" state. */ pm4 = CALLOC_STRUCT(si_pm4_state); if (!pm4) return false; if (sctx->chip_class >= GFX7) { if (sctx->esgs_ring) { assert(sctx->chip_class <= GFX8); si_pm4_set_reg(pm4, R_030900_VGT_ESGS_RING_SIZE, sctx->esgs_ring->width0 / 256); } if (sctx->gsvs_ring) si_pm4_set_reg(pm4, R_030904_VGT_GSVS_RING_SIZE, sctx->gsvs_ring->width0 / 256); } else { if (sctx->esgs_ring) si_pm4_set_reg(pm4, R_0088C8_VGT_ESGS_RING_SIZE, sctx->esgs_ring->width0 / 256); if (sctx->gsvs_ring) si_pm4_set_reg(pm4, R_0088CC_VGT_GSVS_RING_SIZE, sctx->gsvs_ring->width0 / 256); } /* Set the state. */ if (sctx->cs_preamble_gs_rings) si_pm4_free_state(sctx, sctx->cs_preamble_gs_rings, ~0); sctx->cs_preamble_gs_rings = pm4; si_cs_preamble_add_vgt_flush(sctx); /* Flush the context to re-emit both cs_preamble states. */ sctx->initial_gfx_cs_size = 0; /* force flush */ si_flush_gfx_cs(sctx, RADEON_FLUSH_ASYNC_START_NEXT_GFX_IB_NOW, NULL); return true; } static void si_shader_lock(struct si_shader *shader) { simple_mtx_lock(&shader->selector->mutex); if (shader->previous_stage_sel) { assert(shader->previous_stage_sel != shader->selector); simple_mtx_lock(&shader->previous_stage_sel->mutex); } } static void si_shader_unlock(struct si_shader *shader) { if (shader->previous_stage_sel) simple_mtx_unlock(&shader->previous_stage_sel->mutex); simple_mtx_unlock(&shader->selector->mutex); } /** * @returns 1 if \p sel has been updated to use a new scratch buffer * 0 if not * < 0 if there was a failure */ static int si_update_scratch_buffer(struct si_context *sctx, struct si_shader *shader) { uint64_t scratch_va = sctx->scratch_buffer->gpu_address; if (!shader) return 0; /* This shader doesn't need a scratch buffer */ if (shader->config.scratch_bytes_per_wave == 0) return 0; /* Prevent race conditions when updating: * - si_shader::scratch_bo * - si_shader::binary::code * - si_shader::previous_stage::binary::code. */ si_shader_lock(shader); /* This shader is already configured to use the current * scratch buffer. */ if (shader->scratch_bo == sctx->scratch_buffer) { si_shader_unlock(shader); return 0; } assert(sctx->scratch_buffer); /* Replace the shader bo with a new bo that has the relocs applied. */ if (!si_shader_binary_upload(sctx->screen, shader, scratch_va)) { si_shader_unlock(shader); return -1; } /* Update the shader state to use the new shader bo. */ si_shader_init_pm4_state(sctx->screen, shader); si_resource_reference(&shader->scratch_bo, sctx->scratch_buffer); si_shader_unlock(shader); return 1; } static struct si_shader *si_get_tcs_current(struct si_context *sctx) { if (!sctx->shader.tes.cso) return NULL; /* tessellation disabled */ return sctx->shader.tcs.cso ? sctx->shader.tcs.current : sctx->fixed_func_tcs_shader.current; } static bool si_update_scratch_relocs(struct si_context *sctx) { struct si_shader *tcs = si_get_tcs_current(sctx); int r; /* Update the shaders, so that they are using the latest scratch. * The scratch buffer may have been changed since these shaders were * last used, so we still need to try to update them, even if they * require scratch buffers smaller than the current size. */ r = si_update_scratch_buffer(sctx, sctx->shader.ps.current); if (r < 0) return false; if (r == 1) si_pm4_bind_state(sctx, ps, sctx->shader.ps.current); r = si_update_scratch_buffer(sctx, sctx->shader.gs.current); if (r < 0) return false; if (r == 1) si_pm4_bind_state(sctx, gs, sctx->shader.gs.current); r = si_update_scratch_buffer(sctx, tcs); if (r < 0) return false; if (r == 1) si_pm4_bind_state(sctx, hs, tcs); /* VS can be bound as LS, ES, or VS. */ r = si_update_scratch_buffer(sctx, sctx->shader.vs.current); if (r < 0) return false; if (r == 1) { if (sctx->shader.vs.current->key.ge.as_ls) si_pm4_bind_state(sctx, ls, sctx->shader.vs.current); else if (sctx->shader.vs.current->key.ge.as_es) si_pm4_bind_state(sctx, es, sctx->shader.vs.current); else if (sctx->shader.vs.current->key.ge.as_ngg) si_pm4_bind_state(sctx, gs, sctx->shader.vs.current); else si_pm4_bind_state(sctx, vs, sctx->shader.vs.current); } /* TES can be bound as ES or VS. */ r = si_update_scratch_buffer(sctx, sctx->shader.tes.current); if (r < 0) return false; if (r == 1) { if (sctx->shader.tes.current->key.ge.as_es) si_pm4_bind_state(sctx, es, sctx->shader.tes.current); else if (sctx->shader.tes.current->key.ge.as_ngg) si_pm4_bind_state(sctx, gs, sctx->shader.tes.current); else si_pm4_bind_state(sctx, vs, sctx->shader.tes.current); } return true; } bool si_update_spi_tmpring_size(struct si_context *sctx, unsigned bytes) { /* SPI_TMPRING_SIZE.WAVESIZE must be constant for each scratch buffer. * There are 2 cases to handle: * * - If the current needed size is less than the maximum seen size, * use the maximum seen size, so that WAVESIZE remains the same. * * - If the current needed size is greater than the maximum seen size, * the scratch buffer is reallocated, so we can increase WAVESIZE. * * Shaders that set SCRATCH_EN=0 don't allocate scratch space. * Otherwise, the number of waves that can use scratch is * SPI_TMPRING_SIZE.WAVES. */ sctx->max_seen_scratch_bytes_per_wave = MAX2(sctx->max_seen_scratch_bytes_per_wave, bytes); unsigned scratch_needed_size = sctx->max_seen_scratch_bytes_per_wave * sctx->scratch_waves; unsigned spi_tmpring_size; if (scratch_needed_size > 0) { if (!sctx->scratch_buffer || scratch_needed_size > sctx->scratch_buffer->b.b.width0) { /* Create a bigger scratch buffer */ si_resource_reference(&sctx->scratch_buffer, NULL); sctx->scratch_buffer = si_aligned_buffer_create( &sctx->screen->b, SI_RESOURCE_FLAG_UNMAPPABLE | SI_RESOURCE_FLAG_DRIVER_INTERNAL, PIPE_USAGE_DEFAULT, scratch_needed_size, sctx->screen->info.pte_fragment_size); if (!sctx->scratch_buffer) return false; si_context_add_resource_size(sctx, &sctx->scratch_buffer->b.b); } if (!si_update_scratch_relocs(sctx)) return false; } /* The LLVM shader backend should be reporting aligned scratch_sizes. */ assert((scratch_needed_size & ~0x3FF) == scratch_needed_size && "scratch size should already be aligned correctly."); spi_tmpring_size = S_0286E8_WAVES(sctx->scratch_waves) | S_0286E8_WAVESIZE(sctx->max_seen_scratch_bytes_per_wave >> 10); if (spi_tmpring_size != sctx->spi_tmpring_size) { sctx->spi_tmpring_size = spi_tmpring_size; si_mark_atom_dirty(sctx, &sctx->atoms.s.scratch_state); } return true; } void si_init_tess_factor_ring(struct si_context *sctx) { assert(!sctx->tess_rings); assert(((sctx->screen->tess_factor_ring_size / 4) & C_030938_SIZE) == 0); /* The address must be aligned to 2^19, because the shader only * receives the high 13 bits. */ sctx->tess_rings = pipe_aligned_buffer_create( sctx->b.screen, SI_RESOURCE_FLAG_32BIT | SI_RESOURCE_FLAG_DRIVER_INTERNAL, PIPE_USAGE_DEFAULT, sctx->screen->tess_offchip_ring_size + sctx->screen->tess_factor_ring_size, 1 << 19); if (!sctx->tess_rings) return; if (sctx->screen->info.has_tmz_support) { sctx->tess_rings_tmz = pipe_aligned_buffer_create( sctx->b.screen, PIPE_RESOURCE_FLAG_ENCRYPTED | SI_RESOURCE_FLAG_32BIT | SI_RESOURCE_FLAG_DRIVER_INTERNAL, PIPE_USAGE_DEFAULT, sctx->screen->tess_offchip_ring_size + sctx->screen->tess_factor_ring_size, 1 << 19); } uint64_t factor_va = si_resource(sctx->tess_rings)->gpu_address + sctx->screen->tess_offchip_ring_size; if (sctx->shadowed_regs) { /* These registers will be shadowed, so set them only once. */ /* TODO: tmz + shadowed_regs support */ struct radeon_cmdbuf *cs = &sctx->gfx_cs; assert(sctx->chip_class >= GFX7); radeon_add_to_buffer_list(sctx, &sctx->gfx_cs, si_resource(sctx->tess_rings), RADEON_USAGE_READWRITE | RADEON_PRIO_SHADER_RINGS); si_emit_vgt_flush(cs); /* Set tessellation registers. */ radeon_begin(cs); radeon_set_uconfig_reg(R_030938_VGT_TF_RING_SIZE, S_030938_SIZE(sctx->screen->tess_factor_ring_size / 4)); radeon_set_uconfig_reg(R_030940_VGT_TF_MEMORY_BASE, factor_va >> 8); if (sctx->chip_class >= GFX10) { radeon_set_uconfig_reg(R_030984_VGT_TF_MEMORY_BASE_HI_UMD, S_030984_BASE_HI(factor_va >> 40)); } else if (sctx->chip_class == GFX9) { radeon_set_uconfig_reg(R_030944_VGT_TF_MEMORY_BASE_HI, S_030944_BASE_HI(factor_va >> 40)); } radeon_set_uconfig_reg(R_03093C_VGT_HS_OFFCHIP_PARAM, sctx->screen->vgt_hs_offchip_param); radeon_end(); return; } /* The codepath without register shadowing. */ si_cs_preamble_add_vgt_flush(sctx); /* Append these registers to the init config state. */ if (sctx->chip_class >= GFX7) { si_pm4_set_reg(sctx->cs_preamble_state, R_030938_VGT_TF_RING_SIZE, S_030938_SIZE(sctx->screen->tess_factor_ring_size / 4)); si_pm4_set_reg(sctx->cs_preamble_state, R_030940_VGT_TF_MEMORY_BASE, factor_va >> 8); if (sctx->chip_class >= GFX10) si_pm4_set_reg(sctx->cs_preamble_state, R_030984_VGT_TF_MEMORY_BASE_HI_UMD, S_030984_BASE_HI(factor_va >> 40)); else if (sctx->chip_class == GFX9) si_pm4_set_reg(sctx->cs_preamble_state, R_030944_VGT_TF_MEMORY_BASE_HI, S_030944_BASE_HI(factor_va >> 40)); si_pm4_set_reg(sctx->cs_preamble_state, R_03093C_VGT_HS_OFFCHIP_PARAM, sctx->screen->vgt_hs_offchip_param); } else { struct si_pm4_state *pm4 = CALLOC_STRUCT(si_pm4_state); si_pm4_set_reg(pm4, R_008988_VGT_TF_RING_SIZE, S_008988_SIZE(sctx->screen->tess_factor_ring_size / 4)); si_pm4_set_reg(pm4, R_0089B8_VGT_TF_MEMORY_BASE, factor_va >> 8); si_pm4_set_reg(pm4, R_0089B0_VGT_HS_OFFCHIP_PARAM, sctx->screen->vgt_hs_offchip_param); sctx->cs_preamble_tess_rings = pm4; if (sctx->screen->info.has_tmz_support) { pm4 = CALLOC_STRUCT(si_pm4_state); uint64_t factor_va_tmz = si_resource(sctx->tess_rings_tmz)->gpu_address + sctx->screen->tess_offchip_ring_size; si_pm4_set_reg(pm4, R_008988_VGT_TF_RING_SIZE, S_008988_SIZE(sctx->screen->tess_factor_ring_size / 4)); si_pm4_set_reg(pm4, R_0089B8_VGT_TF_MEMORY_BASE, factor_va_tmz >> 8); si_pm4_set_reg(pm4, R_0089B0_VGT_HS_OFFCHIP_PARAM, sctx->screen->vgt_hs_offchip_param); sctx->cs_preamble_tess_rings_tmz = pm4; } } /* Flush the context to re-emit the cs_preamble state. * This is done only once in a lifetime of a context. */ sctx->initial_gfx_cs_size = 0; /* force flush */ si_flush_gfx_cs(sctx, RADEON_FLUSH_ASYNC_START_NEXT_GFX_IB_NOW, NULL); } struct si_pm4_state *si_build_vgt_shader_config(struct si_screen *screen, union si_vgt_stages_key key) { struct si_pm4_state *pm4 = CALLOC_STRUCT(si_pm4_state); uint32_t stages = 0; if (key.u.tess) { stages |= S_028B54_LS_EN(V_028B54_LS_STAGE_ON) | S_028B54_HS_EN(1) | S_028B54_DYNAMIC_HS(1); if (key.u.gs) stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS) | S_028B54_GS_EN(1); else if (key.u.ngg) stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS); else stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_DS); } else if (key.u.gs) { stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL) | S_028B54_GS_EN(1); } else if (key.u.ngg) { stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL); } if (key.u.ngg) { stages |= S_028B54_PRIMGEN_EN(1) | S_028B54_NGG_WAVE_ID_EN(key.u.streamout) | S_028B54_PRIMGEN_PASSTHRU_EN(key.u.ngg_passthrough) | S_028B54_PRIMGEN_PASSTHRU_NO_MSG(key.u.ngg_passthrough && screen->info.family >= CHIP_DIMGREY_CAVEFISH); } else if (key.u.gs) stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER); if (screen->info.chip_class >= GFX9) stages |= S_028B54_MAX_PRIMGRP_IN_WAVE(2); if (screen->info.chip_class >= GFX10 && screen->ge_wave_size == 32) { stages |= S_028B54_HS_W32_EN(1) | S_028B54_GS_W32_EN(key.u.ngg) | /* legacy GS only supports Wave64 */ S_028B54_VS_W32_EN(1); } si_pm4_set_reg(pm4, R_028B54_VGT_SHADER_STAGES_EN, stages); return pm4; } static void si_emit_scratch_state(struct si_context *sctx) { struct radeon_cmdbuf *cs = &sctx->gfx_cs; radeon_begin(cs); radeon_set_context_reg(R_0286E8_SPI_TMPRING_SIZE, sctx->spi_tmpring_size); radeon_end(); if (sctx->scratch_buffer) { radeon_add_to_buffer_list(sctx, &sctx->gfx_cs, sctx->scratch_buffer, RADEON_USAGE_READWRITE | RADEON_PRIO_SCRATCH_BUFFER); } } void si_init_screen_live_shader_cache(struct si_screen *sscreen) { util_live_shader_cache_init(&sscreen->live_shader_cache, si_create_shader_selector, si_destroy_shader_selector); } void si_init_shader_functions(struct si_context *sctx) { sctx->atoms.s.scratch_state.emit = si_emit_scratch_state; sctx->b.create_vs_state = si_create_shader; sctx->b.create_tcs_state = si_create_shader; sctx->b.create_tes_state = si_create_shader; sctx->b.create_gs_state = si_create_shader; sctx->b.create_fs_state = si_create_shader; sctx->b.bind_vs_state = si_bind_vs_shader; sctx->b.bind_tcs_state = si_bind_tcs_shader; sctx->b.bind_tes_state = si_bind_tes_shader; sctx->b.bind_gs_state = si_bind_gs_shader; sctx->b.bind_fs_state = si_bind_ps_shader; sctx->b.delete_vs_state = si_delete_shader_selector; sctx->b.delete_tcs_state = si_delete_shader_selector; sctx->b.delete_tes_state = si_delete_shader_selector; sctx->b.delete_gs_state = si_delete_shader_selector; sctx->b.delete_fs_state = si_delete_shader_selector; }