/* * Copyright © 2016 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #include "radv_meta.h" #include "radv_private.h" #include "sid.h" enum radv_depth_op { DEPTH_DECOMPRESS, DEPTH_RESUMMARIZE, }; static nir_shader * build_expand_depth_stencil_compute_shader(struct radv_device *dev) { const struct glsl_type *img_type = glsl_image_type(GLSL_SAMPLER_DIM_2D, false, GLSL_TYPE_FLOAT); nir_builder b = radv_meta_init_shader(MESA_SHADER_COMPUTE, "expand_depth_stencil_compute"); /* We need at least 8/8/1 to cover an entire HTILE block in a single workgroup. */ b.shader->info.workgroup_size[0] = 8; b.shader->info.workgroup_size[1] = 8; nir_variable *input_img = nir_variable_create(b.shader, nir_var_image, img_type, "in_img"); input_img->data.descriptor_set = 0; input_img->data.binding = 0; nir_variable *output_img = nir_variable_create(b.shader, nir_var_image, img_type, "out_img"); output_img->data.descriptor_set = 0; output_img->data.binding = 1; nir_ssa_def *invoc_id = nir_load_local_invocation_id(&b); nir_ssa_def *wg_id = nir_load_workgroup_id(&b, 32); nir_ssa_def *block_size = nir_imm_ivec4(&b, b.shader->info.workgroup_size[0], b.shader->info.workgroup_size[1], b.shader->info.workgroup_size[2], 0); nir_ssa_def *global_id = nir_iadd(&b, nir_imul(&b, wg_id, block_size), invoc_id); nir_ssa_def *data = nir_image_deref_load( &b, 4, 32, &nir_build_deref_var(&b, input_img)->dest.ssa, global_id, nir_ssa_undef(&b, 1, 32), nir_imm_int(&b, 0), .image_dim = GLSL_SAMPLER_DIM_2D); /* We need a NIR_SCOPE_DEVICE memory_scope because ACO will avoid * creating a vmcnt(0) because it expects the L1 cache to keep memory * operations in-order for the same workgroup. The vmcnt(0) seems * necessary however. */ nir_scoped_barrier(&b, .execution_scope = NIR_SCOPE_WORKGROUP, .memory_scope = NIR_SCOPE_DEVICE, .memory_semantics = NIR_MEMORY_ACQ_REL, .memory_modes = nir_var_mem_ssbo); nir_image_deref_store(&b, &nir_build_deref_var(&b, output_img)->dest.ssa, global_id, nir_ssa_undef(&b, 1, 32), data, nir_imm_int(&b, 0), .image_dim = GLSL_SAMPLER_DIM_2D); return b.shader; } static VkResult create_expand_depth_stencil_compute(struct radv_device *device) { VkResult result = VK_SUCCESS; nir_shader *cs = build_expand_depth_stencil_compute_shader(device); VkDescriptorSetLayoutCreateInfo ds_create_info = { .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, .flags = VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR, .bindingCount = 2, .pBindings = (VkDescriptorSetLayoutBinding[]){ {.binding = 0, .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, .descriptorCount = 1, .stageFlags = VK_SHADER_STAGE_COMPUTE_BIT, .pImmutableSamplers = NULL}, {.binding = 1, .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, .descriptorCount = 1, .stageFlags = VK_SHADER_STAGE_COMPUTE_BIT, .pImmutableSamplers = NULL}, }}; result = radv_CreateDescriptorSetLayout( radv_device_to_handle(device), &ds_create_info, &device->meta_state.alloc, &device->meta_state.expand_depth_stencil_compute_ds_layout); if (result != VK_SUCCESS) goto cleanup; VkPipelineLayoutCreateInfo pl_create_info = { .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, .setLayoutCount = 1, .pSetLayouts = &device->meta_state.expand_depth_stencil_compute_ds_layout, .pushConstantRangeCount = 0, .pPushConstantRanges = NULL, }; result = radv_CreatePipelineLayout( radv_device_to_handle(device), &pl_create_info, &device->meta_state.alloc, &device->meta_state.expand_depth_stencil_compute_p_layout); if (result != VK_SUCCESS) goto cleanup; /* compute shader */ VkPipelineShaderStageCreateInfo pipeline_shader_stage = { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_COMPUTE_BIT, .module = vk_shader_module_handle_from_nir(cs), .pName = "main", .pSpecializationInfo = NULL, }; VkComputePipelineCreateInfo vk_pipeline_info = { .sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO, .stage = pipeline_shader_stage, .flags = 0, .layout = device->meta_state.expand_depth_stencil_compute_p_layout, }; result = radv_CreateComputePipelines( radv_device_to_handle(device), radv_pipeline_cache_to_handle(&device->meta_state.cache), 1, &vk_pipeline_info, NULL, &device->meta_state.expand_depth_stencil_compute_pipeline); if (result != VK_SUCCESS) goto cleanup; cleanup: ralloc_free(cs); return result; } static VkResult create_pass(struct radv_device *device, uint32_t samples, VkRenderPass *pass) { VkResult result; VkDevice device_h = radv_device_to_handle(device); const VkAllocationCallbacks *alloc = &device->meta_state.alloc; VkAttachmentDescription2 attachment; attachment.sType = VK_STRUCTURE_TYPE_ATTACHMENT_DESCRIPTION_2; attachment.pNext = NULL; attachment.flags = 0; attachment.format = VK_FORMAT_D32_SFLOAT_S8_UINT; attachment.samples = samples; attachment.loadOp = VK_ATTACHMENT_LOAD_OP_LOAD; attachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE; attachment.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_LOAD; attachment.stencilStoreOp = VK_ATTACHMENT_STORE_OP_STORE; attachment.initialLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; attachment.finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; result = radv_CreateRenderPass2( device_h, &(VkRenderPassCreateInfo2){ .sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO_2, .attachmentCount = 1, .pAttachments = &attachment, .subpassCount = 1, .pSubpasses = &(VkSubpassDescription2){ .sType = VK_STRUCTURE_TYPE_SUBPASS_DESCRIPTION_2, .pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS, .inputAttachmentCount = 0, .colorAttachmentCount = 0, .pColorAttachments = NULL, .pResolveAttachments = NULL, .pDepthStencilAttachment = &(VkAttachmentReference2){ .sType = VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_2, .attachment = 0, .layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, }, .preserveAttachmentCount = 0, .pPreserveAttachments = NULL, }, .dependencyCount = 2, .pDependencies = (VkSubpassDependency2[]){{.sType = VK_STRUCTURE_TYPE_SUBPASS_DEPENDENCY_2, .srcSubpass = VK_SUBPASS_EXTERNAL, .dstSubpass = 0, .srcStageMask = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, .dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, .srcAccessMask = 0, .dstAccessMask = 0, .dependencyFlags = 0}, {.sType = VK_STRUCTURE_TYPE_SUBPASS_DEPENDENCY_2, .srcSubpass = 0, .dstSubpass = VK_SUBPASS_EXTERNAL, .srcStageMask = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, .dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, .srcAccessMask = 0, .dstAccessMask = 0, .dependencyFlags = 0}}, }, alloc, pass); return result; } static VkResult create_pipeline_layout(struct radv_device *device, VkPipelineLayout *layout) { VkPipelineLayoutCreateInfo pl_create_info = { .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, .setLayoutCount = 0, .pSetLayouts = NULL, .pushConstantRangeCount = 0, .pPushConstantRanges = NULL, }; return radv_CreatePipelineLayout(radv_device_to_handle(device), &pl_create_info, &device->meta_state.alloc, layout); } static VkResult create_pipeline(struct radv_device *device, uint32_t samples, VkRenderPass pass, VkPipelineLayout layout, enum radv_depth_op op, VkPipeline *pipeline) { VkResult result; VkDevice device_h = radv_device_to_handle(device); mtx_lock(&device->meta_state.mtx); if (*pipeline) { mtx_unlock(&device->meta_state.mtx); return VK_SUCCESS; } nir_shader *vs_module = radv_meta_build_nir_vs_generate_vertices(); nir_shader *fs_module = radv_meta_build_nir_fs_noop(); if (!vs_module || !fs_module) { /* XXX: Need more accurate error */ result = VK_ERROR_OUT_OF_HOST_MEMORY; goto cleanup; } const VkPipelineSampleLocationsStateCreateInfoEXT sample_locs_create_info = { .sType = VK_STRUCTURE_TYPE_PIPELINE_SAMPLE_LOCATIONS_STATE_CREATE_INFO_EXT, .sampleLocationsEnable = false, }; const VkGraphicsPipelineCreateInfo pipeline_create_info = { .sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO, .stageCount = 2, .pStages = (VkPipelineShaderStageCreateInfo[]){ { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_VERTEX_BIT, .module = vk_shader_module_handle_from_nir(vs_module), .pName = "main", }, { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_FRAGMENT_BIT, .module = vk_shader_module_handle_from_nir(fs_module), .pName = "main", }, }, .pVertexInputState = &(VkPipelineVertexInputStateCreateInfo){ .sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO, .vertexBindingDescriptionCount = 0, .vertexAttributeDescriptionCount = 0, }, .pInputAssemblyState = &(VkPipelineInputAssemblyStateCreateInfo){ .sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO, .topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP, .primitiveRestartEnable = false, }, .pViewportState = &(VkPipelineViewportStateCreateInfo){ .sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO, .viewportCount = 1, .scissorCount = 1, }, .pRasterizationState = &(VkPipelineRasterizationStateCreateInfo){ .sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO, .depthClampEnable = false, .rasterizerDiscardEnable = false, .polygonMode = VK_POLYGON_MODE_FILL, .cullMode = VK_CULL_MODE_NONE, .frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE, }, .pMultisampleState = &(VkPipelineMultisampleStateCreateInfo){ .sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO, .pNext = &sample_locs_create_info, .rasterizationSamples = samples, .sampleShadingEnable = false, .pSampleMask = NULL, .alphaToCoverageEnable = false, .alphaToOneEnable = false, }, .pColorBlendState = &(VkPipelineColorBlendStateCreateInfo){ .sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO, .logicOpEnable = false, .attachmentCount = 0, .pAttachments = NULL, }, .pDepthStencilState = &(VkPipelineDepthStencilStateCreateInfo){ .sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO, .depthTestEnable = false, .depthWriteEnable = false, .depthBoundsTestEnable = false, .stencilTestEnable = false, }, .pDynamicState = &(VkPipelineDynamicStateCreateInfo){ .sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO, .dynamicStateCount = 3, .pDynamicStates = (VkDynamicState[]){ VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR, VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT, }, }, .layout = layout, .renderPass = pass, .subpass = 0, }; struct radv_graphics_pipeline_create_info extra = { .use_rectlist = true, .depth_compress_disable = true, .stencil_compress_disable = true, .resummarize_enable = op == DEPTH_RESUMMARIZE, }; result = radv_graphics_pipeline_create( device_h, radv_pipeline_cache_to_handle(&device->meta_state.cache), &pipeline_create_info, &extra, &device->meta_state.alloc, pipeline); cleanup: ralloc_free(fs_module); ralloc_free(vs_module); mtx_unlock(&device->meta_state.mtx); return result; } void radv_device_finish_meta_depth_decomp_state(struct radv_device *device) { struct radv_meta_state *state = &device->meta_state; for (uint32_t i = 0; i < ARRAY_SIZE(state->depth_decomp); ++i) { radv_DestroyRenderPass(radv_device_to_handle(device), state->depth_decomp[i].pass, &state->alloc); radv_DestroyPipelineLayout(radv_device_to_handle(device), state->depth_decomp[i].p_layout, &state->alloc); radv_DestroyPipeline(radv_device_to_handle(device), state->depth_decomp[i].decompress_pipeline, &state->alloc); radv_DestroyPipeline(radv_device_to_handle(device), state->depth_decomp[i].resummarize_pipeline, &state->alloc); } radv_DestroyPipeline(radv_device_to_handle(device), state->expand_depth_stencil_compute_pipeline, &state->alloc); radv_DestroyPipelineLayout(radv_device_to_handle(device), state->expand_depth_stencil_compute_p_layout, &state->alloc); radv_DestroyDescriptorSetLayout(radv_device_to_handle(device), state->expand_depth_stencil_compute_ds_layout, &state->alloc); } VkResult radv_device_init_meta_depth_decomp_state(struct radv_device *device, bool on_demand) { struct radv_meta_state *state = &device->meta_state; VkResult res = VK_SUCCESS; for (uint32_t i = 0; i < ARRAY_SIZE(state->depth_decomp); ++i) { uint32_t samples = 1 << i; res = create_pass(device, samples, &state->depth_decomp[i].pass); if (res != VK_SUCCESS) goto fail; res = create_pipeline_layout(device, &state->depth_decomp[i].p_layout); if (res != VK_SUCCESS) goto fail; if (on_demand) continue; res = create_pipeline(device, samples, state->depth_decomp[i].pass, state->depth_decomp[i].p_layout, DEPTH_DECOMPRESS, &state->depth_decomp[i].decompress_pipeline); if (res != VK_SUCCESS) goto fail; res = create_pipeline(device, samples, state->depth_decomp[i].pass, state->depth_decomp[i].p_layout, DEPTH_RESUMMARIZE, &state->depth_decomp[i].resummarize_pipeline); if (res != VK_SUCCESS) goto fail; } res = create_expand_depth_stencil_compute(device); if (res != VK_SUCCESS) goto fail; return VK_SUCCESS; fail: radv_device_finish_meta_depth_decomp_state(device); return res; } static VkPipeline * radv_get_depth_pipeline(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, const VkImageSubresourceRange *subresourceRange, enum radv_depth_op op) { struct radv_meta_state *state = &cmd_buffer->device->meta_state; uint32_t samples = image->info.samples; uint32_t samples_log2 = ffs(samples) - 1; VkPipeline *pipeline; if (!state->depth_decomp[samples_log2].decompress_pipeline) { VkResult ret; ret = create_pipeline(cmd_buffer->device, samples, state->depth_decomp[samples_log2].pass, state->depth_decomp[samples_log2].p_layout, DEPTH_DECOMPRESS, &state->depth_decomp[samples_log2].decompress_pipeline); if (ret != VK_SUCCESS) { cmd_buffer->record_result = ret; return NULL; } ret = create_pipeline(cmd_buffer->device, samples, state->depth_decomp[samples_log2].pass, state->depth_decomp[samples_log2].p_layout, DEPTH_RESUMMARIZE, &state->depth_decomp[samples_log2].resummarize_pipeline); if (ret != VK_SUCCESS) { cmd_buffer->record_result = ret; return NULL; } } switch (op) { case DEPTH_DECOMPRESS: pipeline = &state->depth_decomp[samples_log2].decompress_pipeline; break; case DEPTH_RESUMMARIZE: pipeline = &state->depth_decomp[samples_log2].resummarize_pipeline; break; default: unreachable("unknown operation"); } return pipeline; } static void radv_process_depth_image_layer(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, const VkImageSubresourceRange *range, int level, int layer) { struct radv_device *device = cmd_buffer->device; struct radv_meta_state *state = &device->meta_state; uint32_t samples_log2 = ffs(image->info.samples) - 1; struct radv_image_view iview; uint32_t width, height; width = radv_minify(image->info.width, range->baseMipLevel + level); height = radv_minify(image->info.height, range->baseMipLevel + level); radv_image_view_init(&iview, device, &(VkImageViewCreateInfo){ .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .image = radv_image_to_handle(image), .viewType = radv_meta_get_view_type(image), .format = image->vk_format, .subresourceRange = { .aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT, .baseMipLevel = range->baseMipLevel + level, .levelCount = 1, .baseArrayLayer = range->baseArrayLayer + layer, .layerCount = 1, }, }, NULL); VkFramebuffer fb_h; radv_CreateFramebuffer( radv_device_to_handle(device), &(VkFramebufferCreateInfo){.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO, .attachmentCount = 1, .pAttachments = (VkImageView[]){radv_image_view_to_handle(&iview)}, .width = width, .height = height, .layers = 1}, &cmd_buffer->pool->vk.alloc, &fb_h); radv_cmd_buffer_begin_render_pass(cmd_buffer, &(VkRenderPassBeginInfo){ .sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO, .renderPass = state->depth_decomp[samples_log2].pass, .framebuffer = fb_h, .renderArea = {.offset = { 0, 0, }, .extent = { width, height, }}, .clearValueCount = 0, .pClearValues = NULL, }, NULL); radv_cmd_buffer_set_subpass(cmd_buffer, &cmd_buffer->state.pass->subpasses[0]); radv_CmdDraw(radv_cmd_buffer_to_handle(cmd_buffer), 3, 1, 0, 0); radv_cmd_buffer_end_render_pass(cmd_buffer); radv_image_view_finish(&iview); radv_DestroyFramebuffer(radv_device_to_handle(device), fb_h, &cmd_buffer->pool->vk.alloc); } static void radv_process_depth_stencil(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, const VkImageSubresourceRange *subresourceRange, struct radv_sample_locations_state *sample_locs, enum radv_depth_op op) { struct radv_meta_saved_state saved_state; VkCommandBuffer cmd_buffer_h = radv_cmd_buffer_to_handle(cmd_buffer); VkPipeline *pipeline; radv_meta_save( &saved_state, cmd_buffer, RADV_META_SAVE_GRAPHICS_PIPELINE | RADV_META_SAVE_SAMPLE_LOCATIONS | RADV_META_SAVE_PASS); pipeline = radv_get_depth_pipeline(cmd_buffer, image, subresourceRange, op); radv_CmdBindPipeline(radv_cmd_buffer_to_handle(cmd_buffer), VK_PIPELINE_BIND_POINT_GRAPHICS, *pipeline); if (sample_locs) { assert(image->flags & VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT); /* Set the sample locations specified during explicit or * automatic layout transitions, otherwise the depth decompress * pass uses the default HW locations. */ radv_CmdSetSampleLocationsEXT(cmd_buffer_h, &(VkSampleLocationsInfoEXT){ .sampleLocationsPerPixel = sample_locs->per_pixel, .sampleLocationGridSize = sample_locs->grid_size, .sampleLocationsCount = sample_locs->count, .pSampleLocations = sample_locs->locations, }); } for (uint32_t l = 0; l < radv_get_levelCount(image, subresourceRange); ++l) { /* Do not decompress levels without HTILE. */ if (!radv_htile_enabled(image, subresourceRange->baseMipLevel + l)) continue; uint32_t width = radv_minify(image->info.width, subresourceRange->baseMipLevel + l); uint32_t height = radv_minify(image->info.height, subresourceRange->baseMipLevel + l); radv_CmdSetViewport(cmd_buffer_h, 0, 1, &(VkViewport){.x = 0, .y = 0, .width = width, .height = height, .minDepth = 0.0f, .maxDepth = 1.0f}); radv_CmdSetScissor(cmd_buffer_h, 0, 1, &(VkRect2D){ .offset = {0, 0}, .extent = {width, height}, }); for (uint32_t s = 0; s < radv_get_layerCount(image, subresourceRange); s++) { radv_process_depth_image_layer(cmd_buffer, image, subresourceRange, l, s); } } radv_meta_restore(&saved_state, cmd_buffer); } static void radv_expand_depth_stencil_compute(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, const VkImageSubresourceRange *subresourceRange) { struct radv_meta_saved_state saved_state; struct radv_image_view load_iview = {0}; struct radv_image_view store_iview = {0}; struct radv_device *device = cmd_buffer->device; assert(radv_image_is_tc_compat_htile(image)); cmd_buffer->state.flush_bits |= radv_dst_access_flush(cmd_buffer, VK_ACCESS_2_SHADER_WRITE_BIT_KHR, image); radv_meta_save(&saved_state, cmd_buffer, RADV_META_SAVE_DESCRIPTORS | RADV_META_SAVE_COMPUTE_PIPELINE); radv_CmdBindPipeline(radv_cmd_buffer_to_handle(cmd_buffer), VK_PIPELINE_BIND_POINT_COMPUTE, device->meta_state.expand_depth_stencil_compute_pipeline); for (uint32_t l = 0; l < radv_get_levelCount(image, subresourceRange); l++) { uint32_t width, height; /* Do not decompress levels without HTILE. */ if (!radv_htile_enabled(image, subresourceRange->baseMipLevel + l)) continue; width = radv_minify(image->info.width, subresourceRange->baseMipLevel + l); height = radv_minify(image->info.height, subresourceRange->baseMipLevel + l); for (uint32_t s = 0; s < radv_get_layerCount(image, subresourceRange); s++) { radv_image_view_init( &load_iview, cmd_buffer->device, &(VkImageViewCreateInfo){ .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .image = radv_image_to_handle(image), .viewType = VK_IMAGE_VIEW_TYPE_2D, .format = image->vk_format, .subresourceRange = {.aspectMask = subresourceRange->aspectMask, .baseMipLevel = subresourceRange->baseMipLevel + l, .levelCount = 1, .baseArrayLayer = subresourceRange->baseArrayLayer + s, .layerCount = 1}, }, &(struct radv_image_view_extra_create_info){.enable_compression = true}); radv_image_view_init( &store_iview, cmd_buffer->device, &(VkImageViewCreateInfo){ .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .image = radv_image_to_handle(image), .viewType = VK_IMAGE_VIEW_TYPE_2D, .format = image->vk_format, .subresourceRange = {.aspectMask = subresourceRange->aspectMask, .baseMipLevel = subresourceRange->baseMipLevel + l, .levelCount = 1, .baseArrayLayer = subresourceRange->baseArrayLayer + s, .layerCount = 1}, }, &(struct radv_image_view_extra_create_info){.disable_compression = true}); radv_meta_push_descriptor_set( cmd_buffer, VK_PIPELINE_BIND_POINT_COMPUTE, device->meta_state.expand_depth_stencil_compute_p_layout, 0, /* set */ 2, /* descriptorWriteCount */ (VkWriteDescriptorSet[]){{.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, .dstBinding = 0, .dstArrayElement = 0, .descriptorCount = 1, .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, .pImageInfo = (VkDescriptorImageInfo[]){ { .sampler = VK_NULL_HANDLE, .imageView = radv_image_view_to_handle(&load_iview), .imageLayout = VK_IMAGE_LAYOUT_GENERAL, }, }}, {.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, .dstBinding = 1, .dstArrayElement = 0, .descriptorCount = 1, .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, .pImageInfo = (VkDescriptorImageInfo[]){ { .sampler = VK_NULL_HANDLE, .imageView = radv_image_view_to_handle(&store_iview), .imageLayout = VK_IMAGE_LAYOUT_GENERAL, }, }}}); radv_unaligned_dispatch(cmd_buffer, width, height, 1); radv_image_view_finish(&load_iview); radv_image_view_finish(&store_iview); } } radv_meta_restore(&saved_state, cmd_buffer); cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_CS_PARTIAL_FLUSH | RADV_CMD_FLAG_INV_VCACHE | radv_src_access_flush(cmd_buffer, VK_ACCESS_2_SHADER_WRITE_BIT_KHR, image); /* Initialize the HTILE metadata as "fully expanded". */ uint32_t htile_value = radv_get_htile_initial_value(cmd_buffer->device, image); cmd_buffer->state.flush_bits |= radv_clear_htile(cmd_buffer, image, subresourceRange, htile_value); } void radv_expand_depth_stencil(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, const VkImageSubresourceRange *subresourceRange, struct radv_sample_locations_state *sample_locs) { struct radv_barrier_data barrier = {0}; barrier.layout_transitions.depth_stencil_expand = 1; radv_describe_layout_transition(cmd_buffer, &barrier); if (cmd_buffer->queue_family_index == RADV_QUEUE_GENERAL) { radv_process_depth_stencil(cmd_buffer, image, subresourceRange, sample_locs, DEPTH_DECOMPRESS); } else { radv_expand_depth_stencil_compute(cmd_buffer, image, subresourceRange); } } void radv_resummarize_depth_stencil(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, const VkImageSubresourceRange *subresourceRange, struct radv_sample_locations_state *sample_locs) { struct radv_barrier_data barrier = {0}; barrier.layout_transitions.depth_stencil_resummarize = 1; radv_describe_layout_transition(cmd_buffer, &barrier); assert(cmd_buffer->queue_family_index == RADV_QUEUE_GENERAL); radv_process_depth_stencil(cmd_buffer, image, subresourceRange, sample_locs, DEPTH_RESUMMARIZE); }