/* * Copyright © 2016 Red Hat. * Copyright © 2016 Bas Nieuwenhuizen * * based in part on anv driver which is: * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "nir/nir.h" #include "nir/nir_builder.h" #include "nir/nir_xfb_info.h" #include "spirv/nir_spirv.h" #include "util/disk_cache.h" #include "util/mesa-sha1.h" #include "util/u_atomic.h" #include "radv_cs.h" #include "radv_debug.h" #include "radv_private.h" #include "radv_shader.h" #include "vk_util.h" #include "util/debug.h" #include "ac_binary.h" #include "ac_exp_param.h" #include "ac_nir.h" #include "ac_shader_util.h" #include "aco_interface.h" #include "sid.h" #include "vk_format.h" struct radv_blend_state { uint32_t blend_enable_4bit; uint32_t need_src_alpha; uint32_t cb_color_control; uint32_t cb_target_mask; uint32_t cb_target_enabled_4bit; uint32_t sx_mrt_blend_opt[8]; uint32_t cb_blend_control[8]; uint32_t spi_shader_col_format; uint32_t col_format_is_int8; uint32_t col_format_is_int10; uint32_t cb_shader_mask; uint32_t db_alpha_to_mask; uint32_t commutative_4bit; bool single_cb_enable; bool mrt0_is_dual_src; }; struct radv_dsa_order_invariance { /* Whether the final result in Z/S buffers is guaranteed to be * invariant under changes to the order in which fragments arrive. */ bool zs; /* Whether the set of fragments that pass the combined Z/S test is * guaranteed to be invariant under changes to the order in which * fragments arrive. */ bool pass_set; }; static bool radv_is_state_dynamic(const VkGraphicsPipelineCreateInfo *pCreateInfo, VkDynamicState state) { if (pCreateInfo->pDynamicState) { uint32_t count = pCreateInfo->pDynamicState->dynamicStateCount; for (uint32_t i = 0; i < count; i++) { if (pCreateInfo->pDynamicState->pDynamicStates[i] == state) return true; } } return false; } static const VkPipelineMultisampleStateCreateInfo * radv_pipeline_get_multisample_state(const VkGraphicsPipelineCreateInfo *pCreateInfo) { if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable || radv_is_state_dynamic(pCreateInfo, VK_DYNAMIC_STATE_RASTERIZER_DISCARD_ENABLE_EXT)) return pCreateInfo->pMultisampleState; return NULL; } static const VkPipelineTessellationStateCreateInfo * radv_pipeline_get_tessellation_state(const VkGraphicsPipelineCreateInfo *pCreateInfo) { for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) { if (pCreateInfo->pStages[i].stage == VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT || pCreateInfo->pStages[i].stage == VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT) { return pCreateInfo->pTessellationState; } } return NULL; } static const VkPipelineDepthStencilStateCreateInfo * radv_pipeline_get_depth_stencil_state(const VkGraphicsPipelineCreateInfo *pCreateInfo) { RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass); struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass; if ((!pCreateInfo->pRasterizationState->rasterizerDiscardEnable && subpass->depth_stencil_attachment) || radv_is_state_dynamic(pCreateInfo, VK_DYNAMIC_STATE_RASTERIZER_DISCARD_ENABLE_EXT)) return pCreateInfo->pDepthStencilState; return NULL; } static const VkPipelineColorBlendStateCreateInfo * radv_pipeline_get_color_blend_state(const VkGraphicsPipelineCreateInfo *pCreateInfo) { RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass); struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass; if ((!pCreateInfo->pRasterizationState->rasterizerDiscardEnable && subpass->has_color_att) || radv_is_state_dynamic(pCreateInfo, VK_DYNAMIC_STATE_RASTERIZER_DISCARD_ENABLE_EXT)) return pCreateInfo->pColorBlendState; return NULL; } static bool radv_pipeline_has_ngg(const struct radv_pipeline *pipeline) { struct radv_shader_variant *variant = NULL; if (pipeline->shaders[MESA_SHADER_GEOMETRY]) variant = pipeline->shaders[MESA_SHADER_GEOMETRY]; else if (pipeline->shaders[MESA_SHADER_TESS_EVAL]) variant = pipeline->shaders[MESA_SHADER_TESS_EVAL]; else if (pipeline->shaders[MESA_SHADER_VERTEX]) variant = pipeline->shaders[MESA_SHADER_VERTEX]; else return false; return variant->info.is_ngg; } bool radv_pipeline_has_ngg_passthrough(const struct radv_pipeline *pipeline) { assert(radv_pipeline_has_ngg(pipeline)); struct radv_shader_variant *variant = NULL; if (pipeline->shaders[MESA_SHADER_GEOMETRY]) variant = pipeline->shaders[MESA_SHADER_GEOMETRY]; else if (pipeline->shaders[MESA_SHADER_TESS_EVAL]) variant = pipeline->shaders[MESA_SHADER_TESS_EVAL]; else if (pipeline->shaders[MESA_SHADER_VERTEX]) variant = pipeline->shaders[MESA_SHADER_VERTEX]; else return false; return variant->info.is_ngg_passthrough; } bool radv_pipeline_has_gs_copy_shader(const struct radv_pipeline *pipeline) { return !!pipeline->gs_copy_shader; } static void radv_pipeline_destroy(struct radv_device *device, struct radv_pipeline *pipeline, const VkAllocationCallbacks *allocator) { for (unsigned i = 0; i < MESA_SHADER_STAGES; ++i) if (pipeline->shaders[i]) radv_shader_variant_destroy(device, pipeline->shaders[i]); if (pipeline->gs_copy_shader) radv_shader_variant_destroy(device, pipeline->gs_copy_shader); if (pipeline->cs.buf) free(pipeline->cs.buf); vk_object_base_finish(&pipeline->base); vk_free2(&device->vk.alloc, allocator, pipeline); } void radv_DestroyPipeline(VkDevice _device, VkPipeline _pipeline, const VkAllocationCallbacks *pAllocator) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_pipeline, pipeline, _pipeline); if (!_pipeline) return; radv_pipeline_destroy(device, pipeline, pAllocator); } static uint32_t get_hash_flags(const struct radv_device *device, bool stats) { uint32_t hash_flags = 0; if (device->instance->debug_flags & RADV_DEBUG_NO_NGG) hash_flags |= RADV_HASH_SHADER_NO_NGG; if (device->physical_device->cs_wave_size == 32) hash_flags |= RADV_HASH_SHADER_CS_WAVE32; if (device->physical_device->ps_wave_size == 32) hash_flags |= RADV_HASH_SHADER_PS_WAVE32; if (device->physical_device->ge_wave_size == 32) hash_flags |= RADV_HASH_SHADER_GE_WAVE32; if (device->physical_device->use_llvm) hash_flags |= RADV_HASH_SHADER_LLVM; if (device->instance->debug_flags & RADV_DEBUG_DISCARD_TO_DEMOTE) hash_flags |= RADV_HASH_SHADER_DISCARD_TO_DEMOTE; if (device->instance->enable_mrt_output_nan_fixup) hash_flags |= RADV_HASH_SHADER_MRT_NAN_FIXUP; if (device->instance->debug_flags & RADV_DEBUG_INVARIANT_GEOM) hash_flags |= RADV_HASH_SHADER_INVARIANT_GEOM; if (stats) hash_flags |= RADV_HASH_SHADER_KEEP_STATISTICS; if (device->force_vrs != RADV_FORCE_VRS_2x2) hash_flags |= RADV_HASH_SHADER_FORCE_VRS_2x2; if (device->force_vrs != RADV_FORCE_VRS_2x1) hash_flags |= RADV_HASH_SHADER_FORCE_VRS_2x1; if (device->force_vrs != RADV_FORCE_VRS_1x2) hash_flags |= RADV_HASH_SHADER_FORCE_VRS_1x2; return hash_flags; } static void radv_pipeline_init_scratch(const struct radv_device *device, struct radv_pipeline *pipeline) { unsigned scratch_bytes_per_wave = 0; unsigned max_waves = 0; unsigned min_waves = 1; for (int i = 0; i < MESA_SHADER_STAGES; ++i) { if (pipeline->shaders[i] && pipeline->shaders[i]->config.scratch_bytes_per_wave) { unsigned max_stage_waves = device->scratch_waves; scratch_bytes_per_wave = MAX2(scratch_bytes_per_wave, pipeline->shaders[i]->config.scratch_bytes_per_wave); max_stage_waves = MIN2(max_stage_waves, 4 * device->physical_device->rad_info.num_good_compute_units * (256 / pipeline->shaders[i]->config.num_vgprs)); max_waves = MAX2(max_waves, max_stage_waves); } } if (pipeline->shaders[MESA_SHADER_COMPUTE]) { unsigned group_size = pipeline->shaders[MESA_SHADER_COMPUTE]->info.cs.block_size[0] * pipeline->shaders[MESA_SHADER_COMPUTE]->info.cs.block_size[1] * pipeline->shaders[MESA_SHADER_COMPUTE]->info.cs.block_size[2]; min_waves = MAX2(min_waves, round_up_u32(group_size, 64)); } pipeline->scratch_bytes_per_wave = scratch_bytes_per_wave; pipeline->max_waves = max_waves; } static uint32_t si_translate_blend_logic_op(VkLogicOp op) { switch (op) { case VK_LOGIC_OP_CLEAR: return V_028808_ROP3_CLEAR; case VK_LOGIC_OP_AND: return V_028808_ROP3_AND; case VK_LOGIC_OP_AND_REVERSE: return V_028808_ROP3_AND_REVERSE; case VK_LOGIC_OP_COPY: return V_028808_ROP3_COPY; case VK_LOGIC_OP_AND_INVERTED: return V_028808_ROP3_AND_INVERTED; case VK_LOGIC_OP_NO_OP: return V_028808_ROP3_NO_OP; case VK_LOGIC_OP_XOR: return V_028808_ROP3_XOR; case VK_LOGIC_OP_OR: return V_028808_ROP3_OR; case VK_LOGIC_OP_NOR: return V_028808_ROP3_NOR; case VK_LOGIC_OP_EQUIVALENT: return V_028808_ROP3_EQUIVALENT; case VK_LOGIC_OP_INVERT: return V_028808_ROP3_INVERT; case VK_LOGIC_OP_OR_REVERSE: return V_028808_ROP3_OR_REVERSE; case VK_LOGIC_OP_COPY_INVERTED: return V_028808_ROP3_COPY_INVERTED; case VK_LOGIC_OP_OR_INVERTED: return V_028808_ROP3_OR_INVERTED; case VK_LOGIC_OP_NAND: return V_028808_ROP3_NAND; case VK_LOGIC_OP_SET: return V_028808_ROP3_SET; default: unreachable("Unhandled logic op"); } } static uint32_t si_translate_blend_function(VkBlendOp op) { switch (op) { case VK_BLEND_OP_ADD: return V_028780_COMB_DST_PLUS_SRC; case VK_BLEND_OP_SUBTRACT: return V_028780_COMB_SRC_MINUS_DST; case VK_BLEND_OP_REVERSE_SUBTRACT: return V_028780_COMB_DST_MINUS_SRC; case VK_BLEND_OP_MIN: return V_028780_COMB_MIN_DST_SRC; case VK_BLEND_OP_MAX: return V_028780_COMB_MAX_DST_SRC; default: return 0; } } static uint32_t si_translate_blend_factor(VkBlendFactor factor) { switch (factor) { case VK_BLEND_FACTOR_ZERO: return V_028780_BLEND_ZERO; case VK_BLEND_FACTOR_ONE: return V_028780_BLEND_ONE; case VK_BLEND_FACTOR_SRC_COLOR: return V_028780_BLEND_SRC_COLOR; case VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR: return V_028780_BLEND_ONE_MINUS_SRC_COLOR; case VK_BLEND_FACTOR_DST_COLOR: return V_028780_BLEND_DST_COLOR; case VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR: return V_028780_BLEND_ONE_MINUS_DST_COLOR; case VK_BLEND_FACTOR_SRC_ALPHA: return V_028780_BLEND_SRC_ALPHA; case VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA: return V_028780_BLEND_ONE_MINUS_SRC_ALPHA; case VK_BLEND_FACTOR_DST_ALPHA: return V_028780_BLEND_DST_ALPHA; case VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA: return V_028780_BLEND_ONE_MINUS_DST_ALPHA; case VK_BLEND_FACTOR_CONSTANT_COLOR: return V_028780_BLEND_CONSTANT_COLOR; case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR: return V_028780_BLEND_ONE_MINUS_CONSTANT_COLOR; case VK_BLEND_FACTOR_CONSTANT_ALPHA: return V_028780_BLEND_CONSTANT_ALPHA; case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA: return V_028780_BLEND_ONE_MINUS_CONSTANT_ALPHA; case VK_BLEND_FACTOR_SRC_ALPHA_SATURATE: return V_028780_BLEND_SRC_ALPHA_SATURATE; case VK_BLEND_FACTOR_SRC1_COLOR: return V_028780_BLEND_SRC1_COLOR; case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR: return V_028780_BLEND_INV_SRC1_COLOR; case VK_BLEND_FACTOR_SRC1_ALPHA: return V_028780_BLEND_SRC1_ALPHA; case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA: return V_028780_BLEND_INV_SRC1_ALPHA; default: return 0; } } static uint32_t si_translate_blend_opt_function(VkBlendOp op) { switch (op) { case VK_BLEND_OP_ADD: return V_028760_OPT_COMB_ADD; case VK_BLEND_OP_SUBTRACT: return V_028760_OPT_COMB_SUBTRACT; case VK_BLEND_OP_REVERSE_SUBTRACT: return V_028760_OPT_COMB_REVSUBTRACT; case VK_BLEND_OP_MIN: return V_028760_OPT_COMB_MIN; case VK_BLEND_OP_MAX: return V_028760_OPT_COMB_MAX; default: return V_028760_OPT_COMB_BLEND_DISABLED; } } static uint32_t si_translate_blend_opt_factor(VkBlendFactor factor, bool is_alpha) { switch (factor) { case VK_BLEND_FACTOR_ZERO: return V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_ALL; case VK_BLEND_FACTOR_ONE: return V_028760_BLEND_OPT_PRESERVE_ALL_IGNORE_NONE; case VK_BLEND_FACTOR_SRC_COLOR: return is_alpha ? V_028760_BLEND_OPT_PRESERVE_A1_IGNORE_A0 : V_028760_BLEND_OPT_PRESERVE_C1_IGNORE_C0; case VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR: return is_alpha ? V_028760_BLEND_OPT_PRESERVE_A0_IGNORE_A1 : V_028760_BLEND_OPT_PRESERVE_C0_IGNORE_C1; case VK_BLEND_FACTOR_SRC_ALPHA: return V_028760_BLEND_OPT_PRESERVE_A1_IGNORE_A0; case VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA: return V_028760_BLEND_OPT_PRESERVE_A0_IGNORE_A1; case VK_BLEND_FACTOR_SRC_ALPHA_SATURATE: return is_alpha ? V_028760_BLEND_OPT_PRESERVE_ALL_IGNORE_NONE : V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_A0; default: return V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_NONE; } } /** * Get rid of DST in the blend factors by commuting the operands: * func(src * DST, dst * 0) ---> func(src * 0, dst * SRC) */ static void si_blend_remove_dst(VkBlendOp *func, VkBlendFactor *src_factor, VkBlendFactor *dst_factor, VkBlendFactor expected_dst, VkBlendFactor replacement_src) { if (*src_factor == expected_dst && *dst_factor == VK_BLEND_FACTOR_ZERO) { *src_factor = VK_BLEND_FACTOR_ZERO; *dst_factor = replacement_src; /* Commuting the operands requires reversing subtractions. */ if (*func == VK_BLEND_OP_SUBTRACT) *func = VK_BLEND_OP_REVERSE_SUBTRACT; else if (*func == VK_BLEND_OP_REVERSE_SUBTRACT) *func = VK_BLEND_OP_SUBTRACT; } } static bool si_blend_factor_uses_dst(VkBlendFactor factor) { return factor == VK_BLEND_FACTOR_DST_COLOR || factor == VK_BLEND_FACTOR_DST_ALPHA || factor == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE || factor == VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA || factor == VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR; } static bool is_dual_src(VkBlendFactor factor) { switch (factor) { case VK_BLEND_FACTOR_SRC1_COLOR: case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR: case VK_BLEND_FACTOR_SRC1_ALPHA: case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA: return true; default: return false; } } static unsigned radv_choose_spi_color_format(const struct radv_device *device, VkFormat vk_format, bool blend_enable, bool blend_need_alpha) { const struct util_format_description *desc = vk_format_description(vk_format); bool use_rbplus = device->physical_device->rad_info.rbplus_allowed; struct ac_spi_color_formats formats = {0}; unsigned format, ntype, swap; format = radv_translate_colorformat(vk_format); ntype = radv_translate_color_numformat(vk_format, desc, vk_format_get_first_non_void_channel(vk_format)); swap = radv_translate_colorswap(vk_format, false); ac_choose_spi_color_formats(format, swap, ntype, false, use_rbplus, &formats); if (blend_enable && blend_need_alpha) return formats.blend_alpha; else if (blend_need_alpha) return formats.alpha; else if (blend_enable) return formats.blend; else return formats.normal; } static bool format_is_int8(VkFormat format) { const struct util_format_description *desc = vk_format_description(format); int channel = vk_format_get_first_non_void_channel(format); return channel >= 0 && desc->channel[channel].pure_integer && desc->channel[channel].size == 8; } static bool format_is_int10(VkFormat format) { const struct util_format_description *desc = vk_format_description(format); if (desc->nr_channels != 4) return false; for (unsigned i = 0; i < 4; i++) { if (desc->channel[i].pure_integer && desc->channel[i].size == 10) return true; } return false; } static void radv_pipeline_compute_spi_color_formats(const struct radv_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo, struct radv_blend_state *blend) { RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass); struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass; unsigned col_format = 0, is_int8 = 0, is_int10 = 0; unsigned num_targets; for (unsigned i = 0; i < (blend->single_cb_enable ? 1 : subpass->color_count); ++i) { unsigned cf; if (subpass->color_attachments[i].attachment == VK_ATTACHMENT_UNUSED || !(blend->cb_target_mask & (0xfu << (i * 4)))) { cf = V_028714_SPI_SHADER_ZERO; } else { struct radv_render_pass_attachment *attachment = pass->attachments + subpass->color_attachments[i].attachment; bool blend_enable = blend->blend_enable_4bit & (0xfu << (i * 4)); cf = radv_choose_spi_color_format(pipeline->device, attachment->format, blend_enable, blend->need_src_alpha & (1 << i)); if (format_is_int8(attachment->format)) is_int8 |= 1 << i; if (format_is_int10(attachment->format)) is_int10 |= 1 << i; } col_format |= cf << (4 * i); } if (!(col_format & 0xf) && blend->need_src_alpha & (1 << 0)) { /* When a subpass doesn't have any color attachments, write the * alpha channel of MRT0 when alpha coverage is enabled because * the depth attachment needs it. */ col_format |= V_028714_SPI_SHADER_32_AR; } /* If the i-th target format is set, all previous target formats must * be non-zero to avoid hangs. */ num_targets = (util_last_bit(col_format) + 3) / 4; for (unsigned i = 0; i < num_targets; i++) { if (!(col_format & (0xfu << (i * 4)))) { col_format |= V_028714_SPI_SHADER_32_R << (i * 4); } } /* The output for dual source blending should have the same format as * the first output. */ if (blend->mrt0_is_dual_src) { assert(!(col_format >> 4)); col_format |= (col_format & 0xf) << 4; } blend->cb_shader_mask = ac_get_cb_shader_mask(col_format); blend->spi_shader_col_format = col_format; blend->col_format_is_int8 = is_int8; blend->col_format_is_int10 = is_int10; } /* * Ordered so that for each i, * radv_format_meta_fs_key(radv_fs_key_format_exemplars[i]) == i. */ const VkFormat radv_fs_key_format_exemplars[NUM_META_FS_KEYS] = { VK_FORMAT_R32_SFLOAT, VK_FORMAT_R32G32_SFLOAT, VK_FORMAT_R8G8B8A8_UNORM, VK_FORMAT_R16G16B16A16_UNORM, VK_FORMAT_R16G16B16A16_SNORM, VK_FORMAT_R16G16B16A16_UINT, VK_FORMAT_R16G16B16A16_SINT, VK_FORMAT_R32G32B32A32_SFLOAT, VK_FORMAT_R8G8B8A8_UINT, VK_FORMAT_R8G8B8A8_SINT, VK_FORMAT_A2R10G10B10_UINT_PACK32, VK_FORMAT_A2R10G10B10_SINT_PACK32, }; unsigned radv_format_meta_fs_key(struct radv_device *device, VkFormat format) { unsigned col_format = radv_choose_spi_color_format(device, format, false, false); assert(col_format != V_028714_SPI_SHADER_32_AR); bool is_int8 = format_is_int8(format); bool is_int10 = format_is_int10(format); if (col_format == V_028714_SPI_SHADER_UINT16_ABGR && is_int8) return 8; else if (col_format == V_028714_SPI_SHADER_SINT16_ABGR && is_int8) return 9; else if (col_format == V_028714_SPI_SHADER_UINT16_ABGR && is_int10) return 10; else if (col_format == V_028714_SPI_SHADER_SINT16_ABGR && is_int10) return 11; else { if (col_format >= V_028714_SPI_SHADER_32_AR) --col_format; /* Skip V_028714_SPI_SHADER_32_AR since there is no such VkFormat */ --col_format; /* Skip V_028714_SPI_SHADER_ZERO */ return col_format; } } static void radv_blend_check_commutativity(struct radv_blend_state *blend, VkBlendOp op, VkBlendFactor src, VkBlendFactor dst, unsigned chanmask) { /* Src factor is allowed when it does not depend on Dst. */ static const uint32_t src_allowed = (1u << VK_BLEND_FACTOR_ONE) | (1u << VK_BLEND_FACTOR_SRC_COLOR) | (1u << VK_BLEND_FACTOR_SRC_ALPHA) | (1u << VK_BLEND_FACTOR_SRC_ALPHA_SATURATE) | (1u << VK_BLEND_FACTOR_CONSTANT_COLOR) | (1u << VK_BLEND_FACTOR_CONSTANT_ALPHA) | (1u << VK_BLEND_FACTOR_SRC1_COLOR) | (1u << VK_BLEND_FACTOR_SRC1_ALPHA) | (1u << VK_BLEND_FACTOR_ZERO) | (1u << VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR) | (1u << VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA) | (1u << VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR) | (1u << VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA) | (1u << VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR) | (1u << VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA); if (dst == VK_BLEND_FACTOR_ONE && (src_allowed & (1u << src))) { /* Addition is commutative, but floating point addition isn't * associative: subtle changes can be introduced via different * rounding. Be conservative, only enable for min and max. */ if (op == VK_BLEND_OP_MAX || op == VK_BLEND_OP_MIN) blend->commutative_4bit |= chanmask; } } static struct radv_blend_state radv_pipeline_init_blend_state(const struct radv_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo, const struct radv_graphics_pipeline_create_info *extra) { const VkPipelineColorBlendStateCreateInfo *vkblend = radv_pipeline_get_color_blend_state(pCreateInfo); const VkPipelineMultisampleStateCreateInfo *vkms = radv_pipeline_get_multisample_state(pCreateInfo); struct radv_blend_state blend = {0}; unsigned mode = V_028808_CB_NORMAL; int i; if (extra && extra->custom_blend_mode) { blend.single_cb_enable = true; mode = extra->custom_blend_mode; } blend.cb_color_control = 0; if (vkblend) { if (vkblend->logicOpEnable) blend.cb_color_control |= S_028808_ROP3(si_translate_blend_logic_op(vkblend->logicOp)); else blend.cb_color_control |= S_028808_ROP3(V_028808_ROP3_COPY); } blend.db_alpha_to_mask = S_028B70_ALPHA_TO_MASK_OFFSET0(3) | S_028B70_ALPHA_TO_MASK_OFFSET1(1) | S_028B70_ALPHA_TO_MASK_OFFSET2(0) | S_028B70_ALPHA_TO_MASK_OFFSET3(2) | S_028B70_OFFSET_ROUND(1); if (vkms && vkms->alphaToCoverageEnable) { blend.db_alpha_to_mask |= S_028B70_ALPHA_TO_MASK_ENABLE(1); blend.need_src_alpha |= 0x1; } blend.cb_target_mask = 0; if (vkblend) { for (i = 0; i < vkblend->attachmentCount; i++) { const VkPipelineColorBlendAttachmentState *att = &vkblend->pAttachments[i]; unsigned blend_cntl = 0; unsigned srcRGB_opt, dstRGB_opt, srcA_opt, dstA_opt; VkBlendOp eqRGB = att->colorBlendOp; VkBlendFactor srcRGB = att->srcColorBlendFactor; VkBlendFactor dstRGB = att->dstColorBlendFactor; VkBlendOp eqA = att->alphaBlendOp; VkBlendFactor srcA = att->srcAlphaBlendFactor; VkBlendFactor dstA = att->dstAlphaBlendFactor; blend.sx_mrt_blend_opt[i] = S_028760_COLOR_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED) | S_028760_ALPHA_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED); if (!att->colorWriteMask) continue; /* Ignore other blend targets if dual-source blending * is enabled to prevent wrong behaviour. */ if (blend.mrt0_is_dual_src) continue; blend.cb_target_mask |= (unsigned)att->colorWriteMask << (4 * i); blend.cb_target_enabled_4bit |= 0xfu << (4 * i); if (!att->blendEnable) { blend.cb_blend_control[i] = blend_cntl; continue; } if (is_dual_src(srcRGB) || is_dual_src(dstRGB) || is_dual_src(srcA) || is_dual_src(dstA)) if (i == 0) blend.mrt0_is_dual_src = true; if (eqRGB == VK_BLEND_OP_MIN || eqRGB == VK_BLEND_OP_MAX) { srcRGB = VK_BLEND_FACTOR_ONE; dstRGB = VK_BLEND_FACTOR_ONE; } if (eqA == VK_BLEND_OP_MIN || eqA == VK_BLEND_OP_MAX) { srcA = VK_BLEND_FACTOR_ONE; dstA = VK_BLEND_FACTOR_ONE; } radv_blend_check_commutativity(&blend, eqRGB, srcRGB, dstRGB, 0x7u << (4 * i)); radv_blend_check_commutativity(&blend, eqA, srcA, dstA, 0x8u << (4 * i)); /* Blending optimizations for RB+. * These transformations don't change the behavior. * * First, get rid of DST in the blend factors: * func(src * DST, dst * 0) ---> func(src * 0, dst * SRC) */ si_blend_remove_dst(&eqRGB, &srcRGB, &dstRGB, VK_BLEND_FACTOR_DST_COLOR, VK_BLEND_FACTOR_SRC_COLOR); si_blend_remove_dst(&eqA, &srcA, &dstA, VK_BLEND_FACTOR_DST_COLOR, VK_BLEND_FACTOR_SRC_COLOR); si_blend_remove_dst(&eqA, &srcA, &dstA, VK_BLEND_FACTOR_DST_ALPHA, VK_BLEND_FACTOR_SRC_ALPHA); /* Look up the ideal settings from tables. */ srcRGB_opt = si_translate_blend_opt_factor(srcRGB, false); dstRGB_opt = si_translate_blend_opt_factor(dstRGB, false); srcA_opt = si_translate_blend_opt_factor(srcA, true); dstA_opt = si_translate_blend_opt_factor(dstA, true); /* Handle interdependencies. */ if (si_blend_factor_uses_dst(srcRGB)) dstRGB_opt = V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_NONE; if (si_blend_factor_uses_dst(srcA)) dstA_opt = V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_NONE; if (srcRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE && (dstRGB == VK_BLEND_FACTOR_ZERO || dstRGB == VK_BLEND_FACTOR_SRC_ALPHA || dstRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE)) dstRGB_opt = V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_A0; /* Set the final value. */ blend.sx_mrt_blend_opt[i] = S_028760_COLOR_SRC_OPT(srcRGB_opt) | S_028760_COLOR_DST_OPT(dstRGB_opt) | S_028760_COLOR_COMB_FCN(si_translate_blend_opt_function(eqRGB)) | S_028760_ALPHA_SRC_OPT(srcA_opt) | S_028760_ALPHA_DST_OPT(dstA_opt) | S_028760_ALPHA_COMB_FCN(si_translate_blend_opt_function(eqA)); blend_cntl |= S_028780_ENABLE(1); blend_cntl |= S_028780_COLOR_COMB_FCN(si_translate_blend_function(eqRGB)); blend_cntl |= S_028780_COLOR_SRCBLEND(si_translate_blend_factor(srcRGB)); blend_cntl |= S_028780_COLOR_DESTBLEND(si_translate_blend_factor(dstRGB)); if (srcA != srcRGB || dstA != dstRGB || eqA != eqRGB) { blend_cntl |= S_028780_SEPARATE_ALPHA_BLEND(1); blend_cntl |= S_028780_ALPHA_COMB_FCN(si_translate_blend_function(eqA)); blend_cntl |= S_028780_ALPHA_SRCBLEND(si_translate_blend_factor(srcA)); blend_cntl |= S_028780_ALPHA_DESTBLEND(si_translate_blend_factor(dstA)); } blend.cb_blend_control[i] = blend_cntl; blend.blend_enable_4bit |= 0xfu << (i * 4); if (srcRGB == VK_BLEND_FACTOR_SRC_ALPHA || dstRGB == VK_BLEND_FACTOR_SRC_ALPHA || srcRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE || dstRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE || srcRGB == VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA || dstRGB == VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA) blend.need_src_alpha |= 1 << i; } for (i = vkblend->attachmentCount; i < 8; i++) { blend.cb_blend_control[i] = 0; blend.sx_mrt_blend_opt[i] = S_028760_COLOR_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED) | S_028760_ALPHA_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED); } } if (pipeline->device->physical_device->rad_info.has_rbplus) { /* Disable RB+ blend optimizations for dual source blending. */ if (blend.mrt0_is_dual_src) { for (i = 0; i < 8; i++) { blend.sx_mrt_blend_opt[i] = S_028760_COLOR_COMB_FCN(V_028760_OPT_COMB_NONE) | S_028760_ALPHA_COMB_FCN(V_028760_OPT_COMB_NONE); } } /* RB+ doesn't work with dual source blending, logic op and * RESOLVE. */ if (blend.mrt0_is_dual_src || (vkblend && vkblend->logicOpEnable) || mode == V_028808_CB_RESOLVE) blend.cb_color_control |= S_028808_DISABLE_DUAL_QUAD(1); } if (blend.cb_target_mask) blend.cb_color_control |= S_028808_MODE(mode); else blend.cb_color_control |= S_028808_MODE(V_028808_CB_DISABLE); radv_pipeline_compute_spi_color_formats(pipeline, pCreateInfo, &blend); return blend; } static uint32_t si_translate_fill(VkPolygonMode func) { switch (func) { case VK_POLYGON_MODE_FILL: return V_028814_X_DRAW_TRIANGLES; case VK_POLYGON_MODE_LINE: return V_028814_X_DRAW_LINES; case VK_POLYGON_MODE_POINT: return V_028814_X_DRAW_POINTS; default: assert(0); return V_028814_X_DRAW_POINTS; } } static uint8_t radv_pipeline_get_ps_iter_samples(const VkGraphicsPipelineCreateInfo *pCreateInfo) { const VkPipelineMultisampleStateCreateInfo *vkms = pCreateInfo->pMultisampleState; RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass); struct radv_subpass *subpass = &pass->subpasses[pCreateInfo->subpass]; uint32_t ps_iter_samples = 1; uint32_t num_samples; /* From the Vulkan 1.1.129 spec, 26.7. Sample Shading: * * "If the VK_AMD_mixed_attachment_samples extension is enabled and the * subpass uses color attachments, totalSamples is the number of * samples of the color attachments. Otherwise, totalSamples is the * value of VkPipelineMultisampleStateCreateInfo::rasterizationSamples * specified at pipeline creation time." */ if (subpass->has_color_att) { num_samples = subpass->color_sample_count; } else { num_samples = vkms->rasterizationSamples; } if (vkms->sampleShadingEnable) { ps_iter_samples = ceilf(vkms->minSampleShading * num_samples); ps_iter_samples = util_next_power_of_two(ps_iter_samples); } return ps_iter_samples; } static bool radv_is_depth_write_enabled(const VkPipelineDepthStencilStateCreateInfo *pCreateInfo) { return pCreateInfo->depthTestEnable && pCreateInfo->depthWriteEnable && pCreateInfo->depthCompareOp != VK_COMPARE_OP_NEVER; } static bool radv_writes_stencil(const VkStencilOpState *state) { return state->writeMask && (state->failOp != VK_STENCIL_OP_KEEP || state->passOp != VK_STENCIL_OP_KEEP || state->depthFailOp != VK_STENCIL_OP_KEEP); } static bool radv_is_stencil_write_enabled(const VkPipelineDepthStencilStateCreateInfo *pCreateInfo) { return pCreateInfo->stencilTestEnable && (radv_writes_stencil(&pCreateInfo->front) || radv_writes_stencil(&pCreateInfo->back)); } static bool radv_is_ds_write_enabled(const VkPipelineDepthStencilStateCreateInfo *pCreateInfo) { return radv_is_depth_write_enabled(pCreateInfo) || radv_is_stencil_write_enabled(pCreateInfo); } static bool radv_order_invariant_stencil_op(VkStencilOp op) { /* REPLACE is normally order invariant, except when the stencil * reference value is written by the fragment shader. Tracking this * interaction does not seem worth the effort, so be conservative. */ return op != VK_STENCIL_OP_INCREMENT_AND_CLAMP && op != VK_STENCIL_OP_DECREMENT_AND_CLAMP && op != VK_STENCIL_OP_REPLACE; } static bool radv_order_invariant_stencil_state(const VkStencilOpState *state) { /* Compute whether, assuming Z writes are disabled, this stencil state * is order invariant in the sense that the set of passing fragments as * well as the final stencil buffer result does not depend on the order * of fragments. */ return !state->writeMask || /* The following assumes that Z writes are disabled. */ (state->compareOp == VK_COMPARE_OP_ALWAYS && radv_order_invariant_stencil_op(state->passOp) && radv_order_invariant_stencil_op(state->depthFailOp)) || (state->compareOp == VK_COMPARE_OP_NEVER && radv_order_invariant_stencil_op(state->failOp)); } static bool radv_pipeline_has_dynamic_ds_states(const VkGraphicsPipelineCreateInfo *pCreateInfo) { VkDynamicState ds_states[] = { VK_DYNAMIC_STATE_DEPTH_TEST_ENABLE_EXT, VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE_EXT, VK_DYNAMIC_STATE_DEPTH_COMPARE_OP_EXT, VK_DYNAMIC_STATE_STENCIL_TEST_ENABLE_EXT, VK_DYNAMIC_STATE_STENCIL_OP_EXT, }; for (uint32_t i = 0; i < ARRAY_SIZE(ds_states); i++) { if (radv_is_state_dynamic(pCreateInfo, ds_states[i])) return true; } return false; } static bool radv_pipeline_out_of_order_rast(struct radv_pipeline *pipeline, const struct radv_blend_state *blend, const VkGraphicsPipelineCreateInfo *pCreateInfo) { RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass); struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass; const VkPipelineDepthStencilStateCreateInfo *vkds = radv_pipeline_get_depth_stencil_state(pCreateInfo); const VkPipelineColorBlendStateCreateInfo *vkblend = radv_pipeline_get_color_blend_state(pCreateInfo); unsigned colormask = blend->cb_target_enabled_4bit; if (!pipeline->device->physical_device->out_of_order_rast_allowed) return false; /* Be conservative if a logic operation is enabled with color buffers. */ if (colormask && vkblend && vkblend->logicOpEnable) return false; /* Be conservative if an extended dynamic depth/stencil state is * enabled because the driver can't update out-of-order rasterization * dynamically. */ if (radv_pipeline_has_dynamic_ds_states(pCreateInfo)) return false; /* Default depth/stencil invariance when no attachment is bound. */ struct radv_dsa_order_invariance dsa_order_invariant = {.zs = true, .pass_set = true}; if (vkds) { struct radv_render_pass_attachment *attachment = pass->attachments + subpass->depth_stencil_attachment->attachment; bool has_stencil = vk_format_has_stencil(attachment->format); struct radv_dsa_order_invariance order_invariance[2]; struct radv_shader_variant *ps = pipeline->shaders[MESA_SHADER_FRAGMENT]; /* Compute depth/stencil order invariance in order to know if * it's safe to enable out-of-order. */ bool zfunc_is_ordered = vkds->depthCompareOp == VK_COMPARE_OP_NEVER || vkds->depthCompareOp == VK_COMPARE_OP_LESS || vkds->depthCompareOp == VK_COMPARE_OP_LESS_OR_EQUAL || vkds->depthCompareOp == VK_COMPARE_OP_GREATER || vkds->depthCompareOp == VK_COMPARE_OP_GREATER_OR_EQUAL; bool nozwrite_and_order_invariant_stencil = !radv_is_ds_write_enabled(vkds) || (!radv_is_depth_write_enabled(vkds) && radv_order_invariant_stencil_state(&vkds->front) && radv_order_invariant_stencil_state(&vkds->back)); order_invariance[1].zs = nozwrite_and_order_invariant_stencil || (!radv_is_stencil_write_enabled(vkds) && zfunc_is_ordered); order_invariance[0].zs = !radv_is_depth_write_enabled(vkds) || zfunc_is_ordered; order_invariance[1].pass_set = nozwrite_and_order_invariant_stencil || (!radv_is_stencil_write_enabled(vkds) && (vkds->depthCompareOp == VK_COMPARE_OP_ALWAYS || vkds->depthCompareOp == VK_COMPARE_OP_NEVER)); order_invariance[0].pass_set = !radv_is_depth_write_enabled(vkds) || (vkds->depthCompareOp == VK_COMPARE_OP_ALWAYS || vkds->depthCompareOp == VK_COMPARE_OP_NEVER); dsa_order_invariant = order_invariance[has_stencil]; if (!dsa_order_invariant.zs) return false; /* The set of PS invocations is always order invariant, * except when early Z/S tests are requested. */ if (ps && ps->info.ps.writes_memory && ps->info.ps.early_fragment_test && !dsa_order_invariant.pass_set) return false; /* Determine if out-of-order rasterization should be disabled * when occlusion queries are used. */ pipeline->graphics.disable_out_of_order_rast_for_occlusion = !dsa_order_invariant.pass_set; } /* No color buffers are enabled for writing. */ if (!colormask) return true; unsigned blendmask = colormask & blend->blend_enable_4bit; if (blendmask) { /* Only commutative blending. */ if (blendmask & ~blend->commutative_4bit) return false; if (!dsa_order_invariant.pass_set) return false; } if (colormask & ~blendmask) return false; return true; } static const VkConservativeRasterizationModeEXT radv_get_conservative_raster_mode(const VkPipelineRasterizationStateCreateInfo *pCreateInfo) { const VkPipelineRasterizationConservativeStateCreateInfoEXT *conservative_raster = vk_find_struct_const(pCreateInfo->pNext, PIPELINE_RASTERIZATION_CONSERVATIVE_STATE_CREATE_INFO_EXT); if (!conservative_raster) return VK_CONSERVATIVE_RASTERIZATION_MODE_DISABLED_EXT; return conservative_raster->conservativeRasterizationMode; } static void radv_pipeline_init_multisample_state(struct radv_pipeline *pipeline, const struct radv_blend_state *blend, const VkGraphicsPipelineCreateInfo *pCreateInfo) { const VkPipelineMultisampleStateCreateInfo *vkms = radv_pipeline_get_multisample_state(pCreateInfo); struct radv_multisample_state *ms = &pipeline->graphics.ms; unsigned num_tile_pipes = pipeline->device->physical_device->rad_info.num_tile_pipes; const VkConservativeRasterizationModeEXT mode = radv_get_conservative_raster_mode(pCreateInfo->pRasterizationState); bool out_of_order_rast = false; int ps_iter_samples = 1; uint32_t mask = 0xffff; if (vkms) { ms->num_samples = vkms->rasterizationSamples; /* From the Vulkan 1.1.129 spec, 26.7. Sample Shading: * * "Sample shading is enabled for a graphics pipeline: * * - If the interface of the fragment shader entry point of the * graphics pipeline includes an input variable decorated * with SampleId or SamplePosition. In this case * minSampleShadingFactor takes the value 1.0. * - Else if the sampleShadingEnable member of the * VkPipelineMultisampleStateCreateInfo structure specified * when creating the graphics pipeline is set to VK_TRUE. In * this case minSampleShadingFactor takes the value of * VkPipelineMultisampleStateCreateInfo::minSampleShading. * * Otherwise, sample shading is considered disabled." */ if (pipeline->shaders[MESA_SHADER_FRAGMENT]->info.ps.uses_sample_shading) { ps_iter_samples = ms->num_samples; } else { ps_iter_samples = radv_pipeline_get_ps_iter_samples(pCreateInfo); } } else { ms->num_samples = 1; } const struct VkPipelineRasterizationStateRasterizationOrderAMD *raster_order = vk_find_struct_const(pCreateInfo->pRasterizationState->pNext, PIPELINE_RASTERIZATION_STATE_RASTERIZATION_ORDER_AMD); if (raster_order && raster_order->rasterizationOrder == VK_RASTERIZATION_ORDER_RELAXED_AMD) { /* Out-of-order rasterization is explicitly enabled by the * application. */ out_of_order_rast = true; } else { /* Determine if the driver can enable out-of-order * rasterization internally. */ out_of_order_rast = radv_pipeline_out_of_order_rast(pipeline, blend, pCreateInfo); } ms->pa_sc_aa_config = 0; ms->db_eqaa = S_028804_HIGH_QUALITY_INTERSECTIONS(1) | S_028804_INCOHERENT_EQAA_READS(1) | S_028804_INTERPOLATE_COMP_Z(1) | S_028804_STATIC_ANCHOR_ASSOCIATIONS(1); /* Adjust MSAA state if conservative rasterization is enabled. */ if (mode != VK_CONSERVATIVE_RASTERIZATION_MODE_DISABLED_EXT) { ms->pa_sc_aa_config |= S_028BE0_AA_MASK_CENTROID_DTMN(1); ms->db_eqaa |= S_028804_ENABLE_POSTZ_OVERRASTERIZATION(1) | S_028804_OVERRASTERIZATION_AMOUNT(4); } ms->pa_sc_mode_cntl_1 = S_028A4C_WALK_FENCE_ENABLE(1) | // TODO linear dst fixes S_028A4C_WALK_FENCE_SIZE(num_tile_pipes == 2 ? 2 : 3) | S_028A4C_OUT_OF_ORDER_PRIMITIVE_ENABLE(out_of_order_rast) | S_028A4C_OUT_OF_ORDER_WATER_MARK(0x7) | /* always 1: */ S_028A4C_WALK_ALIGN8_PRIM_FITS_ST(1) | S_028A4C_SUPERTILE_WALK_ORDER_ENABLE(1) | S_028A4C_TILE_WALK_ORDER_ENABLE(1) | S_028A4C_MULTI_SHADER_ENGINE_PRIM_DISCARD_ENABLE(1) | S_028A4C_FORCE_EOV_CNTDWN_ENABLE(1) | S_028A4C_FORCE_EOV_REZ_ENABLE(1); ms->pa_sc_mode_cntl_0 = S_028A48_ALTERNATE_RBS_PER_TILE( pipeline->device->physical_device->rad_info.chip_class >= GFX9) | S_028A48_VPORT_SCISSOR_ENABLE(1); const VkPipelineRasterizationLineStateCreateInfoEXT *rast_line = vk_find_struct_const( pCreateInfo->pRasterizationState->pNext, PIPELINE_RASTERIZATION_LINE_STATE_CREATE_INFO_EXT); if (rast_line) { ms->pa_sc_mode_cntl_0 |= S_028A48_LINE_STIPPLE_ENABLE(rast_line->stippledLineEnable); if (rast_line->lineRasterizationMode == VK_LINE_RASTERIZATION_MODE_BRESENHAM_EXT) { /* From the Vulkan spec 1.1.129: * * "When VK_LINE_RASTERIZATION_MODE_BRESENHAM_EXT lines * are being rasterized, sample locations may all be * treated as being at the pixel center (this may * affect attribute and depth interpolation)." */ ms->num_samples = 1; } } if (ms->num_samples > 1) { RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass); struct radv_subpass *subpass = &pass->subpasses[pCreateInfo->subpass]; uint32_t z_samples = subpass->depth_stencil_attachment ? subpass->depth_sample_count : ms->num_samples; unsigned log_samples = util_logbase2(ms->num_samples); unsigned log_z_samples = util_logbase2(z_samples); unsigned log_ps_iter_samples = util_logbase2(ps_iter_samples); ms->pa_sc_mode_cntl_0 |= S_028A48_MSAA_ENABLE(1); ms->db_eqaa |= S_028804_MAX_ANCHOR_SAMPLES(log_z_samples) | S_028804_PS_ITER_SAMPLES(log_ps_iter_samples) | S_028804_MASK_EXPORT_NUM_SAMPLES(log_samples) | S_028804_ALPHA_TO_MASK_NUM_SAMPLES(log_samples); ms->pa_sc_aa_config |= S_028BE0_MSAA_NUM_SAMPLES(log_samples) | S_028BE0_MAX_SAMPLE_DIST(radv_get_default_max_sample_dist(log_samples)) | S_028BE0_MSAA_EXPOSED_SAMPLES(log_samples) | /* CM_R_028BE0_PA_SC_AA_CONFIG */ S_028BE0_COVERED_CENTROID_IS_CENTER( pipeline->device->physical_device->rad_info.chip_class >= GFX10_3); ms->pa_sc_mode_cntl_1 |= S_028A4C_PS_ITER_SAMPLE(ps_iter_samples > 1); if (ps_iter_samples > 1) pipeline->graphics.spi_baryc_cntl |= S_0286E0_POS_FLOAT_LOCATION(2); } if (vkms && vkms->pSampleMask) { mask = vkms->pSampleMask[0] & 0xffff; } ms->pa_sc_aa_mask[0] = mask | (mask << 16); ms->pa_sc_aa_mask[1] = mask | (mask << 16); } static void gfx103_pipeline_init_vrs_state(struct radv_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo) { const VkPipelineMultisampleStateCreateInfo *vkms = radv_pipeline_get_multisample_state(pCreateInfo); struct radv_shader_variant *ps = pipeline->shaders[MESA_SHADER_FRAGMENT]; struct radv_multisample_state *ms = &pipeline->graphics.ms; struct radv_vrs_state *vrs = &pipeline->graphics.vrs; if (vkms && (vkms->sampleShadingEnable || ps->info.ps.uses_sample_shading || ps->info.ps.reads_sample_mask_in)) { /* Disable VRS and use the rates from PS_ITER_SAMPLES if: * * 1) sample shading is enabled or per-sample interpolation is * used by the fragment shader * 2) the fragment shader reads gl_SampleMaskIn because the * 16-bit sample coverage mask isn't enough for MSAA8x and * 2x2 coarse shading isn't enough. */ vrs->pa_cl_vrs_cntl = S_028848_SAMPLE_ITER_COMBINER_MODE(V_028848_VRS_COMB_MODE_OVERRIDE); /* Make sure sample shading is enabled even if only MSAA1x is * used because the SAMPLE_ITER combiner is in passthrough * mode if PS_ITER_SAMPLE is 0, and it uses the per-draw rate. * The default VRS rate when sample shading is enabled is 1x1. */ if (!G_028A4C_PS_ITER_SAMPLE(ms->pa_sc_mode_cntl_1)) ms->pa_sc_mode_cntl_1 |= S_028A4C_PS_ITER_SAMPLE(1); } else { vrs->pa_cl_vrs_cntl = S_028848_SAMPLE_ITER_COMBINER_MODE(V_028848_VRS_COMB_MODE_PASSTHRU); } /* The primitive combiner is always passthrough. */ vrs->pa_cl_vrs_cntl |= S_028848_PRIMITIVE_RATE_COMBINER_MODE(V_028848_VRS_COMB_MODE_PASSTHRU); } static bool radv_prim_can_use_guardband(enum VkPrimitiveTopology topology) { switch (topology) { case VK_PRIMITIVE_TOPOLOGY_POINT_LIST: case VK_PRIMITIVE_TOPOLOGY_LINE_LIST: case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP: case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY: case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY: return false; case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST: case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP: case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN: case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY: case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY: case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST: return true; default: unreachable("unhandled primitive type"); } } static uint32_t si_conv_gl_prim_to_gs_out(unsigned gl_prim) { switch (gl_prim) { case 0: /* GL_POINTS */ return V_028A6C_POINTLIST; case 1: /* GL_LINES */ case 3: /* GL_LINE_STRIP */ case 0xA: /* GL_LINE_STRIP_ADJACENCY_ARB */ case 0x8E7A: /* GL_ISOLINES */ return V_028A6C_LINESTRIP; case 4: /* GL_TRIANGLES */ case 0xc: /* GL_TRIANGLES_ADJACENCY_ARB */ case 5: /* GL_TRIANGLE_STRIP */ case 7: /* GL_QUADS */ return V_028A6C_TRISTRIP; default: assert(0); return 0; } } static uint32_t si_conv_prim_to_gs_out(enum VkPrimitiveTopology topology) { switch (topology) { case VK_PRIMITIVE_TOPOLOGY_POINT_LIST: case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST: return V_028A6C_POINTLIST; case VK_PRIMITIVE_TOPOLOGY_LINE_LIST: case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP: case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY: case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY: return V_028A6C_LINESTRIP; case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST: case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP: case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN: case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY: case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY: return V_028A6C_TRISTRIP; default: assert(0); return 0; } } static uint64_t radv_dynamic_state_mask(VkDynamicState state) { switch (state) { case VK_DYNAMIC_STATE_VIEWPORT: case VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT_EXT: return RADV_DYNAMIC_VIEWPORT; case VK_DYNAMIC_STATE_SCISSOR: case VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT_EXT: return RADV_DYNAMIC_SCISSOR; case VK_DYNAMIC_STATE_LINE_WIDTH: return RADV_DYNAMIC_LINE_WIDTH; case VK_DYNAMIC_STATE_DEPTH_BIAS: return RADV_DYNAMIC_DEPTH_BIAS; case VK_DYNAMIC_STATE_BLEND_CONSTANTS: return RADV_DYNAMIC_BLEND_CONSTANTS; case VK_DYNAMIC_STATE_DEPTH_BOUNDS: return RADV_DYNAMIC_DEPTH_BOUNDS; case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK: return RADV_DYNAMIC_STENCIL_COMPARE_MASK; case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK: return RADV_DYNAMIC_STENCIL_WRITE_MASK; case VK_DYNAMIC_STATE_STENCIL_REFERENCE: return RADV_DYNAMIC_STENCIL_REFERENCE; case VK_DYNAMIC_STATE_DISCARD_RECTANGLE_EXT: return RADV_DYNAMIC_DISCARD_RECTANGLE; case VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT: return RADV_DYNAMIC_SAMPLE_LOCATIONS; case VK_DYNAMIC_STATE_LINE_STIPPLE_EXT: return RADV_DYNAMIC_LINE_STIPPLE; case VK_DYNAMIC_STATE_CULL_MODE_EXT: return RADV_DYNAMIC_CULL_MODE; case VK_DYNAMIC_STATE_FRONT_FACE_EXT: return RADV_DYNAMIC_FRONT_FACE; case VK_DYNAMIC_STATE_PRIMITIVE_TOPOLOGY_EXT: return RADV_DYNAMIC_PRIMITIVE_TOPOLOGY; case VK_DYNAMIC_STATE_DEPTH_TEST_ENABLE_EXT: return RADV_DYNAMIC_DEPTH_TEST_ENABLE; case VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE_EXT: return RADV_DYNAMIC_DEPTH_WRITE_ENABLE; case VK_DYNAMIC_STATE_DEPTH_COMPARE_OP_EXT: return RADV_DYNAMIC_DEPTH_COMPARE_OP; case VK_DYNAMIC_STATE_DEPTH_BOUNDS_TEST_ENABLE_EXT: return RADV_DYNAMIC_DEPTH_BOUNDS_TEST_ENABLE; case VK_DYNAMIC_STATE_STENCIL_TEST_ENABLE_EXT: return RADV_DYNAMIC_STENCIL_TEST_ENABLE; case VK_DYNAMIC_STATE_STENCIL_OP_EXT: return RADV_DYNAMIC_STENCIL_OP; case VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE_EXT: return RADV_DYNAMIC_VERTEX_INPUT_BINDING_STRIDE; case VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR: return RADV_DYNAMIC_FRAGMENT_SHADING_RATE; case VK_DYNAMIC_STATE_PATCH_CONTROL_POINTS_EXT: return RADV_DYNAMIC_PATCH_CONTROL_POINTS; case VK_DYNAMIC_STATE_RASTERIZER_DISCARD_ENABLE_EXT: return RADV_DYNAMIC_RASTERIZER_DISCARD_ENABLE; case VK_DYNAMIC_STATE_DEPTH_BIAS_ENABLE_EXT: return RADV_DYNAMIC_DEPTH_BIAS_ENABLE; case VK_DYNAMIC_STATE_LOGIC_OP_EXT: return RADV_DYNAMIC_LOGIC_OP; case VK_DYNAMIC_STATE_PRIMITIVE_RESTART_ENABLE_EXT: return RADV_DYNAMIC_PRIMITIVE_RESTART_ENABLE; default: unreachable("Unhandled dynamic state"); } } static uint64_t radv_pipeline_needed_dynamic_state(const VkGraphicsPipelineCreateInfo *pCreateInfo) { uint64_t states = RADV_DYNAMIC_ALL; /* If rasterization is disabled we do not care about any of the * dynamic states, since they are all rasterization related only, * except primitive topology, primitive restart enable and vertex * binding stride. */ if (pCreateInfo->pRasterizationState->rasterizerDiscardEnable && !radv_is_state_dynamic(pCreateInfo, VK_DYNAMIC_STATE_RASTERIZER_DISCARD_ENABLE_EXT)) return RADV_DYNAMIC_PRIMITIVE_TOPOLOGY | RADV_DYNAMIC_VERTEX_INPUT_BINDING_STRIDE | RADV_DYNAMIC_PRIMITIVE_RESTART_ENABLE; if (!pCreateInfo->pRasterizationState->depthBiasEnable && !radv_is_state_dynamic(pCreateInfo, VK_DYNAMIC_STATE_DEPTH_BIAS_ENABLE_EXT)) states &= ~RADV_DYNAMIC_DEPTH_BIAS; if (!pCreateInfo->pDepthStencilState || (!pCreateInfo->pDepthStencilState->depthBoundsTestEnable && !radv_is_state_dynamic(pCreateInfo, VK_DYNAMIC_STATE_DEPTH_BOUNDS_TEST_ENABLE_EXT))) states &= ~RADV_DYNAMIC_DEPTH_BOUNDS; if (!pCreateInfo->pDepthStencilState || (!pCreateInfo->pDepthStencilState->stencilTestEnable && !radv_is_state_dynamic(pCreateInfo, VK_DYNAMIC_STATE_STENCIL_TEST_ENABLE_EXT))) states &= ~(RADV_DYNAMIC_STENCIL_COMPARE_MASK | RADV_DYNAMIC_STENCIL_WRITE_MASK | RADV_DYNAMIC_STENCIL_REFERENCE); if (!vk_find_struct_const(pCreateInfo->pNext, PIPELINE_DISCARD_RECTANGLE_STATE_CREATE_INFO_EXT)) states &= ~RADV_DYNAMIC_DISCARD_RECTANGLE; if (!pCreateInfo->pMultisampleState || !vk_find_struct_const(pCreateInfo->pMultisampleState->pNext, PIPELINE_SAMPLE_LOCATIONS_STATE_CREATE_INFO_EXT)) states &= ~RADV_DYNAMIC_SAMPLE_LOCATIONS; if (!pCreateInfo->pRasterizationState || !vk_find_struct_const(pCreateInfo->pRasterizationState->pNext, PIPELINE_RASTERIZATION_LINE_STATE_CREATE_INFO_EXT)) states &= ~RADV_DYNAMIC_LINE_STIPPLE; if (!vk_find_struct_const(pCreateInfo->pNext, PIPELINE_FRAGMENT_SHADING_RATE_STATE_CREATE_INFO_KHR) && !radv_is_state_dynamic(pCreateInfo, VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR)) states &= ~RADV_DYNAMIC_FRAGMENT_SHADING_RATE; /* TODO: blend constants & line width. */ return states; } static struct radv_ia_multi_vgt_param_helpers radv_compute_ia_multi_vgt_param_helpers(struct radv_pipeline *pipeline) { struct radv_ia_multi_vgt_param_helpers ia_multi_vgt_param = {0}; const struct radv_device *device = pipeline->device; if (radv_pipeline_has_tess(pipeline)) ia_multi_vgt_param.primgroup_size = pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.num_tess_patches; else if (radv_pipeline_has_gs(pipeline)) ia_multi_vgt_param.primgroup_size = 64; else ia_multi_vgt_param.primgroup_size = 128; /* recommended without a GS */ /* GS requirement. */ ia_multi_vgt_param.partial_es_wave = false; if (radv_pipeline_has_gs(pipeline) && device->physical_device->rad_info.chip_class <= GFX8) if (SI_GS_PER_ES / ia_multi_vgt_param.primgroup_size >= pipeline->device->gs_table_depth - 3) ia_multi_vgt_param.partial_es_wave = true; ia_multi_vgt_param.ia_switch_on_eoi = false; if (pipeline->shaders[MESA_SHADER_FRAGMENT]->info.ps.prim_id_input) ia_multi_vgt_param.ia_switch_on_eoi = true; if (radv_pipeline_has_gs(pipeline) && pipeline->shaders[MESA_SHADER_GEOMETRY]->info.uses_prim_id) ia_multi_vgt_param.ia_switch_on_eoi = true; if (radv_pipeline_has_tess(pipeline)) { /* SWITCH_ON_EOI must be set if PrimID is used. */ if (pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.uses_prim_id || radv_get_shader(pipeline, MESA_SHADER_TESS_EVAL)->info.uses_prim_id) ia_multi_vgt_param.ia_switch_on_eoi = true; } ia_multi_vgt_param.partial_vs_wave = false; if (radv_pipeline_has_tess(pipeline)) { /* Bug with tessellation and GS on Bonaire and older 2 SE chips. */ if ((device->physical_device->rad_info.family == CHIP_TAHITI || device->physical_device->rad_info.family == CHIP_PITCAIRN || device->physical_device->rad_info.family == CHIP_BONAIRE) && radv_pipeline_has_gs(pipeline)) ia_multi_vgt_param.partial_vs_wave = true; /* Needed for 028B6C_DISTRIBUTION_MODE != 0 */ if (device->physical_device->rad_info.has_distributed_tess) { if (radv_pipeline_has_gs(pipeline)) { if (device->physical_device->rad_info.chip_class <= GFX8) ia_multi_vgt_param.partial_es_wave = true; } else { ia_multi_vgt_param.partial_vs_wave = true; } } } if (radv_pipeline_has_gs(pipeline)) { /* On these chips there is the possibility of a hang if the * pipeline uses a GS and partial_vs_wave is not set. * * This mostly does not hit 4-SE chips, as those typically set * ia_switch_on_eoi and then partial_vs_wave is set for pipelines * with GS due to another workaround. * * Reproducer: https://bugs.freedesktop.org/show_bug.cgi?id=109242 */ if (device->physical_device->rad_info.family == CHIP_TONGA || device->physical_device->rad_info.family == CHIP_FIJI || device->physical_device->rad_info.family == CHIP_POLARIS10 || device->physical_device->rad_info.family == CHIP_POLARIS11 || device->physical_device->rad_info.family == CHIP_POLARIS12 || device->physical_device->rad_info.family == CHIP_VEGAM) { ia_multi_vgt_param.partial_vs_wave = true; } } ia_multi_vgt_param.base = S_028AA8_PRIMGROUP_SIZE(ia_multi_vgt_param.primgroup_size - 1) | /* The following field was moved to VGT_SHADER_STAGES_EN in GFX9. */ S_028AA8_MAX_PRIMGRP_IN_WAVE(device->physical_device->rad_info.chip_class == GFX8 ? 2 : 0) | S_030960_EN_INST_OPT_BASIC(device->physical_device->rad_info.chip_class >= GFX9) | S_030960_EN_INST_OPT_ADV(device->physical_device->rad_info.chip_class >= GFX9); return ia_multi_vgt_param; } static void radv_pipeline_init_input_assembly_state(struct radv_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo, const struct radv_graphics_pipeline_create_info *extra) { const VkPipelineInputAssemblyStateCreateInfo *ia_state = pCreateInfo->pInputAssemblyState; struct radv_shader_variant *tes = pipeline->shaders[MESA_SHADER_TESS_EVAL]; struct radv_shader_variant *gs = pipeline->shaders[MESA_SHADER_GEOMETRY]; pipeline->graphics.can_use_guardband = radv_prim_can_use_guardband(ia_state->topology); if (radv_pipeline_has_gs(pipeline)) { if (si_conv_gl_prim_to_gs_out(gs->info.gs.output_prim) == V_028A6C_TRISTRIP) pipeline->graphics.can_use_guardband = true; } else if (radv_pipeline_has_tess(pipeline)) { if (!tes->info.tes.point_mode && si_conv_gl_prim_to_gs_out(tes->info.tes.primitive_mode) == V_028A6C_TRISTRIP) pipeline->graphics.can_use_guardband = true; } if (extra && extra->use_rectlist) { pipeline->graphics.can_use_guardband = true; } pipeline->graphics.ia_multi_vgt_param = radv_compute_ia_multi_vgt_param_helpers(pipeline); } static void radv_pipeline_init_dynamic_state(struct radv_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo, const struct radv_graphics_pipeline_create_info *extra) { uint64_t needed_states = radv_pipeline_needed_dynamic_state(pCreateInfo); uint64_t states = needed_states; RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass); struct radv_subpass *subpass = &pass->subpasses[pCreateInfo->subpass]; pipeline->dynamic_state = default_dynamic_state; pipeline->graphics.needed_dynamic_state = needed_states; if (pCreateInfo->pDynamicState) { /* Remove all of the states that are marked as dynamic */ uint32_t count = pCreateInfo->pDynamicState->dynamicStateCount; for (uint32_t s = 0; s < count; s++) states &= ~radv_dynamic_state_mask(pCreateInfo->pDynamicState->pDynamicStates[s]); } struct radv_dynamic_state *dynamic = &pipeline->dynamic_state; if (needed_states & RADV_DYNAMIC_VIEWPORT) { assert(pCreateInfo->pViewportState); dynamic->viewport.count = pCreateInfo->pViewportState->viewportCount; if (states & RADV_DYNAMIC_VIEWPORT) { typed_memcpy(dynamic->viewport.viewports, pCreateInfo->pViewportState->pViewports, pCreateInfo->pViewportState->viewportCount); } } if (needed_states & RADV_DYNAMIC_SCISSOR) { dynamic->scissor.count = pCreateInfo->pViewportState->scissorCount; if (states & RADV_DYNAMIC_SCISSOR) { typed_memcpy(dynamic->scissor.scissors, pCreateInfo->pViewportState->pScissors, pCreateInfo->pViewportState->scissorCount); } } if (states & RADV_DYNAMIC_LINE_WIDTH) { assert(pCreateInfo->pRasterizationState); dynamic->line_width = pCreateInfo->pRasterizationState->lineWidth; } if (states & RADV_DYNAMIC_DEPTH_BIAS) { assert(pCreateInfo->pRasterizationState); dynamic->depth_bias.bias = pCreateInfo->pRasterizationState->depthBiasConstantFactor; dynamic->depth_bias.clamp = pCreateInfo->pRasterizationState->depthBiasClamp; dynamic->depth_bias.slope = pCreateInfo->pRasterizationState->depthBiasSlopeFactor; } /* Section 9.2 of the Vulkan 1.0.15 spec says: * * pColorBlendState is [...] NULL if the pipeline has rasterization * disabled or if the subpass of the render pass the pipeline is * created against does not use any color attachments. */ if (subpass->has_color_att && states & RADV_DYNAMIC_BLEND_CONSTANTS) { assert(pCreateInfo->pColorBlendState); typed_memcpy(dynamic->blend_constants, pCreateInfo->pColorBlendState->blendConstants, 4); } if (states & RADV_DYNAMIC_CULL_MODE) { dynamic->cull_mode = pCreateInfo->pRasterizationState->cullMode; } if (states & RADV_DYNAMIC_FRONT_FACE) { dynamic->front_face = pCreateInfo->pRasterizationState->frontFace; } if (states & RADV_DYNAMIC_PRIMITIVE_TOPOLOGY) { dynamic->primitive_topology = si_translate_prim(pCreateInfo->pInputAssemblyState->topology); if (extra && extra->use_rectlist) { dynamic->primitive_topology = V_008958_DI_PT_RECTLIST; } } /* If there is no depthstencil attachment, then don't read * pDepthStencilState. The Vulkan spec states that pDepthStencilState may * be NULL in this case. Even if pDepthStencilState is non-NULL, there is * no need to override the depthstencil defaults in * radv_pipeline::dynamic_state when there is no depthstencil attachment. * * Section 9.2 of the Vulkan 1.0.15 spec says: * * pDepthStencilState is [...] NULL if the pipeline has rasterization * disabled or if the subpass of the render pass the pipeline is created * against does not use a depth/stencil attachment. */ if (needed_states && subpass->depth_stencil_attachment) { if (states & RADV_DYNAMIC_DEPTH_BOUNDS) { dynamic->depth_bounds.min = pCreateInfo->pDepthStencilState->minDepthBounds; dynamic->depth_bounds.max = pCreateInfo->pDepthStencilState->maxDepthBounds; } if (states & RADV_DYNAMIC_STENCIL_COMPARE_MASK) { dynamic->stencil_compare_mask.front = pCreateInfo->pDepthStencilState->front.compareMask; dynamic->stencil_compare_mask.back = pCreateInfo->pDepthStencilState->back.compareMask; } if (states & RADV_DYNAMIC_STENCIL_WRITE_MASK) { dynamic->stencil_write_mask.front = pCreateInfo->pDepthStencilState->front.writeMask; dynamic->stencil_write_mask.back = pCreateInfo->pDepthStencilState->back.writeMask; } if (states & RADV_DYNAMIC_STENCIL_REFERENCE) { dynamic->stencil_reference.front = pCreateInfo->pDepthStencilState->front.reference; dynamic->stencil_reference.back = pCreateInfo->pDepthStencilState->back.reference; } if (states & RADV_DYNAMIC_DEPTH_TEST_ENABLE) { dynamic->depth_test_enable = pCreateInfo->pDepthStencilState->depthTestEnable; } if (states & RADV_DYNAMIC_DEPTH_WRITE_ENABLE) { dynamic->depth_write_enable = pCreateInfo->pDepthStencilState->depthWriteEnable; } if (states & RADV_DYNAMIC_DEPTH_COMPARE_OP) { dynamic->depth_compare_op = pCreateInfo->pDepthStencilState->depthCompareOp; } if (states & RADV_DYNAMIC_DEPTH_BOUNDS_TEST_ENABLE) { dynamic->depth_bounds_test_enable = pCreateInfo->pDepthStencilState->depthBoundsTestEnable; } if (states & RADV_DYNAMIC_STENCIL_TEST_ENABLE) { dynamic->stencil_test_enable = pCreateInfo->pDepthStencilState->stencilTestEnable; } if (states & RADV_DYNAMIC_STENCIL_OP) { dynamic->stencil_op.front.compare_op = pCreateInfo->pDepthStencilState->front.compareOp; dynamic->stencil_op.front.fail_op = pCreateInfo->pDepthStencilState->front.failOp; dynamic->stencil_op.front.pass_op = pCreateInfo->pDepthStencilState->front.passOp; dynamic->stencil_op.front.depth_fail_op = pCreateInfo->pDepthStencilState->front.depthFailOp; dynamic->stencil_op.back.compare_op = pCreateInfo->pDepthStencilState->back.compareOp; dynamic->stencil_op.back.fail_op = pCreateInfo->pDepthStencilState->back.failOp; dynamic->stencil_op.back.pass_op = pCreateInfo->pDepthStencilState->back.passOp; dynamic->stencil_op.back.depth_fail_op = pCreateInfo->pDepthStencilState->back.depthFailOp; } } const VkPipelineDiscardRectangleStateCreateInfoEXT *discard_rectangle_info = vk_find_struct_const(pCreateInfo->pNext, PIPELINE_DISCARD_RECTANGLE_STATE_CREATE_INFO_EXT); if (needed_states & RADV_DYNAMIC_DISCARD_RECTANGLE) { dynamic->discard_rectangle.count = discard_rectangle_info->discardRectangleCount; if (states & RADV_DYNAMIC_DISCARD_RECTANGLE) { typed_memcpy(dynamic->discard_rectangle.rectangles, discard_rectangle_info->pDiscardRectangles, discard_rectangle_info->discardRectangleCount); } } if (needed_states & RADV_DYNAMIC_SAMPLE_LOCATIONS) { const VkPipelineSampleLocationsStateCreateInfoEXT *sample_location_info = vk_find_struct_const(pCreateInfo->pMultisampleState->pNext, PIPELINE_SAMPLE_LOCATIONS_STATE_CREATE_INFO_EXT); /* If sampleLocationsEnable is VK_FALSE, the default sample * locations are used and the values specified in * sampleLocationsInfo are ignored. */ if (sample_location_info->sampleLocationsEnable) { const VkSampleLocationsInfoEXT *pSampleLocationsInfo = &sample_location_info->sampleLocationsInfo; assert(pSampleLocationsInfo->sampleLocationsCount <= MAX_SAMPLE_LOCATIONS); dynamic->sample_location.per_pixel = pSampleLocationsInfo->sampleLocationsPerPixel; dynamic->sample_location.grid_size = pSampleLocationsInfo->sampleLocationGridSize; dynamic->sample_location.count = pSampleLocationsInfo->sampleLocationsCount; typed_memcpy(&dynamic->sample_location.locations[0], pSampleLocationsInfo->pSampleLocations, pSampleLocationsInfo->sampleLocationsCount); } } const VkPipelineRasterizationLineStateCreateInfoEXT *rast_line_info = vk_find_struct_const( pCreateInfo->pRasterizationState->pNext, PIPELINE_RASTERIZATION_LINE_STATE_CREATE_INFO_EXT); if (needed_states & RADV_DYNAMIC_LINE_STIPPLE) { dynamic->line_stipple.factor = rast_line_info->lineStippleFactor; dynamic->line_stipple.pattern = rast_line_info->lineStipplePattern; } if (!(states & RADV_DYNAMIC_VERTEX_INPUT_BINDING_STRIDE)) pipeline->graphics.uses_dynamic_stride = true; const VkPipelineFragmentShadingRateStateCreateInfoKHR *shading_rate = vk_find_struct_const( pCreateInfo->pNext, PIPELINE_FRAGMENT_SHADING_RATE_STATE_CREATE_INFO_KHR); if (states & RADV_DYNAMIC_FRAGMENT_SHADING_RATE) { dynamic->fragment_shading_rate.size = shading_rate->fragmentSize; for (int i = 0; i < 2; i++) dynamic->fragment_shading_rate.combiner_ops[i] = shading_rate->combinerOps[i]; } if (states & RADV_DYNAMIC_DEPTH_BIAS_ENABLE) { dynamic->depth_bias_enable = pCreateInfo->pRasterizationState->depthBiasEnable; } if (states & RADV_DYNAMIC_PRIMITIVE_RESTART_ENABLE) { dynamic->primitive_restart_enable = !!pCreateInfo->pInputAssemblyState->primitiveRestartEnable; } if (states & RADV_DYNAMIC_RASTERIZER_DISCARD_ENABLE) { dynamic->rasterizer_discard_enable = pCreateInfo->pRasterizationState->rasterizerDiscardEnable; } pipeline->dynamic_state.mask = states; } static void radv_pipeline_init_raster_state(struct radv_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo) { const VkPipelineRasterizationStateCreateInfo *raster_info = pCreateInfo->pRasterizationState; const VkPipelineRasterizationProvokingVertexStateCreateInfoEXT *provoking_vtx_info = vk_find_struct_const(raster_info->pNext, PIPELINE_RASTERIZATION_PROVOKING_VERTEX_STATE_CREATE_INFO_EXT); bool provoking_vtx_last = false; if (provoking_vtx_info && provoking_vtx_info->provokingVertexMode == VK_PROVOKING_VERTEX_MODE_LAST_VERTEX_EXT) { provoking_vtx_last = true; } pipeline->graphics.pa_su_sc_mode_cntl = S_028814_FACE(raster_info->frontFace) | S_028814_CULL_FRONT(!!(raster_info->cullMode & VK_CULL_MODE_FRONT_BIT)) | S_028814_CULL_BACK(!!(raster_info->cullMode & VK_CULL_MODE_BACK_BIT)) | S_028814_POLY_MODE(raster_info->polygonMode != VK_POLYGON_MODE_FILL) | S_028814_POLYMODE_FRONT_PTYPE(si_translate_fill(raster_info->polygonMode)) | S_028814_POLYMODE_BACK_PTYPE(si_translate_fill(raster_info->polygonMode)) | S_028814_POLY_OFFSET_FRONT_ENABLE(raster_info->depthBiasEnable ? 1 : 0) | S_028814_POLY_OFFSET_BACK_ENABLE(raster_info->depthBiasEnable ? 1 : 0) | S_028814_POLY_OFFSET_PARA_ENABLE(raster_info->depthBiasEnable ? 1 : 0) | S_028814_PROVOKING_VTX_LAST(provoking_vtx_last); if (pipeline->device->physical_device->rad_info.chip_class >= GFX10) { /* It should also be set if PERPENDICULAR_ENDCAP_ENA is set. */ pipeline->graphics.pa_su_sc_mode_cntl |= S_028814_KEEP_TOGETHER_ENABLE(raster_info->polygonMode != VK_POLYGON_MODE_FILL); } bool depth_clip_disable = raster_info->depthClampEnable; const VkPipelineRasterizationDepthClipStateCreateInfoEXT *depth_clip_state = vk_find_struct_const(raster_info->pNext, PIPELINE_RASTERIZATION_DEPTH_CLIP_STATE_CREATE_INFO_EXT); if (depth_clip_state) { depth_clip_disable = !depth_clip_state->depthClipEnable; } pipeline->graphics.pa_cl_clip_cntl = S_028810_DX_CLIP_SPACE_DEF(1) | // vulkan uses DX conventions. S_028810_ZCLIP_NEAR_DISABLE(depth_clip_disable ? 1 : 0) | S_028810_ZCLIP_FAR_DISABLE(depth_clip_disable ? 1 : 0) | S_028810_DX_RASTERIZATION_KILL(raster_info->rasterizerDiscardEnable ? 1 : 0) | S_028810_DX_LINEAR_ATTR_CLIP_ENA(1); } static void radv_pipeline_init_depth_stencil_state(struct radv_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo) { const VkPipelineDepthStencilStateCreateInfo *ds_info = radv_pipeline_get_depth_stencil_state(pCreateInfo); RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass); struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass; struct radv_render_pass_attachment *attachment = NULL; uint32_t db_depth_control = 0; if (subpass->depth_stencil_attachment) attachment = pass->attachments + subpass->depth_stencil_attachment->attachment; bool has_depth_attachment = attachment && vk_format_has_depth(attachment->format); bool has_stencil_attachment = attachment && vk_format_has_stencil(attachment->format); if (ds_info) { if (has_depth_attachment) { db_depth_control = S_028800_Z_ENABLE(ds_info->depthTestEnable ? 1 : 0) | S_028800_Z_WRITE_ENABLE(ds_info->depthWriteEnable ? 1 : 0) | S_028800_ZFUNC(ds_info->depthCompareOp) | S_028800_DEPTH_BOUNDS_ENABLE(ds_info->depthBoundsTestEnable ? 1 : 0); } if (has_stencil_attachment && ds_info->stencilTestEnable) { db_depth_control |= S_028800_STENCIL_ENABLE(1) | S_028800_BACKFACE_ENABLE(1); db_depth_control |= S_028800_STENCILFUNC(ds_info->front.compareOp); db_depth_control |= S_028800_STENCILFUNC_BF(ds_info->back.compareOp); } } pipeline->graphics.db_depth_control = db_depth_control; } static void gfx9_get_gs_info(const struct radv_pipeline_key *key, const struct radv_pipeline *pipeline, nir_shader **nir, struct radv_shader_info *infos, struct gfx9_gs_info *out) { struct radv_shader_info *gs_info = &infos[MESA_SHADER_GEOMETRY]; struct radv_es_output_info *es_info; if (pipeline->device->physical_device->rad_info.chip_class >= GFX9) es_info = nir[MESA_SHADER_TESS_CTRL] ? &gs_info->tes.es_info : &gs_info->vs.es_info; else es_info = nir[MESA_SHADER_TESS_CTRL] ? &infos[MESA_SHADER_TESS_EVAL].tes.es_info : &infos[MESA_SHADER_VERTEX].vs.es_info; unsigned gs_num_invocations = MAX2(gs_info->gs.invocations, 1); bool uses_adjacency; switch (key->topology) { case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY: case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY: case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY: case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY: uses_adjacency = true; break; default: uses_adjacency = false; break; } /* All these are in dwords: */ /* We can't allow using the whole LDS, because GS waves compete with * other shader stages for LDS space. */ const unsigned max_lds_size = 8 * 1024; const unsigned esgs_itemsize = es_info->esgs_itemsize / 4; unsigned esgs_lds_size; /* All these are per subgroup: */ const unsigned max_out_prims = 32 * 1024; const unsigned max_es_verts = 255; const unsigned ideal_gs_prims = 64; unsigned max_gs_prims, gs_prims; unsigned min_es_verts, es_verts, worst_case_es_verts; if (uses_adjacency || gs_num_invocations > 1) max_gs_prims = 127 / gs_num_invocations; else max_gs_prims = 255; /* MAX_PRIMS_PER_SUBGROUP = gs_prims * max_vert_out * gs_invocations. * Make sure we don't go over the maximum value. */ if (gs_info->gs.vertices_out > 0) { max_gs_prims = MIN2(max_gs_prims, max_out_prims / (gs_info->gs.vertices_out * gs_num_invocations)); } assert(max_gs_prims > 0); /* If the primitive has adjacency, halve the number of vertices * that will be reused in multiple primitives. */ min_es_verts = gs_info->gs.vertices_in / (uses_adjacency ? 2 : 1); gs_prims = MIN2(ideal_gs_prims, max_gs_prims); worst_case_es_verts = MIN2(min_es_verts * gs_prims, max_es_verts); /* Compute ESGS LDS size based on the worst case number of ES vertices * needed to create the target number of GS prims per subgroup. */ esgs_lds_size = esgs_itemsize * worst_case_es_verts; /* If total LDS usage is too big, refactor partitions based on ratio * of ESGS item sizes. */ if (esgs_lds_size > max_lds_size) { /* Our target GS Prims Per Subgroup was too large. Calculate * the maximum number of GS Prims Per Subgroup that will fit * into LDS, capped by the maximum that the hardware can support. */ gs_prims = MIN2((max_lds_size / (esgs_itemsize * min_es_verts)), max_gs_prims); assert(gs_prims > 0); worst_case_es_verts = MIN2(min_es_verts * gs_prims, max_es_verts); esgs_lds_size = esgs_itemsize * worst_case_es_verts; assert(esgs_lds_size <= max_lds_size); } /* Now calculate remaining ESGS information. */ if (esgs_lds_size) es_verts = MIN2(esgs_lds_size / esgs_itemsize, max_es_verts); else es_verts = max_es_verts; /* Vertices for adjacency primitives are not always reused, so restore * it for ES_VERTS_PER_SUBGRP. */ min_es_verts = gs_info->gs.vertices_in; /* For normal primitives, the VGT only checks if they are past the ES * verts per subgroup after allocating a full GS primitive and if they * are, kick off a new subgroup. But if those additional ES verts are * unique (e.g. not reused) we need to make sure there is enough LDS * space to account for those ES verts beyond ES_VERTS_PER_SUBGRP. */ es_verts -= min_es_verts - 1; uint32_t es_verts_per_subgroup = es_verts; uint32_t gs_prims_per_subgroup = gs_prims; uint32_t gs_inst_prims_in_subgroup = gs_prims * gs_num_invocations; uint32_t max_prims_per_subgroup = gs_inst_prims_in_subgroup * gs_info->gs.vertices_out; out->lds_size = align(esgs_lds_size, 128) / 128; out->vgt_gs_onchip_cntl = S_028A44_ES_VERTS_PER_SUBGRP(es_verts_per_subgroup) | S_028A44_GS_PRIMS_PER_SUBGRP(gs_prims_per_subgroup) | S_028A44_GS_INST_PRIMS_IN_SUBGRP(gs_inst_prims_in_subgroup); out->vgt_gs_max_prims_per_subgroup = S_028A94_MAX_PRIMS_PER_SUBGROUP(max_prims_per_subgroup); out->vgt_esgs_ring_itemsize = esgs_itemsize; assert(max_prims_per_subgroup <= max_out_prims); } static void clamp_gsprims_to_esverts(unsigned *max_gsprims, unsigned max_esverts, unsigned min_verts_per_prim, bool use_adjacency) { unsigned max_reuse = max_esverts - min_verts_per_prim; if (use_adjacency) max_reuse /= 2; *max_gsprims = MIN2(*max_gsprims, 1 + max_reuse); } static unsigned radv_get_num_input_vertices(nir_shader **nir) { if (nir[MESA_SHADER_GEOMETRY]) { nir_shader *gs = nir[MESA_SHADER_GEOMETRY]; return gs->info.gs.vertices_in; } if (nir[MESA_SHADER_TESS_CTRL]) { nir_shader *tes = nir[MESA_SHADER_TESS_EVAL]; if (tes->info.tess.point_mode) return 1; if (tes->info.tess.primitive_mode == GL_ISOLINES) return 2; return 3; } return 3; } static void gfx10_get_ngg_info(const struct radv_pipeline_key *key, struct radv_pipeline *pipeline, nir_shader **nir, struct radv_shader_info *infos, struct gfx10_ngg_info *ngg) { struct radv_shader_info *gs_info = &infos[MESA_SHADER_GEOMETRY]; struct radv_es_output_info *es_info = nir[MESA_SHADER_TESS_CTRL] ? &gs_info->tes.es_info : &gs_info->vs.es_info; unsigned gs_type = nir[MESA_SHADER_GEOMETRY] ? MESA_SHADER_GEOMETRY : MESA_SHADER_VERTEX; unsigned max_verts_per_prim = radv_get_num_input_vertices(nir); unsigned min_verts_per_prim = gs_type == MESA_SHADER_GEOMETRY ? max_verts_per_prim : 1; unsigned gs_num_invocations = nir[MESA_SHADER_GEOMETRY] ? MAX2(gs_info->gs.invocations, 1) : 1; bool uses_adjacency; switch (key->topology) { case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY: case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY: case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY: case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY: uses_adjacency = true; break; default: uses_adjacency = false; break; } /* All these are in dwords: */ /* We can't allow using the whole LDS, because GS waves compete with * other shader stages for LDS space. * * TODO: We should really take the shader's internal LDS use into * account. The linker will fail if the size is greater than * 8K dwords. */ const unsigned max_lds_size = 8 * 1024 - 768; const unsigned target_lds_size = max_lds_size; unsigned esvert_lds_size = 0; unsigned gsprim_lds_size = 0; /* All these are per subgroup: */ const unsigned min_esverts = pipeline->device->physical_device->rad_info.chip_class >= GFX10_3 ? 29 : 24; bool max_vert_out_per_gs_instance = false; unsigned max_esverts_base = 256; unsigned max_gsprims_base = 128; /* default prim group size clamp */ /* Hardware has the following non-natural restrictions on the value * of GE_CNTL.VERT_GRP_SIZE based on based on the primitive type of * the draw: * - at most 252 for any line input primitive type * - at most 251 for any quad input primitive type * - at most 251 for triangle strips with adjacency (this happens to * be the natural limit for triangle *lists* with adjacency) */ max_esverts_base = MIN2(max_esverts_base, 251 + max_verts_per_prim - 1); if (gs_type == MESA_SHADER_GEOMETRY) { unsigned max_out_verts_per_gsprim = gs_info->gs.vertices_out * gs_num_invocations; if (max_out_verts_per_gsprim <= 256) { if (max_out_verts_per_gsprim) { max_gsprims_base = MIN2(max_gsprims_base, 256 / max_out_verts_per_gsprim); } } else { /* Use special multi-cycling mode in which each GS * instance gets its own subgroup. Does not work with * tessellation. */ max_vert_out_per_gs_instance = true; max_gsprims_base = 1; max_out_verts_per_gsprim = gs_info->gs.vertices_out; } esvert_lds_size = es_info->esgs_itemsize / 4; gsprim_lds_size = (gs_info->gs.gsvs_vertex_size / 4 + 1) * max_out_verts_per_gsprim; } else { /* VS and TES. */ /* LDS size for passing data from GS to ES. */ struct radv_streamout_info *so_info = nir[MESA_SHADER_TESS_CTRL] ? &infos[MESA_SHADER_TESS_EVAL].so : &infos[MESA_SHADER_VERTEX].so; if (so_info->num_outputs) esvert_lds_size = 4 * so_info->num_outputs + 1; /* GS stores Primitive IDs (one DWORD) into LDS at the address * corresponding to the ES thread of the provoking vertex. All * ES threads load and export PrimitiveID for their thread. */ if (!nir[MESA_SHADER_TESS_CTRL] && infos[MESA_SHADER_VERTEX].vs.outinfo.export_prim_id) esvert_lds_size = MAX2(esvert_lds_size, 1); } unsigned max_gsprims = max_gsprims_base; unsigned max_esverts = max_esverts_base; if (esvert_lds_size) max_esverts = MIN2(max_esverts, target_lds_size / esvert_lds_size); if (gsprim_lds_size) max_gsprims = MIN2(max_gsprims, target_lds_size / gsprim_lds_size); max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim); clamp_gsprims_to_esverts(&max_gsprims, max_esverts, min_verts_per_prim, uses_adjacency); assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1); if (esvert_lds_size || gsprim_lds_size) { /* Now that we have a rough proportionality between esverts * and gsprims based on the primitive type, scale both of them * down simultaneously based on required LDS space. * * We could be smarter about this if we knew how much vertex * reuse to expect. */ unsigned lds_total = max_esverts * esvert_lds_size + max_gsprims * gsprim_lds_size; if (lds_total > target_lds_size) { max_esverts = max_esverts * target_lds_size / lds_total; max_gsprims = max_gsprims * target_lds_size / lds_total; max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim); clamp_gsprims_to_esverts(&max_gsprims, max_esverts, min_verts_per_prim, uses_adjacency); assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1); } } /* Round up towards full wave sizes for better ALU utilization. */ if (!max_vert_out_per_gs_instance) { unsigned orig_max_esverts; unsigned orig_max_gsprims; unsigned wavesize; if (gs_type == MESA_SHADER_GEOMETRY) { wavesize = gs_info->wave_size; } else { wavesize = nir[MESA_SHADER_TESS_CTRL] ? infos[MESA_SHADER_TESS_EVAL].wave_size : infos[MESA_SHADER_VERTEX].wave_size; } do { orig_max_esverts = max_esverts; orig_max_gsprims = max_gsprims; max_esverts = align(max_esverts, wavesize); max_esverts = MIN2(max_esverts, max_esverts_base); if (esvert_lds_size) max_esverts = MIN2(max_esverts, (max_lds_size - max_gsprims * gsprim_lds_size) / esvert_lds_size); max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim); /* Hardware restriction: minimum value of max_esverts */ if (pipeline->device->physical_device->rad_info.chip_class == GFX10) max_esverts = MAX2(max_esverts, min_esverts - 1 + max_verts_per_prim); else max_esverts = MAX2(max_esverts, min_esverts); max_gsprims = align(max_gsprims, wavesize); max_gsprims = MIN2(max_gsprims, max_gsprims_base); if (gsprim_lds_size) { /* Don't count unusable vertices to the LDS * size. Those are vertices above the maximum * number of vertices that can occur in the * workgroup, which is e.g. max_gsprims * 3 * for triangles. */ unsigned usable_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim); max_gsprims = MIN2(max_gsprims, (max_lds_size - usable_esverts * esvert_lds_size) / gsprim_lds_size); } clamp_gsprims_to_esverts(&max_gsprims, max_esverts, min_verts_per_prim, uses_adjacency); assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1); } while (orig_max_esverts != max_esverts || orig_max_gsprims != max_gsprims); /* Verify the restriction. */ if (pipeline->device->physical_device->rad_info.chip_class == GFX10) assert(max_esverts >= min_esverts - 1 + max_verts_per_prim); else assert(max_esverts >= min_esverts); } else { /* Hardware restriction: minimum value of max_esverts */ if (pipeline->device->physical_device->rad_info.chip_class == GFX10) max_esverts = MAX2(max_esverts, min_esverts - 1 + max_verts_per_prim); else max_esverts = MAX2(max_esverts, min_esverts); } unsigned max_out_vertices = max_vert_out_per_gs_instance ? gs_info->gs.vertices_out : gs_type == MESA_SHADER_GEOMETRY ? max_gsprims * gs_num_invocations * gs_info->gs.vertices_out : max_esverts; assert(max_out_vertices <= 256); unsigned prim_amp_factor = 1; if (gs_type == MESA_SHADER_GEOMETRY) { /* Number of output primitives per GS input primitive after * GS instancing. */ prim_amp_factor = gs_info->gs.vertices_out; } /* On Gfx10, the GE only checks against the maximum number of ES verts * after allocating a full GS primitive. So we need to ensure that * whenever this check passes, there is enough space for a full * primitive without vertex reuse. */ if (pipeline->device->physical_device->rad_info.chip_class == GFX10) ngg->hw_max_esverts = max_esverts - max_verts_per_prim + 1; else ngg->hw_max_esverts = max_esverts; ngg->max_gsprims = max_gsprims; ngg->max_out_verts = max_out_vertices; ngg->prim_amp_factor = prim_amp_factor; ngg->max_vert_out_per_gs_instance = max_vert_out_per_gs_instance; ngg->ngg_emit_size = max_gsprims * gsprim_lds_size; /* Don't count unusable vertices. */ ngg->esgs_ring_size = MIN2(max_esverts, max_gsprims * max_verts_per_prim) * esvert_lds_size * 4; if (gs_type == MESA_SHADER_GEOMETRY) { ngg->vgt_esgs_ring_itemsize = es_info->esgs_itemsize / 4; } else { ngg->vgt_esgs_ring_itemsize = 1; } assert(ngg->hw_max_esverts >= min_esverts); /* HW limitation */ } static void radv_pipeline_init_gs_ring_state(struct radv_pipeline *pipeline, const struct gfx9_gs_info *gs) { struct radv_device *device = pipeline->device; unsigned num_se = device->physical_device->rad_info.max_se; unsigned wave_size = 64; unsigned max_gs_waves = 32 * num_se; /* max 32 per SE on GCN */ /* On GFX6-GFX7, the value comes from VGT_GS_VERTEX_REUSE = 16. * On GFX8+, the value comes from VGT_VERTEX_REUSE_BLOCK_CNTL = 30 (+2). */ unsigned gs_vertex_reuse = (device->physical_device->rad_info.chip_class >= GFX8 ? 32 : 16) * num_se; unsigned alignment = 256 * num_se; /* The maximum size is 63.999 MB per SE. */ unsigned max_size = ((unsigned)(63.999 * 1024 * 1024) & ~255) * num_se; struct radv_shader_info *gs_info = &pipeline->shaders[MESA_SHADER_GEOMETRY]->info; /* Calculate the minimum size. */ unsigned min_esgs_ring_size = align(gs->vgt_esgs_ring_itemsize * 4 * gs_vertex_reuse * wave_size, alignment); /* These are recommended sizes, not minimum sizes. */ unsigned esgs_ring_size = max_gs_waves * 2 * wave_size * gs->vgt_esgs_ring_itemsize * 4 * gs_info->gs.vertices_in; unsigned gsvs_ring_size = max_gs_waves * 2 * wave_size * gs_info->gs.max_gsvs_emit_size; min_esgs_ring_size = align(min_esgs_ring_size, alignment); esgs_ring_size = align(esgs_ring_size, alignment); gsvs_ring_size = align(gsvs_ring_size, alignment); if (pipeline->device->physical_device->rad_info.chip_class <= GFX8) pipeline->graphics.esgs_ring_size = CLAMP(esgs_ring_size, min_esgs_ring_size, max_size); pipeline->graphics.gsvs_ring_size = MIN2(gsvs_ring_size, max_size); } struct radv_shader_variant * radv_get_shader(const struct radv_pipeline *pipeline, gl_shader_stage stage) { if (stage == MESA_SHADER_VERTEX) { if (pipeline->shaders[MESA_SHADER_VERTEX]) return pipeline->shaders[MESA_SHADER_VERTEX]; if (pipeline->shaders[MESA_SHADER_TESS_CTRL]) return pipeline->shaders[MESA_SHADER_TESS_CTRL]; if (pipeline->shaders[MESA_SHADER_GEOMETRY]) return pipeline->shaders[MESA_SHADER_GEOMETRY]; } else if (stage == MESA_SHADER_TESS_EVAL) { if (!radv_pipeline_has_tess(pipeline)) return NULL; if (pipeline->shaders[MESA_SHADER_TESS_EVAL]) return pipeline->shaders[MESA_SHADER_TESS_EVAL]; if (pipeline->shaders[MESA_SHADER_GEOMETRY]) return pipeline->shaders[MESA_SHADER_GEOMETRY]; } return pipeline->shaders[stage]; } static const struct radv_vs_output_info * get_vs_output_info(const struct radv_pipeline *pipeline) { if (radv_pipeline_has_gs(pipeline)) if (radv_pipeline_has_ngg(pipeline)) return &pipeline->shaders[MESA_SHADER_GEOMETRY]->info.vs.outinfo; else return &pipeline->gs_copy_shader->info.vs.outinfo; else if (radv_pipeline_has_tess(pipeline)) return &pipeline->shaders[MESA_SHADER_TESS_EVAL]->info.tes.outinfo; else return &pipeline->shaders[MESA_SHADER_VERTEX]->info.vs.outinfo; } static void radv_link_shaders(struct radv_pipeline *pipeline, nir_shader **shaders, bool optimize_conservatively) { nir_shader *ordered_shaders[MESA_SHADER_STAGES]; int shader_count = 0; if (shaders[MESA_SHADER_FRAGMENT]) { ordered_shaders[shader_count++] = shaders[MESA_SHADER_FRAGMENT]; } if (shaders[MESA_SHADER_GEOMETRY]) { ordered_shaders[shader_count++] = shaders[MESA_SHADER_GEOMETRY]; } if (shaders[MESA_SHADER_TESS_EVAL]) { ordered_shaders[shader_count++] = shaders[MESA_SHADER_TESS_EVAL]; } if (shaders[MESA_SHADER_TESS_CTRL]) { ordered_shaders[shader_count++] = shaders[MESA_SHADER_TESS_CTRL]; } if (shaders[MESA_SHADER_VERTEX]) { ordered_shaders[shader_count++] = shaders[MESA_SHADER_VERTEX]; } if (shaders[MESA_SHADER_COMPUTE]) { ordered_shaders[shader_count++] = shaders[MESA_SHADER_COMPUTE]; } bool has_geom_tess = shaders[MESA_SHADER_GEOMETRY] || shaders[MESA_SHADER_TESS_CTRL]; bool merged_gs = shaders[MESA_SHADER_GEOMETRY] && pipeline->device->physical_device->rad_info.chip_class >= GFX9; if (!optimize_conservatively && shader_count > 1) { unsigned first = ordered_shaders[shader_count - 1]->info.stage; unsigned last = ordered_shaders[0]->info.stage; if (ordered_shaders[0]->info.stage == MESA_SHADER_FRAGMENT && ordered_shaders[1]->info.has_transform_feedback_varyings) nir_link_xfb_varyings(ordered_shaders[1], ordered_shaders[0]); for (int i = 1; i < shader_count; ++i) { nir_lower_io_arrays_to_elements(ordered_shaders[i], ordered_shaders[i - 1]); } for (int i = 0; i < shader_count; ++i) { nir_variable_mode mask = 0; if (ordered_shaders[i]->info.stage != first) mask = mask | nir_var_shader_in; if (ordered_shaders[i]->info.stage != last) mask = mask | nir_var_shader_out; if (nir_lower_io_to_scalar_early(ordered_shaders[i], mask)) { /* Optimize the new vector code and then remove dead vars */ nir_copy_prop(ordered_shaders[i]); nir_opt_shrink_vectors(ordered_shaders[i], !pipeline->device->instance->disable_shrink_image_store); if (ordered_shaders[i]->info.stage != last) { /* Optimize swizzled movs of load_const for * nir_link_opt_varyings's constant propagation */ nir_opt_constant_folding(ordered_shaders[i]); /* For nir_link_opt_varyings's duplicate input opt */ nir_opt_cse(ordered_shaders[i]); } /* Run copy-propagation to help remove dead * output variables (some shaders have useless * copies to/from an output), so compaction * later will be more effective. * * This will have been done earlier but it might * not have worked because the outputs were vector. */ if (ordered_shaders[i]->info.stage == MESA_SHADER_TESS_CTRL) nir_opt_copy_prop_vars(ordered_shaders[i]); nir_opt_dce(ordered_shaders[i]); nir_remove_dead_variables( ordered_shaders[i], nir_var_function_temp | nir_var_shader_in | nir_var_shader_out, NULL); } } } for (int i = 1; !optimize_conservatively && (i < shader_count); ++i) { if (nir_link_opt_varyings(ordered_shaders[i], ordered_shaders[i - 1])) { nir_opt_constant_folding(ordered_shaders[i - 1]); nir_opt_algebraic(ordered_shaders[i - 1]); nir_opt_dce(ordered_shaders[i - 1]); } nir_remove_dead_variables(ordered_shaders[i], nir_var_shader_out, NULL); nir_remove_dead_variables(ordered_shaders[i - 1], nir_var_shader_in, NULL); bool progress = nir_remove_unused_varyings(ordered_shaders[i], ordered_shaders[i - 1]); nir_compact_varyings(ordered_shaders[i], ordered_shaders[i - 1], true); if (ordered_shaders[i]->info.stage == MESA_SHADER_TESS_CTRL || (ordered_shaders[i]->info.stage == MESA_SHADER_VERTEX && has_geom_tess) || (ordered_shaders[i]->info.stage == MESA_SHADER_TESS_EVAL && merged_gs)) { nir_lower_io_to_vector(ordered_shaders[i], nir_var_shader_out); if (ordered_shaders[i]->info.stage == MESA_SHADER_TESS_CTRL) nir_vectorize_tess_levels(ordered_shaders[i]); nir_opt_combine_stores(ordered_shaders[i], nir_var_shader_out); } if (ordered_shaders[i - 1]->info.stage == MESA_SHADER_GEOMETRY || ordered_shaders[i - 1]->info.stage == MESA_SHADER_TESS_CTRL || ordered_shaders[i - 1]->info.stage == MESA_SHADER_TESS_EVAL) { nir_lower_io_to_vector(ordered_shaders[i - 1], nir_var_shader_in); } if (progress) { if (nir_lower_global_vars_to_local(ordered_shaders[i])) { ac_nir_lower_indirect_derefs(ordered_shaders[i], pipeline->device->physical_device->rad_info.chip_class); /* remove dead writes, which can remove input loads */ nir_lower_vars_to_ssa(ordered_shaders[i]); nir_opt_dce(ordered_shaders[i]); } if (nir_lower_global_vars_to_local(ordered_shaders[i - 1])) { ac_nir_lower_indirect_derefs(ordered_shaders[i - 1], pipeline->device->physical_device->rad_info.chip_class); } } } } static void radv_set_driver_locations(struct radv_pipeline *pipeline, nir_shader **shaders, struct radv_shader_info infos[MESA_SHADER_STAGES]) { if (shaders[MESA_SHADER_FRAGMENT]) { nir_foreach_shader_out_variable(var, shaders[MESA_SHADER_FRAGMENT]) { var->data.driver_location = var->data.location + var->data.index; } } if (!shaders[MESA_SHADER_VERTEX]) return; bool has_tess = shaders[MESA_SHADER_TESS_CTRL]; bool has_gs = shaders[MESA_SHADER_GEOMETRY]; /* Merged stage for VS and TES */ unsigned vs_info_idx = MESA_SHADER_VERTEX; unsigned tes_info_idx = MESA_SHADER_TESS_EVAL; /* Which stage is the last in the vertex, tess, geometry pipeline */ unsigned last_vtg_stage = MESA_SHADER_VERTEX; if (pipeline->device->physical_device->rad_info.chip_class >= GFX9) { /* These are merged into the next stage */ vs_info_idx = has_tess ? MESA_SHADER_TESS_CTRL : MESA_SHADER_GEOMETRY; tes_info_idx = has_gs ? MESA_SHADER_GEOMETRY : MESA_SHADER_TESS_EVAL; } nir_foreach_shader_in_variable (var, shaders[MESA_SHADER_VERTEX]) { var->data.driver_location = var->data.location; } if (has_tess) { nir_linked_io_var_info vs2tcs = nir_assign_linked_io_var_locations( shaders[MESA_SHADER_VERTEX], shaders[MESA_SHADER_TESS_CTRL]); nir_linked_io_var_info tcs2tes = nir_assign_linked_io_var_locations( shaders[MESA_SHADER_TESS_CTRL], shaders[MESA_SHADER_TESS_EVAL]); infos[MESA_SHADER_VERTEX].vs.num_linked_outputs = vs2tcs.num_linked_io_vars; infos[MESA_SHADER_TESS_CTRL].tcs.num_linked_inputs = vs2tcs.num_linked_io_vars; infos[MESA_SHADER_TESS_CTRL].tcs.num_linked_outputs = tcs2tes.num_linked_io_vars; infos[MESA_SHADER_TESS_CTRL].tcs.num_linked_patch_outputs = tcs2tes.num_linked_patch_io_vars; infos[MESA_SHADER_TESS_EVAL].tes.num_linked_inputs = tcs2tes.num_linked_io_vars; infos[MESA_SHADER_TESS_EVAL].tes.num_linked_patch_inputs = tcs2tes.num_linked_patch_io_vars; /* Copy data to merged stage */ infos[vs_info_idx].vs.num_linked_outputs = vs2tcs.num_linked_io_vars; infos[tes_info_idx].tes.num_linked_inputs = tcs2tes.num_linked_io_vars; infos[tes_info_idx].tes.num_linked_patch_inputs = tcs2tes.num_linked_patch_io_vars; if (has_gs) { nir_linked_io_var_info tes2gs = nir_assign_linked_io_var_locations( shaders[MESA_SHADER_TESS_EVAL], shaders[MESA_SHADER_GEOMETRY]); infos[MESA_SHADER_TESS_EVAL].tes.num_linked_outputs = tes2gs.num_linked_io_vars; infos[MESA_SHADER_GEOMETRY].gs.num_linked_inputs = tes2gs.num_linked_io_vars; /* Copy data to merged stage */ infos[tes_info_idx].tes.num_linked_outputs = tes2gs.num_linked_io_vars; last_vtg_stage = MESA_SHADER_GEOMETRY; } else { last_vtg_stage = MESA_SHADER_TESS_EVAL; } } else if (has_gs) { nir_linked_io_var_info vs2gs = nir_assign_linked_io_var_locations( shaders[MESA_SHADER_VERTEX], shaders[MESA_SHADER_GEOMETRY]); infos[MESA_SHADER_VERTEX].vs.num_linked_outputs = vs2gs.num_linked_io_vars; infos[MESA_SHADER_GEOMETRY].gs.num_linked_inputs = vs2gs.num_linked_io_vars; last_vtg_stage = MESA_SHADER_GEOMETRY; /* Copy data to merged stage */ infos[vs_info_idx].vs.num_linked_outputs = vs2gs.num_linked_io_vars; } nir_foreach_shader_out_variable(var, shaders[last_vtg_stage]) { var->data.driver_location = var->data.location; } } static uint32_t radv_get_attrib_stride(const VkPipelineVertexInputStateCreateInfo *input_state, uint32_t attrib_binding) { for (uint32_t i = 0; i < input_state->vertexBindingDescriptionCount; i++) { const VkVertexInputBindingDescription *input_binding = &input_state->pVertexBindingDescriptions[i]; if (input_binding->binding == attrib_binding) return input_binding->stride; } return 0; } static struct radv_pipeline_key radv_generate_graphics_pipeline_key(const struct radv_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo, const struct radv_blend_state *blend) { RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass); struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass; const VkPipelineVertexInputStateCreateInfo *input_state = pCreateInfo->pVertexInputState; const VkPipelineVertexInputDivisorStateCreateInfoEXT *divisor_state = vk_find_struct_const(input_state->pNext, PIPELINE_VERTEX_INPUT_DIVISOR_STATE_CREATE_INFO_EXT); bool uses_dynamic_stride = false; struct radv_pipeline_key key; memset(&key, 0, sizeof(key)); if (pCreateInfo->flags & VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT) key.optimisations_disabled = 1; key.has_multiview_view_index = !!subpass->view_mask; uint32_t binding_input_rate = 0; uint32_t instance_rate_divisors[MAX_VERTEX_ATTRIBS]; for (unsigned i = 0; i < input_state->vertexBindingDescriptionCount; ++i) { if (input_state->pVertexBindingDescriptions[i].inputRate) { unsigned binding = input_state->pVertexBindingDescriptions[i].binding; binding_input_rate |= 1u << binding; instance_rate_divisors[binding] = 1; } } if (divisor_state) { for (unsigned i = 0; i < divisor_state->vertexBindingDivisorCount; ++i) { instance_rate_divisors[divisor_state->pVertexBindingDivisors[i].binding] = divisor_state->pVertexBindingDivisors[i].divisor; } } if (pCreateInfo->pDynamicState) { uint32_t count = pCreateInfo->pDynamicState->dynamicStateCount; for (uint32_t i = 0; i < count; i++) { if (pCreateInfo->pDynamicState->pDynamicStates[i] == VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE_EXT) { uses_dynamic_stride = true; break; } } } for (unsigned i = 0; i < input_state->vertexAttributeDescriptionCount; ++i) { const VkVertexInputAttributeDescription *desc = &input_state->pVertexAttributeDescriptions[i]; const struct util_format_description *format_desc; unsigned location = desc->location; unsigned binding = desc->binding; unsigned num_format, data_format; int first_non_void; if (binding_input_rate & (1u << binding)) { key.instance_rate_inputs |= 1u << location; key.instance_rate_divisors[location] = instance_rate_divisors[binding]; } format_desc = vk_format_description(desc->format); first_non_void = vk_format_get_first_non_void_channel(desc->format); num_format = radv_translate_buffer_numformat(format_desc, first_non_void); data_format = radv_translate_buffer_dataformat(format_desc, first_non_void); key.vertex_attribute_formats[location] = data_format | (num_format << 4); key.vertex_attribute_bindings[location] = desc->binding; key.vertex_attribute_offsets[location] = desc->offset; if (!uses_dynamic_stride) { /* From the Vulkan spec 1.2.157: * * "If the bound pipeline state object was created * with the * VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE_EXT * dynamic state enabled then pStrides[i] specifies * the distance in bytes between two consecutive * elements within the corresponding buffer. In this * case the VkVertexInputBindingDescription::stride * state from the pipeline state object is ignored." * * Make sure the vertex attribute stride is zero to * avoid computing a wrong offset if it's initialized * to something else than zero. */ key.vertex_attribute_strides[location] = radv_get_attrib_stride(input_state, desc->binding); } enum ac_fetch_format adjust = AC_FETCH_FORMAT_NONE; if (pipeline->device->physical_device->rad_info.chip_class <= GFX8 && pipeline->device->physical_device->rad_info.family != CHIP_STONEY) { VkFormat format = input_state->pVertexAttributeDescriptions[i].format; switch (format) { case VK_FORMAT_A2R10G10B10_SNORM_PACK32: case VK_FORMAT_A2B10G10R10_SNORM_PACK32: adjust = AC_FETCH_FORMAT_SNORM; break; case VK_FORMAT_A2R10G10B10_SSCALED_PACK32: case VK_FORMAT_A2B10G10R10_SSCALED_PACK32: adjust = AC_FETCH_FORMAT_SSCALED; break; case VK_FORMAT_A2R10G10B10_SINT_PACK32: case VK_FORMAT_A2B10G10R10_SINT_PACK32: adjust = AC_FETCH_FORMAT_SINT; break; default: break; } } key.vertex_alpha_adjust[location] = adjust; switch (desc->format) { case VK_FORMAT_B8G8R8A8_UNORM: case VK_FORMAT_B8G8R8A8_SNORM: case VK_FORMAT_B8G8R8A8_USCALED: case VK_FORMAT_B8G8R8A8_SSCALED: case VK_FORMAT_B8G8R8A8_UINT: case VK_FORMAT_B8G8R8A8_SINT: case VK_FORMAT_B8G8R8A8_SRGB: case VK_FORMAT_A2R10G10B10_UNORM_PACK32: case VK_FORMAT_A2R10G10B10_SNORM_PACK32: case VK_FORMAT_A2R10G10B10_USCALED_PACK32: case VK_FORMAT_A2R10G10B10_SSCALED_PACK32: case VK_FORMAT_A2R10G10B10_UINT_PACK32: case VK_FORMAT_A2R10G10B10_SINT_PACK32: key.vertex_post_shuffle |= 1 << location; break; default: break; } } const VkPipelineTessellationStateCreateInfo *tess = radv_pipeline_get_tessellation_state(pCreateInfo); if (tess) key.tess_input_vertices = tess->patchControlPoints; const VkPipelineMultisampleStateCreateInfo *vkms = radv_pipeline_get_multisample_state(pCreateInfo); if (vkms && vkms->rasterizationSamples > 1) { uint32_t num_samples = vkms->rasterizationSamples; uint32_t ps_iter_samples = radv_pipeline_get_ps_iter_samples(pCreateInfo); key.num_samples = num_samples; key.log2_ps_iter_samples = util_logbase2(ps_iter_samples); } key.col_format = blend->spi_shader_col_format; if (pipeline->device->physical_device->rad_info.chip_class < GFX8) { key.is_int8 = blend->col_format_is_int8; key.is_int10 = blend->col_format_is_int10; } if (pipeline->device->physical_device->rad_info.chip_class >= GFX10) { key.topology = pCreateInfo->pInputAssemblyState->topology; const VkPipelineRasterizationStateCreateInfo *raster_info = pCreateInfo->pRasterizationState; const VkPipelineRasterizationProvokingVertexStateCreateInfoEXT *provoking_vtx_info = vk_find_struct_const(raster_info->pNext, PIPELINE_RASTERIZATION_PROVOKING_VERTEX_STATE_CREATE_INFO_EXT); if (provoking_vtx_info && provoking_vtx_info->provokingVertexMode == VK_PROVOKING_VERTEX_MODE_LAST_VERTEX_EXT) { key.provoking_vtx_last = true; } } return key; } static bool radv_nir_stage_uses_xfb(const nir_shader *nir) { nir_xfb_info *xfb = nir_gather_xfb_info(nir, NULL); bool uses_xfb = !!xfb; ralloc_free(xfb); return uses_xfb; } static void radv_fill_shader_keys(struct radv_device *device, struct radv_shader_variant_key *keys, const struct radv_pipeline_key *key, nir_shader **nir) { keys[MESA_SHADER_VERTEX].vs.instance_rate_inputs = key->instance_rate_inputs; keys[MESA_SHADER_VERTEX].vs.post_shuffle = key->vertex_post_shuffle; for (unsigned i = 0; i < MAX_VERTEX_ATTRIBS; ++i) { keys[MESA_SHADER_VERTEX].vs.instance_rate_divisors[i] = key->instance_rate_divisors[i]; keys[MESA_SHADER_VERTEX].vs.vertex_attribute_formats[i] = key->vertex_attribute_formats[i]; keys[MESA_SHADER_VERTEX].vs.vertex_attribute_bindings[i] = key->vertex_attribute_bindings[i]; keys[MESA_SHADER_VERTEX].vs.vertex_attribute_offsets[i] = key->vertex_attribute_offsets[i]; keys[MESA_SHADER_VERTEX].vs.vertex_attribute_strides[i] = key->vertex_attribute_strides[i]; keys[MESA_SHADER_VERTEX].vs.alpha_adjust[i] = key->vertex_alpha_adjust[i]; } keys[MESA_SHADER_VERTEX].vs.outprim = si_conv_prim_to_gs_out(key->topology); keys[MESA_SHADER_VERTEX].vs.provoking_vtx_last = key->provoking_vtx_last; if (nir[MESA_SHADER_TESS_CTRL]) { keys[MESA_SHADER_VERTEX].vs_common_out.as_ls = true; keys[MESA_SHADER_TESS_CTRL].tcs.input_vertices = key->tess_input_vertices; keys[MESA_SHADER_TESS_CTRL].tcs.primitive_mode = nir[MESA_SHADER_TESS_EVAL]->info.tess.primitive_mode; } if (nir[MESA_SHADER_GEOMETRY]) { if (nir[MESA_SHADER_TESS_CTRL]) keys[MESA_SHADER_TESS_EVAL].vs_common_out.as_es = true; else keys[MESA_SHADER_VERTEX].vs_common_out.as_es = true; } if (device->physical_device->use_ngg) { if (nir[MESA_SHADER_TESS_CTRL]) { keys[MESA_SHADER_TESS_EVAL].vs_common_out.as_ngg = true; } else { keys[MESA_SHADER_VERTEX].vs_common_out.as_ngg = true; } if (nir[MESA_SHADER_TESS_CTRL] && nir[MESA_SHADER_GEOMETRY] && nir[MESA_SHADER_GEOMETRY]->info.gs.invocations * nir[MESA_SHADER_GEOMETRY]->info.gs.vertices_out > 256) { /* Fallback to the legacy path if tessellation is * enabled with extreme geometry because * EN_MAX_VERT_OUT_PER_GS_INSTANCE doesn't work and it * might hang. */ keys[MESA_SHADER_TESS_EVAL].vs_common_out.as_ngg = false; } gl_shader_stage last_xfb_stage = MESA_SHADER_VERTEX; for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) { if (nir[i]) last_xfb_stage = i; } bool uses_xfb = nir[last_xfb_stage] && radv_nir_stage_uses_xfb(nir[last_xfb_stage]); if (!device->physical_device->use_ngg_streamout && uses_xfb) { if (nir[MESA_SHADER_TESS_CTRL]) keys[MESA_SHADER_TESS_EVAL].vs_common_out.as_ngg = false; else keys[MESA_SHADER_VERTEX].vs_common_out.as_ngg = false; } /* Determine if the pipeline is eligible for the NGG passthrough * mode. It can't be enabled for geometry shaders, for NGG * streamout or for vertex shaders that export the primitive ID * (this is checked later because we don't have the info here.) */ if (!nir[MESA_SHADER_GEOMETRY] && !uses_xfb) { if (nir[MESA_SHADER_TESS_CTRL] && keys[MESA_SHADER_TESS_EVAL].vs_common_out.as_ngg) { keys[MESA_SHADER_TESS_EVAL].vs_common_out.as_ngg_passthrough = true; } else if (nir[MESA_SHADER_VERTEX] && keys[MESA_SHADER_VERTEX].vs_common_out.as_ngg) { keys[MESA_SHADER_VERTEX].vs_common_out.as_ngg_passthrough = true; } } } for (int i = 0; i < MESA_SHADER_STAGES; ++i) keys[i].has_multiview_view_index = key->has_multiview_view_index; keys[MESA_SHADER_FRAGMENT].fs.col_format = key->col_format; keys[MESA_SHADER_FRAGMENT].fs.is_int8 = key->is_int8; keys[MESA_SHADER_FRAGMENT].fs.is_int10 = key->is_int10; keys[MESA_SHADER_FRAGMENT].fs.log2_ps_iter_samples = key->log2_ps_iter_samples; keys[MESA_SHADER_FRAGMENT].fs.num_samples = key->num_samples; if (nir[MESA_SHADER_COMPUTE]) { unsigned subgroup_size = key->compute_subgroup_size; unsigned req_subgroup_size = subgroup_size; bool require_full_subgroups = key->require_full_subgroups; if (!subgroup_size) subgroup_size = device->physical_device->cs_wave_size; unsigned local_size = nir[MESA_SHADER_COMPUTE]->info.cs.local_size[0] * nir[MESA_SHADER_COMPUTE]->info.cs.local_size[1] * nir[MESA_SHADER_COMPUTE]->info.cs.local_size[2]; /* Games don't always request full subgroups when they should, * which can cause bugs if cswave32 is enabled. */ if (device->physical_device->cs_wave_size == 32 && nir[MESA_SHADER_COMPUTE]->info.cs.uses_wide_subgroup_intrinsics && !req_subgroup_size && local_size % RADV_SUBGROUP_SIZE == 0) require_full_subgroups = true; if (require_full_subgroups && !req_subgroup_size) { /* don't use wave32 pretending to be wave64 */ subgroup_size = RADV_SUBGROUP_SIZE; } keys[MESA_SHADER_COMPUTE].cs.subgroup_size = subgroup_size; } } static uint8_t radv_get_wave_size(struct radv_device *device, const VkPipelineShaderStageCreateInfo *pStage, gl_shader_stage stage, const struct radv_shader_variant_key *key, const struct radv_shader_info *info) { if (stage == MESA_SHADER_GEOMETRY && !info->is_ngg) return 64; else if (stage == MESA_SHADER_COMPUTE) { return key->cs.subgroup_size; } else if (stage == MESA_SHADER_FRAGMENT) return device->physical_device->ps_wave_size; else return device->physical_device->ge_wave_size; } static uint8_t radv_get_ballot_bit_size(struct radv_device *device, const VkPipelineShaderStageCreateInfo *pStage, gl_shader_stage stage, const struct radv_shader_variant_key *key) { if (stage == MESA_SHADER_COMPUTE && key->cs.subgroup_size) return key->cs.subgroup_size; return 64; } static void radv_fill_shader_info(struct radv_pipeline *pipeline, const VkPipelineShaderStageCreateInfo **pStages, struct radv_shader_variant_key *keys, struct radv_shader_info *infos, nir_shader **nir) { unsigned active_stages = 0; unsigned filled_stages = 0; for (int i = 0; i < MESA_SHADER_STAGES; i++) { if (nir[i]) active_stages |= (1 << i); } if (nir[MESA_SHADER_FRAGMENT]) { radv_nir_shader_info_init(&infos[MESA_SHADER_FRAGMENT]); radv_nir_shader_info_pass(pipeline->device, nir[MESA_SHADER_FRAGMENT], pipeline->layout, &keys[MESA_SHADER_FRAGMENT], &infos[MESA_SHADER_FRAGMENT]); /* TODO: These are no longer used as keys we should refactor this */ keys[MESA_SHADER_VERTEX].vs_common_out.export_prim_id = infos[MESA_SHADER_FRAGMENT].ps.prim_id_input; keys[MESA_SHADER_VERTEX].vs_common_out.export_layer_id = infos[MESA_SHADER_FRAGMENT].ps.layer_input; keys[MESA_SHADER_VERTEX].vs_common_out.export_clip_dists = !!infos[MESA_SHADER_FRAGMENT].ps.num_input_clips_culls; keys[MESA_SHADER_VERTEX].vs_common_out.export_viewport_index = infos[MESA_SHADER_FRAGMENT].ps.viewport_index_input; keys[MESA_SHADER_TESS_EVAL].vs_common_out.export_prim_id = infos[MESA_SHADER_FRAGMENT].ps.prim_id_input; keys[MESA_SHADER_TESS_EVAL].vs_common_out.export_layer_id = infos[MESA_SHADER_FRAGMENT].ps.layer_input; keys[MESA_SHADER_TESS_EVAL].vs_common_out.export_clip_dists = !!infos[MESA_SHADER_FRAGMENT].ps.num_input_clips_culls; keys[MESA_SHADER_TESS_EVAL].vs_common_out.export_viewport_index = infos[MESA_SHADER_FRAGMENT].ps.viewport_index_input; /* NGG passthrough mode can't be enabled for vertex shaders * that export the primitive ID. * * TODO: I should really refactor the keys logic. */ if (nir[MESA_SHADER_VERTEX] && keys[MESA_SHADER_VERTEX].vs_common_out.export_prim_id) { keys[MESA_SHADER_VERTEX].vs_common_out.as_ngg_passthrough = false; } filled_stages |= (1 << MESA_SHADER_FRAGMENT); } if (pipeline->device->physical_device->rad_info.chip_class >= GFX9 && nir[MESA_SHADER_TESS_CTRL]) { struct nir_shader *combined_nir[] = {nir[MESA_SHADER_VERTEX], nir[MESA_SHADER_TESS_CTRL]}; struct radv_shader_variant_key key = keys[MESA_SHADER_TESS_CTRL]; key.tcs.vs_key = keys[MESA_SHADER_VERTEX].vs; radv_nir_shader_info_init(&infos[MESA_SHADER_TESS_CTRL]); for (int i = 0; i < 2; i++) { radv_nir_shader_info_pass(pipeline->device, combined_nir[i], pipeline->layout, &key, &infos[MESA_SHADER_TESS_CTRL]); } filled_stages |= (1 << MESA_SHADER_VERTEX); filled_stages |= (1 << MESA_SHADER_TESS_CTRL); } if (pipeline->device->physical_device->rad_info.chip_class >= GFX9 && nir[MESA_SHADER_GEOMETRY]) { gl_shader_stage pre_stage = nir[MESA_SHADER_TESS_EVAL] ? MESA_SHADER_TESS_EVAL : MESA_SHADER_VERTEX; struct nir_shader *combined_nir[] = {nir[pre_stage], nir[MESA_SHADER_GEOMETRY]}; radv_nir_shader_info_init(&infos[MESA_SHADER_GEOMETRY]); for (int i = 0; i < 2; i++) { radv_nir_shader_info_pass(pipeline->device, combined_nir[i], pipeline->layout, &keys[pre_stage], &infos[MESA_SHADER_GEOMETRY]); } filled_stages |= (1 << pre_stage); filled_stages |= (1 << MESA_SHADER_GEOMETRY); } active_stages ^= filled_stages; while (active_stages) { int i = u_bit_scan(&active_stages); radv_nir_shader_info_init(&infos[i]); radv_nir_shader_info_pass(pipeline->device, nir[i], pipeline->layout, &keys[i], &infos[i]); } for (int i = 0; i < MESA_SHADER_STAGES; i++) { if (nir[i]) { infos[i].wave_size = radv_get_wave_size(pipeline->device, pStages[i], i, &keys[i], &infos[i]); infos[i].ballot_bit_size = radv_get_ballot_bit_size(pipeline->device, pStages[i], i, &keys[i]); } } } static void merge_tess_info(struct shader_info *tes_info, struct shader_info *tcs_info) { /* The Vulkan 1.0.38 spec, section 21.1 Tessellator says: * * "PointMode. Controls generation of points rather than triangles * or lines. This functionality defaults to disabled, and is * enabled if either shader stage includes the execution mode. * * and about Triangles, Quads, IsoLines, VertexOrderCw, VertexOrderCcw, * PointMode, SpacingEqual, SpacingFractionalEven, SpacingFractionalOdd, * and OutputVertices, it says: * * "One mode must be set in at least one of the tessellation * shader stages." * * So, the fields can be set in either the TCS or TES, but they must * agree if set in both. Our backend looks at TES, so bitwise-or in * the values from the TCS. */ assert(tcs_info->tess.tcs_vertices_out == 0 || tes_info->tess.tcs_vertices_out == 0 || tcs_info->tess.tcs_vertices_out == tes_info->tess.tcs_vertices_out); tes_info->tess.tcs_vertices_out |= tcs_info->tess.tcs_vertices_out; assert(tcs_info->tess.spacing == TESS_SPACING_UNSPECIFIED || tes_info->tess.spacing == TESS_SPACING_UNSPECIFIED || tcs_info->tess.spacing == tes_info->tess.spacing); tes_info->tess.spacing |= tcs_info->tess.spacing; assert(tcs_info->tess.primitive_mode == 0 || tes_info->tess.primitive_mode == 0 || tcs_info->tess.primitive_mode == tes_info->tess.primitive_mode); tes_info->tess.primitive_mode |= tcs_info->tess.primitive_mode; tes_info->tess.ccw |= tcs_info->tess.ccw; tes_info->tess.point_mode |= tcs_info->tess.point_mode; /* Copy the merged info back to the TCS */ tcs_info->tess.tcs_vertices_out = tes_info->tess.tcs_vertices_out; tcs_info->tess.spacing = tes_info->tess.spacing; tcs_info->tess.primitive_mode = tes_info->tess.primitive_mode; tcs_info->tess.ccw = tes_info->tess.ccw; tcs_info->tess.point_mode = tes_info->tess.point_mode; } static void gather_tess_info(struct radv_device *device, nir_shader **nir, struct radv_shader_info *infos, const struct radv_pipeline_key *pipeline_key) { merge_tess_info(&nir[MESA_SHADER_TESS_EVAL]->info, &nir[MESA_SHADER_TESS_CTRL]->info); /* Number of tessellation patches per workgroup processed by the current pipeline. */ unsigned num_patches = get_tcs_num_patches( pipeline_key->tess_input_vertices, nir[MESA_SHADER_TESS_CTRL]->info.tess.tcs_vertices_out, infos[MESA_SHADER_TESS_CTRL].tcs.num_linked_inputs, infos[MESA_SHADER_TESS_CTRL].tcs.num_linked_outputs, infos[MESA_SHADER_TESS_CTRL].tcs.num_linked_patch_outputs, device->tess_offchip_block_dw_size, device->physical_device->rad_info.chip_class, device->physical_device->rad_info.family); /* LDS size used by VS+TCS for storing TCS inputs and outputs. */ unsigned tcs_lds_size = calculate_tess_lds_size( device->physical_device->rad_info.chip_class, pipeline_key->tess_input_vertices, nir[MESA_SHADER_TESS_CTRL]->info.tess.tcs_vertices_out, infos[MESA_SHADER_TESS_CTRL].tcs.num_linked_inputs, num_patches, infos[MESA_SHADER_TESS_CTRL].tcs.num_linked_outputs, infos[MESA_SHADER_TESS_CTRL].tcs.num_linked_patch_outputs); infos[MESA_SHADER_TESS_CTRL].num_tess_patches = num_patches; infos[MESA_SHADER_TESS_CTRL].tcs.num_lds_blocks = tcs_lds_size; infos[MESA_SHADER_TESS_CTRL].tcs.tes_reads_tess_factors = !!(nir[MESA_SHADER_TESS_EVAL]->info.inputs_read & (VARYING_BIT_TESS_LEVEL_INNER | VARYING_BIT_TESS_LEVEL_OUTER)); infos[MESA_SHADER_TESS_CTRL].tcs.tes_inputs_read = nir[MESA_SHADER_TESS_EVAL]->info.inputs_read; infos[MESA_SHADER_TESS_CTRL].tcs.tes_patch_inputs_read = nir[MESA_SHADER_TESS_EVAL]->info.patch_inputs_read; infos[MESA_SHADER_TESS_EVAL].num_tess_patches = num_patches; infos[MESA_SHADER_GEOMETRY].num_tess_patches = num_patches; if (!radv_use_llvm_for_stage(device, MESA_SHADER_VERTEX)) { /* When the number of TCS input and output vertices are the same (typically 3): * - There is an equal amount of LS and HS invocations * - In case of merged LSHS shaders, the LS and HS halves of the shader * always process the exact same vertex. We can use this knowledge to optimize them. * * We don't set tcs_in_out_eq if the float controls differ because that might * involve different float modes for the same block and our optimizer * doesn't handle a instruction dominating another with a different mode. */ infos[MESA_SHADER_VERTEX].vs.tcs_in_out_eq = device->physical_device->rad_info.chip_class >= GFX9 && pipeline_key->tess_input_vertices == nir[MESA_SHADER_TESS_CTRL]->info.tess.tcs_vertices_out && nir[MESA_SHADER_VERTEX]->info.float_controls_execution_mode == nir[MESA_SHADER_TESS_CTRL]->info.float_controls_execution_mode; if (infos[MESA_SHADER_VERTEX].vs.tcs_in_out_eq) infos[MESA_SHADER_VERTEX].vs.tcs_temp_only_input_mask = nir[MESA_SHADER_TESS_CTRL]->info.inputs_read & nir[MESA_SHADER_VERTEX]->info.outputs_written & ~nir[MESA_SHADER_TESS_CTRL]->info.tess.tcs_cross_invocation_inputs_read & ~nir[MESA_SHADER_TESS_CTRL]->info.inputs_read_indirectly & ~nir[MESA_SHADER_VERTEX]->info.outputs_accessed_indirectly; /* Copy data to TCS so it can be accessed by the backend if they are merged. */ infos[MESA_SHADER_TESS_CTRL].vs.tcs_in_out_eq = infos[MESA_SHADER_VERTEX].vs.tcs_in_out_eq; infos[MESA_SHADER_TESS_CTRL].vs.tcs_temp_only_input_mask = infos[MESA_SHADER_VERTEX].vs.tcs_temp_only_input_mask; } } static void radv_init_feedback(const VkPipelineCreationFeedbackCreateInfoEXT *ext) { if (!ext) return; if (ext->pPipelineCreationFeedback) { ext->pPipelineCreationFeedback->flags = 0; ext->pPipelineCreationFeedback->duration = 0; } for (unsigned i = 0; i < ext->pipelineStageCreationFeedbackCount; ++i) { ext->pPipelineStageCreationFeedbacks[i].flags = 0; ext->pPipelineStageCreationFeedbacks[i].duration = 0; } } static void radv_start_feedback(VkPipelineCreationFeedbackEXT *feedback) { if (!feedback) return; feedback->duration -= radv_get_current_time(); feedback->flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT; } static void radv_stop_feedback(VkPipelineCreationFeedbackEXT *feedback, bool cache_hit) { if (!feedback) return; feedback->duration += radv_get_current_time(); feedback->flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT | (cache_hit ? VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT_EXT : 0); } static bool mem_vectorize_callback(unsigned align_mul, unsigned align_offset, unsigned bit_size, unsigned num_components, nir_intrinsic_instr *low, nir_intrinsic_instr *high, void *data) { if (num_components > 4) return false; /* >128 bit loads are split except with SMEM */ if (bit_size * num_components > 128) return false; uint32_t align; if (align_offset) align = 1 << (ffs(align_offset) - 1); else align = align_mul; switch (low->intrinsic) { case nir_intrinsic_load_global: case nir_intrinsic_store_global: case nir_intrinsic_store_ssbo: case nir_intrinsic_load_ssbo: case nir_intrinsic_load_ubo: case nir_intrinsic_load_push_constant: { unsigned max_components; if (align % 4 == 0) max_components = NIR_MAX_VEC_COMPONENTS; else if (align % 2 == 0) max_components = 16u / bit_size; else max_components = 8u / bit_size; return (align % (bit_size / 8u)) == 0 && num_components <= max_components; } case nir_intrinsic_load_deref: case nir_intrinsic_store_deref: assert(nir_deref_mode_is(nir_src_as_deref(low->src[0]), nir_var_mem_shared)); FALLTHROUGH; case nir_intrinsic_load_shared: case nir_intrinsic_store_shared: if (bit_size * num_components == 96) /* 96 bit loads require 128 bit alignment and are split otherwise */ return align % 16 == 0; else if (bit_size * num_components == 128) /* 128 bit loads require 64 bit alignment and are split otherwise */ return align % 8 == 0; else return align % (bit_size == 8 ? 2 : 4) == 0; default: return false; } return false; } static unsigned lower_bit_size_callback(const nir_instr *instr, void *_) { struct radv_device *device = _; enum chip_class chip = device->physical_device->rad_info.chip_class; if (instr->type != nir_instr_type_alu) return 0; nir_alu_instr *alu = nir_instr_as_alu(instr); if (alu->dest.dest.ssa.bit_size & (8 | 16)) { unsigned bit_size = alu->dest.dest.ssa.bit_size; switch (alu->op) { case nir_op_iabs: case nir_op_bitfield_select: case nir_op_imul_high: case nir_op_umul_high: case nir_op_ineg: case nir_op_isign: return 32; case nir_op_imax: case nir_op_umax: case nir_op_imin: case nir_op_umin: case nir_op_ishr: case nir_op_ushr: case nir_op_ishl: case nir_op_uadd_sat: return (bit_size == 8 || !(chip >= GFX8 && nir_dest_is_divergent(alu->dest.dest))) ? 32 : 0; default: return 0; } } if (nir_src_bit_size(alu->src[0].src) & (8 | 16)) { unsigned bit_size = nir_src_bit_size(alu->src[0].src); switch (alu->op) { case nir_op_bit_count: case nir_op_find_lsb: case nir_op_ufind_msb: case nir_op_i2b1: return 32; case nir_op_ilt: case nir_op_ige: case nir_op_ieq: case nir_op_ine: case nir_op_ult: case nir_op_uge: return (bit_size == 8 || !(chip >= GFX8 && nir_dest_is_divergent(alu->dest.dest))) ? 32 : 0; default: return 0; } } return 0; } static bool opt_vectorize_callback(const nir_instr *instr, void *_) { assert(instr->type == nir_instr_type_alu); nir_alu_instr *alu = nir_instr_as_alu(instr); unsigned bit_size = alu->dest.dest.ssa.bit_size; if (bit_size != 16) return false; switch (alu->op) { case nir_op_fadd: case nir_op_fsub: case nir_op_fmul: case nir_op_fneg: case nir_op_fsat: case nir_op_fmin: case nir_op_fmax: case nir_op_iadd: case nir_op_isub: case nir_op_imul: case nir_op_imin: case nir_op_imax: case nir_op_umin: case nir_op_umax: return true; case nir_op_ishl: /* TODO: in NIR, these have 32bit shift operands */ case nir_op_ishr: /* while Radeon needs 16bit operands when vectorized */ case nir_op_ushr: default: return false; } } static nir_component_mask_t non_uniform_access_callback(const nir_src *src, void *_) { if (src->ssa->num_components == 1) return 0x1; return nir_chase_binding(*src).success ? 0x2 : 0x3; } VkResult radv_create_shaders(struct radv_pipeline *pipeline, struct radv_device *device, struct radv_pipeline_cache *cache, const struct radv_pipeline_key *pipeline_key, const VkPipelineShaderStageCreateInfo **pStages, const VkPipelineCreateFlags flags, VkPipelineCreationFeedbackEXT *pipeline_feedback, VkPipelineCreationFeedbackEXT **stage_feedbacks) { struct vk_shader_module fs_m = {0}; struct vk_shader_module *modules[MESA_SHADER_STAGES] = { 0, }; nir_shader *nir[MESA_SHADER_STAGES] = {0}; struct radv_shader_binary *binaries[MESA_SHADER_STAGES] = {NULL}; struct radv_shader_variant_key keys[MESA_SHADER_STAGES] = {{{{{0}}}}}; struct radv_shader_info infos[MESA_SHADER_STAGES] = {0}; unsigned char hash[20], gs_copy_hash[20]; bool keep_executable_info = (flags & VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR) || device->keep_shader_info; bool keep_statistic_info = (flags & VK_PIPELINE_CREATE_CAPTURE_STATISTICS_BIT_KHR) || (device->instance->debug_flags & RADV_DEBUG_DUMP_SHADER_STATS) || device->keep_shader_info; bool disable_optimizations = flags & VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT; radv_start_feedback(pipeline_feedback); for (unsigned i = 0; i < MESA_SHADER_STAGES; ++i) { if (pStages[i]) { modules[i] = vk_shader_module_from_handle(pStages[i]->module); if (modules[i]->nir) _mesa_sha1_compute(modules[i]->nir->info.name, strlen(modules[i]->nir->info.name), modules[i]->sha1); pipeline->active_stages |= mesa_to_vk_shader_stage(i); } } radv_hash_shaders(hash, pStages, pipeline->layout, pipeline_key, get_hash_flags(device, keep_statistic_info)); memcpy(gs_copy_hash, hash, 20); gs_copy_hash[0] ^= 1; pipeline->pipeline_hash = *(uint64_t *)hash; bool found_in_application_cache = true; if (modules[MESA_SHADER_GEOMETRY] && !keep_executable_info) { struct radv_shader_variant *variants[MESA_SHADER_STAGES] = {0}; radv_create_shader_variants_from_pipeline_cache(device, cache, gs_copy_hash, variants, &found_in_application_cache); pipeline->gs_copy_shader = variants[MESA_SHADER_GEOMETRY]; } if (!keep_executable_info && radv_create_shader_variants_from_pipeline_cache(device, cache, hash, pipeline->shaders, &found_in_application_cache) && (!modules[MESA_SHADER_GEOMETRY] || pipeline->gs_copy_shader)) { radv_stop_feedback(pipeline_feedback, found_in_application_cache); return VK_SUCCESS; } if (flags & VK_PIPELINE_CREATE_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT_EXT) { radv_stop_feedback(pipeline_feedback, found_in_application_cache); return VK_PIPELINE_COMPILE_REQUIRED_EXT; } if (!modules[MESA_SHADER_FRAGMENT] && !modules[MESA_SHADER_COMPUTE]) { nir_builder fs_b = nir_builder_init_simple_shader(MESA_SHADER_FRAGMENT, NULL, "noop_fs"); fs_m = vk_shader_module_from_nir(fs_b.shader); modules[MESA_SHADER_FRAGMENT] = &fs_m; } for (unsigned i = 0; i < MESA_SHADER_STAGES; ++i) { const VkPipelineShaderStageCreateInfo *stage = pStages[i]; if (!modules[i]) continue; radv_start_feedback(stage_feedbacks[i]); nir[i] = radv_shader_compile_to_nir(device, modules[i], stage ? stage->pName : "main", i, stage ? stage->pSpecializationInfo : NULL, flags, pipeline->layout, pipeline_key); /* We don't want to alter meta shaders IR directly so clone it * first. */ if (nir[i]->info.name) { nir[i] = nir_shader_clone(NULL, nir[i]); } radv_stop_feedback(stage_feedbacks[i], false); } bool optimize_conservatively = flags & VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT; radv_link_shaders(pipeline, nir, optimize_conservatively); radv_set_driver_locations(pipeline, nir, infos); for (int i = 0; i < MESA_SHADER_STAGES; ++i) { if (nir[i]) { radv_start_feedback(stage_feedbacks[i]); radv_optimize_nir(device, nir[i], optimize_conservatively, false); /* Gather info again, information such as outputs_read can be out-of-date. */ nir_shader_gather_info(nir[i], nir_shader_get_entrypoint(nir[i])); radv_lower_io(device, nir[i]); radv_stop_feedback(stage_feedbacks[i], false); } } infos[MESA_SHADER_VERTEX].vs.as_ls = !!nir[MESA_SHADER_TESS_CTRL]; infos[MESA_SHADER_VERTEX].vs.as_es = !!nir[MESA_SHADER_GEOMETRY] && !nir[MESA_SHADER_TESS_CTRL]; infos[MESA_SHADER_TESS_EVAL].tes.as_es = !!nir[MESA_SHADER_GEOMETRY] && !!nir[MESA_SHADER_TESS_CTRL]; if (nir[MESA_SHADER_TESS_CTRL]) { nir_lower_patch_vertices(nir[MESA_SHADER_TESS_EVAL], nir[MESA_SHADER_TESS_CTRL]->info.tess.tcs_vertices_out, NULL); gather_tess_info(device, nir, infos, pipeline_key); } radv_fill_shader_keys(device, keys, pipeline_key, nir); radv_fill_shader_info(pipeline, pStages, keys, infos, nir); if ((nir[MESA_SHADER_VERTEX] && keys[MESA_SHADER_VERTEX].vs_common_out.as_ngg) || (nir[MESA_SHADER_TESS_EVAL] && keys[MESA_SHADER_TESS_EVAL].vs_common_out.as_ngg)) { struct gfx10_ngg_info *ngg_info; if (nir[MESA_SHADER_GEOMETRY]) ngg_info = &infos[MESA_SHADER_GEOMETRY].ngg_info; else if (nir[MESA_SHADER_TESS_CTRL]) ngg_info = &infos[MESA_SHADER_TESS_EVAL].ngg_info; else ngg_info = &infos[MESA_SHADER_VERTEX].ngg_info; gfx10_get_ngg_info(pipeline_key, pipeline, nir, infos, ngg_info); } else if (nir[MESA_SHADER_GEOMETRY]) { struct gfx9_gs_info *gs_info = &infos[MESA_SHADER_GEOMETRY].gs_ring_info; gfx9_get_gs_info(pipeline_key, pipeline, nir, infos, gs_info); } for (int i = 0; i < MESA_SHADER_STAGES; ++i) { if (nir[i]) { radv_start_feedback(stage_feedbacks[i]); if (!radv_use_llvm_for_stage(device, i)) { nir_lower_non_uniform_access_options options = { .types = nir_lower_non_uniform_ubo_access | nir_lower_non_uniform_ssbo_access | nir_lower_non_uniform_texture_access | nir_lower_non_uniform_image_access, .callback = &non_uniform_access_callback, .callback_data = NULL, }; NIR_PASS_V(nir[i], nir_lower_non_uniform_access, &options); } NIR_PASS_V(nir[i], nir_lower_memory_model); bool lower_to_scalar = false; nir_load_store_vectorize_options vectorize_opts = { .modes = nir_var_mem_ssbo | nir_var_mem_ubo | nir_var_mem_push_const | nir_var_mem_shared | nir_var_mem_global, .callback = mem_vectorize_callback, .robust_modes = 0, }; if (device->robust_buffer_access2) { vectorize_opts.robust_modes = nir_var_mem_ubo | nir_var_mem_ssbo | nir_var_mem_global | nir_var_mem_push_const; } if (nir_opt_load_store_vectorize(nir[i], &vectorize_opts)) { NIR_PASS_V(nir[i], nir_copy_prop); lower_to_scalar = true; /* Gather info again, to update whether 8/16-bit are used. */ nir_shader_gather_info(nir[i], nir_shader_get_entrypoint(nir[i])); } lower_to_scalar |= nir_opt_shrink_vectors(nir[i], !device->instance->disable_shrink_image_store); if (lower_to_scalar) nir_lower_alu_to_scalar(nir[i], NULL, NULL); /* lower ALU operations */ /* TODO: Some 64-bit tests crash inside LLVM. */ if (!radv_use_llvm_for_stage(device, i)) nir_lower_int64(nir[i]); /* TODO: Implement nir_op_uadd_sat with LLVM. */ if (!radv_use_llvm_for_stage(device, i)) nir_opt_idiv_const(nir[i], 8); nir_lower_idiv(nir[i], &(nir_lower_idiv_options){ .imprecise_32bit_lowering = false, .allow_fp16 = device->physical_device->rad_info.chip_class >= GFX9, }); nir_opt_sink(nir[i], nir_move_load_input | nir_move_const_undef | nir_move_copies); nir_opt_move(nir[i], nir_move_load_input | nir_move_const_undef | nir_move_copies); /* Lower I/O intrinsics to memory instructions. */ bool io_to_mem = radv_lower_io_to_mem(device, nir[i], &infos[i], pipeline_key); bool lowered_ngg = radv_lower_ngg(device, nir[i], !!nir[MESA_SHADER_GEOMETRY], &infos[i], pipeline_key, &keys[i]); /* optimize the lowered ALU operations */ bool more_algebraic = true; while (more_algebraic) { more_algebraic = false; NIR_PASS_V(nir[i], nir_copy_prop); NIR_PASS_V(nir[i], nir_opt_dce); NIR_PASS_V(nir[i], nir_opt_constant_folding); NIR_PASS_V(nir[i], nir_opt_cse); NIR_PASS(more_algebraic, nir[i], nir_opt_algebraic); } if (io_to_mem || lowered_ngg || i == MESA_SHADER_COMPUTE) NIR_PASS_V(nir[i], nir_opt_offsets); /* Do late algebraic optimization to turn add(a, * neg(b)) back into subs, then the mandatory cleanup * after algebraic. Note that it may produce fnegs, * and if so then we need to keep running to squash * fneg(fneg(a)). */ bool more_late_algebraic = true; while (more_late_algebraic) { more_late_algebraic = false; NIR_PASS(more_late_algebraic, nir[i], nir_opt_algebraic_late); NIR_PASS_V(nir[i], nir_opt_constant_folding); NIR_PASS_V(nir[i], nir_copy_prop); NIR_PASS_V(nir[i], nir_opt_dce); NIR_PASS_V(nir[i], nir_opt_cse); } if (nir[i]->info.bit_sizes_int & (8 | 16)) { if (device->physical_device->rad_info.chip_class >= GFX8) { nir_convert_to_lcssa(nir[i], true, true); nir_divergence_analysis(nir[i]); } if (nir_lower_bit_size(nir[i], lower_bit_size_callback, device)) { NIR_PASS_V(nir[i], nir_opt_constant_folding); NIR_PASS_V(nir[i], nir_opt_dce); } if (device->physical_device->rad_info.chip_class >= GFX8) nir_opt_remove_phis(nir[i]); /* cleanup LCSSA phis */ } if (((nir[i]->info.bit_sizes_int | nir[i]->info.bit_sizes_float) & 16) && device->physical_device->rad_info.chip_class >= GFX9) NIR_PASS_V(nir[i], nir_opt_vectorize, opt_vectorize_callback, NULL); /* cleanup passes */ nir_lower_load_const_to_scalar(nir[i]); nir_move_options move_opts = nir_move_const_undef | nir_move_load_ubo | nir_move_load_input | nir_move_comparisons | nir_move_copies; nir_opt_sink(nir[i], move_opts | nir_move_load_ssbo); nir_opt_move(nir[i], move_opts); radv_stop_feedback(stage_feedbacks[i], false); } } for (int i = 0; i < MESA_SHADER_STAGES; ++i) { if (radv_can_dump_shader(device, modules[i], false)) nir_print_shader(nir[i], stderr); } if ((nir[MESA_SHADER_VERTEX] && keys[MESA_SHADER_VERTEX].vs_common_out.as_ngg) || (nir[MESA_SHADER_TESS_EVAL] && keys[MESA_SHADER_TESS_EVAL].vs_common_out.as_ngg)) { struct gfx10_ngg_info *ngg_info; if (nir[MESA_SHADER_GEOMETRY]) ngg_info = &infos[MESA_SHADER_GEOMETRY].ngg_info; else if (nir[MESA_SHADER_TESS_CTRL]) ngg_info = &infos[MESA_SHADER_TESS_EVAL].ngg_info; else ngg_info = &infos[MESA_SHADER_VERTEX].ngg_info; gfx10_get_ngg_info(pipeline_key, pipeline, nir, infos, ngg_info); } else if (nir[MESA_SHADER_GEOMETRY]) { struct gfx9_gs_info *gs_info = &infos[MESA_SHADER_GEOMETRY].gs_ring_info; gfx9_get_gs_info(pipeline_key, pipeline, nir, infos, gs_info); } if (modules[MESA_SHADER_GEOMETRY]) { struct radv_shader_binary *gs_copy_binary = NULL; if (!radv_pipeline_has_ngg(pipeline)) { struct radv_shader_info info = {0}; struct radv_shader_variant_key key = {0}; key.has_multiview_view_index = keys[MESA_SHADER_GEOMETRY].has_multiview_view_index; radv_nir_shader_info_pass(device, nir[MESA_SHADER_GEOMETRY], pipeline->layout, &key, &info); info.wave_size = 64; /* Wave32 not supported. */ info.ballot_bit_size = 64; pipeline->gs_copy_shader = radv_create_gs_copy_shader( device, nir[MESA_SHADER_GEOMETRY], &info, &gs_copy_binary, keep_executable_info, keep_statistic_info, keys[MESA_SHADER_GEOMETRY].has_multiview_view_index, disable_optimizations); } if (!keep_executable_info && pipeline->gs_copy_shader) { struct radv_shader_binary *gs_binaries[MESA_SHADER_STAGES] = {NULL}; struct radv_shader_variant *gs_variants[MESA_SHADER_STAGES] = {0}; gs_binaries[MESA_SHADER_GEOMETRY] = gs_copy_binary; gs_variants[MESA_SHADER_GEOMETRY] = pipeline->gs_copy_shader; radv_pipeline_cache_insert_shaders(device, cache, gs_copy_hash, gs_variants, gs_binaries); pipeline->gs_copy_shader = gs_variants[MESA_SHADER_GEOMETRY]; } free(gs_copy_binary); } if (nir[MESA_SHADER_FRAGMENT]) { if (!pipeline->shaders[MESA_SHADER_FRAGMENT]) { radv_start_feedback(stage_feedbacks[MESA_SHADER_FRAGMENT]); pipeline->shaders[MESA_SHADER_FRAGMENT] = radv_shader_variant_compile( device, modules[MESA_SHADER_FRAGMENT], &nir[MESA_SHADER_FRAGMENT], 1, pipeline->layout, keys + MESA_SHADER_FRAGMENT, infos + MESA_SHADER_FRAGMENT, keep_executable_info, keep_statistic_info, disable_optimizations, &binaries[MESA_SHADER_FRAGMENT]); radv_stop_feedback(stage_feedbacks[MESA_SHADER_FRAGMENT], false); } } if (device->physical_device->rad_info.chip_class >= GFX9 && modules[MESA_SHADER_TESS_CTRL]) { if (!pipeline->shaders[MESA_SHADER_TESS_CTRL]) { struct nir_shader *combined_nir[] = {nir[MESA_SHADER_VERTEX], nir[MESA_SHADER_TESS_CTRL]}; struct radv_shader_variant_key key = keys[MESA_SHADER_TESS_CTRL]; key.tcs.vs_key = keys[MESA_SHADER_VERTEX].vs; radv_start_feedback(stage_feedbacks[MESA_SHADER_TESS_CTRL]); pipeline->shaders[MESA_SHADER_TESS_CTRL] = radv_shader_variant_compile( device, modules[MESA_SHADER_TESS_CTRL], combined_nir, 2, pipeline->layout, &key, &infos[MESA_SHADER_TESS_CTRL], keep_executable_info, keep_statistic_info, disable_optimizations, &binaries[MESA_SHADER_TESS_CTRL]); radv_stop_feedback(stage_feedbacks[MESA_SHADER_TESS_CTRL], false); } modules[MESA_SHADER_VERTEX] = NULL; } if (device->physical_device->rad_info.chip_class >= GFX9 && modules[MESA_SHADER_GEOMETRY]) { gl_shader_stage pre_stage = modules[MESA_SHADER_TESS_EVAL] ? MESA_SHADER_TESS_EVAL : MESA_SHADER_VERTEX; if (!pipeline->shaders[MESA_SHADER_GEOMETRY]) { struct nir_shader *combined_nir[] = {nir[pre_stage], nir[MESA_SHADER_GEOMETRY]}; radv_start_feedback(stage_feedbacks[MESA_SHADER_GEOMETRY]); pipeline->shaders[MESA_SHADER_GEOMETRY] = radv_shader_variant_compile( device, modules[MESA_SHADER_GEOMETRY], combined_nir, 2, pipeline->layout, &keys[pre_stage], &infos[MESA_SHADER_GEOMETRY], keep_executable_info, keep_statistic_info, disable_optimizations, &binaries[MESA_SHADER_GEOMETRY]); radv_stop_feedback(stage_feedbacks[MESA_SHADER_GEOMETRY], false); } modules[pre_stage] = NULL; } for (int i = 0; i < MESA_SHADER_STAGES; ++i) { if (modules[i] && !pipeline->shaders[i]) { radv_start_feedback(stage_feedbacks[i]); pipeline->shaders[i] = radv_shader_variant_compile( device, modules[i], &nir[i], 1, pipeline->layout, keys + i, infos + i, keep_executable_info, keep_statistic_info, disable_optimizations, &binaries[i]); radv_stop_feedback(stage_feedbacks[i], false); } } if (!keep_executable_info) { radv_pipeline_cache_insert_shaders(device, cache, hash, pipeline->shaders, binaries); } for (int i = 0; i < MESA_SHADER_STAGES; ++i) { free(binaries[i]); if (nir[i]) { ralloc_free(nir[i]); if (radv_can_dump_shader_stats(device, modules[i])) { radv_dump_shader_stats(device, pipeline, i, stderr); } } } if (fs_m.nir) ralloc_free(fs_m.nir); radv_stop_feedback(pipeline_feedback, false); return VK_SUCCESS; } static uint32_t radv_pipeline_stage_to_user_data_0(struct radv_pipeline *pipeline, gl_shader_stage stage, enum chip_class chip_class) { bool has_gs = radv_pipeline_has_gs(pipeline); bool has_tess = radv_pipeline_has_tess(pipeline); bool has_ngg = radv_pipeline_has_ngg(pipeline); switch (stage) { case MESA_SHADER_FRAGMENT: return R_00B030_SPI_SHADER_USER_DATA_PS_0; case MESA_SHADER_VERTEX: if (has_tess) { if (chip_class >= GFX10) { return R_00B430_SPI_SHADER_USER_DATA_HS_0; } else if (chip_class == GFX9) { return R_00B430_SPI_SHADER_USER_DATA_LS_0; } else { return R_00B530_SPI_SHADER_USER_DATA_LS_0; } } if (has_gs) { if (chip_class >= GFX10) { return R_00B230_SPI_SHADER_USER_DATA_GS_0; } else { return R_00B330_SPI_SHADER_USER_DATA_ES_0; } } if (has_ngg) return R_00B230_SPI_SHADER_USER_DATA_GS_0; return R_00B130_SPI_SHADER_USER_DATA_VS_0; case MESA_SHADER_GEOMETRY: return chip_class == GFX9 ? R_00B330_SPI_SHADER_USER_DATA_ES_0 : R_00B230_SPI_SHADER_USER_DATA_GS_0; case MESA_SHADER_COMPUTE: return R_00B900_COMPUTE_USER_DATA_0; case MESA_SHADER_TESS_CTRL: return chip_class == GFX9 ? R_00B430_SPI_SHADER_USER_DATA_LS_0 : R_00B430_SPI_SHADER_USER_DATA_HS_0; case MESA_SHADER_TESS_EVAL: if (has_gs) { return chip_class >= GFX10 ? R_00B230_SPI_SHADER_USER_DATA_GS_0 : R_00B330_SPI_SHADER_USER_DATA_ES_0; } else if (has_ngg) { return R_00B230_SPI_SHADER_USER_DATA_GS_0; } else { return R_00B130_SPI_SHADER_USER_DATA_VS_0; } default: unreachable("unknown shader"); } } struct radv_bin_size_entry { unsigned bpp; VkExtent2D extent; }; static VkExtent2D radv_gfx9_compute_bin_size(const struct radv_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo) { static const struct radv_bin_size_entry color_size_table[][3][9] = { { /* One RB / SE */ { /* One shader engine */ {0, {128, 128}}, {1, {64, 128}}, {2, {32, 128}}, {3, {16, 128}}, {17, {0, 0}}, {UINT_MAX, {0, 0}}, }, { /* Two shader engines */ {0, {128, 128}}, {2, {64, 128}}, {3, {32, 128}}, {5, {16, 128}}, {17, {0, 0}}, {UINT_MAX, {0, 0}}, }, { /* Four shader engines */ {0, {128, 128}}, {3, {64, 128}}, {5, {16, 128}}, {17, {0, 0}}, {UINT_MAX, {0, 0}}, }, }, { /* Two RB / SE */ { /* One shader engine */ {0, {128, 128}}, {2, {64, 128}}, {3, {32, 128}}, {5, {16, 128}}, {33, {0, 0}}, {UINT_MAX, {0, 0}}, }, { /* Two shader engines */ {0, {128, 128}}, {3, {64, 128}}, {5, {32, 128}}, {9, {16, 128}}, {33, {0, 0}}, {UINT_MAX, {0, 0}}, }, { /* Four shader engines */ {0, {256, 256}}, {2, {128, 256}}, {3, {128, 128}}, {5, {64, 128}}, {9, {16, 128}}, {33, {0, 0}}, {UINT_MAX, {0, 0}}, }, }, { /* Four RB / SE */ { /* One shader engine */ {0, {128, 256}}, {2, {128, 128}}, {3, {64, 128}}, {5, {32, 128}}, {9, {16, 128}}, {33, {0, 0}}, {UINT_MAX, {0, 0}}, }, { /* Two shader engines */ {0, {256, 256}}, {2, {128, 256}}, {3, {128, 128}}, {5, {64, 128}}, {9, {32, 128}}, {17, {16, 128}}, {33, {0, 0}}, {UINT_MAX, {0, 0}}, }, { /* Four shader engines */ {0, {256, 512}}, {2, {256, 256}}, {3, {128, 256}}, {5, {128, 128}}, {9, {64, 128}}, {17, {16, 128}}, {33, {0, 0}}, {UINT_MAX, {0, 0}}, }, }, }; static const struct radv_bin_size_entry ds_size_table[][3][9] = { { // One RB / SE { // One shader engine {0, {128, 256}}, {2, {128, 128}}, {4, {64, 128}}, {7, {32, 128}}, {13, {16, 128}}, {49, {0, 0}}, {UINT_MAX, {0, 0}}, }, { // Two shader engines {0, {256, 256}}, {2, {128, 256}}, {4, {128, 128}}, {7, {64, 128}}, {13, {32, 128}}, {25, {16, 128}}, {49, {0, 0}}, {UINT_MAX, {0, 0}}, }, { // Four shader engines {0, {256, 512}}, {2, {256, 256}}, {4, {128, 256}}, {7, {128, 128}}, {13, {64, 128}}, {25, {16, 128}}, {49, {0, 0}}, {UINT_MAX, {0, 0}}, }, }, { // Two RB / SE { // One shader engine {0, {256, 256}}, {2, {128, 256}}, {4, {128, 128}}, {7, {64, 128}}, {13, {32, 128}}, {25, {16, 128}}, {97, {0, 0}}, {UINT_MAX, {0, 0}}, }, { // Two shader engines {0, {256, 512}}, {2, {256, 256}}, {4, {128, 256}}, {7, {128, 128}}, {13, {64, 128}}, {25, {32, 128}}, {49, {16, 128}}, {97, {0, 0}}, {UINT_MAX, {0, 0}}, }, { // Four shader engines {0, {512, 512}}, {2, {256, 512}}, {4, {256, 256}}, {7, {128, 256}}, {13, {128, 128}}, {25, {64, 128}}, {49, {16, 128}}, {97, {0, 0}}, {UINT_MAX, {0, 0}}, }, }, { // Four RB / SE { // One shader engine {0, {256, 512}}, {2, {256, 256}}, {4, {128, 256}}, {7, {128, 128}}, {13, {64, 128}}, {25, {32, 128}}, {49, {16, 128}}, {UINT_MAX, {0, 0}}, }, { // Two shader engines {0, {512, 512}}, {2, {256, 512}}, {4, {256, 256}}, {7, {128, 256}}, {13, {128, 128}}, {25, {64, 128}}, {49, {32, 128}}, {97, {16, 128}}, {UINT_MAX, {0, 0}}, }, { // Four shader engines {0, {512, 512}}, {4, {256, 512}}, {7, {256, 256}}, {13, {128, 256}}, {25, {128, 128}}, {49, {64, 128}}, {97, {16, 128}}, {UINT_MAX, {0, 0}}, }, }, }; RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass); struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass; VkExtent2D extent = {512, 512}; unsigned log_num_rb_per_se = util_logbase2_ceil(pipeline->device->physical_device->rad_info.max_render_backends / pipeline->device->physical_device->rad_info.max_se); unsigned log_num_se = util_logbase2_ceil(pipeline->device->physical_device->rad_info.max_se); unsigned total_samples = 1u << G_028BE0_MSAA_NUM_SAMPLES(pipeline->graphics.ms.pa_sc_aa_config); unsigned ps_iter_samples = 1u << G_028804_PS_ITER_SAMPLES(pipeline->graphics.ms.db_eqaa); unsigned effective_samples = total_samples; unsigned color_bytes_per_pixel = 0; const VkPipelineColorBlendStateCreateInfo *vkblend = radv_pipeline_get_color_blend_state(pCreateInfo); if (vkblend) { for (unsigned i = 0; i < subpass->color_count; i++) { if (!vkblend->pAttachments[i].colorWriteMask) continue; if (subpass->color_attachments[i].attachment == VK_ATTACHMENT_UNUSED) continue; VkFormat format = pass->attachments[subpass->color_attachments[i].attachment].format; color_bytes_per_pixel += vk_format_get_blocksize(format); } /* MSAA images typically don't use all samples all the time. */ if (effective_samples >= 2 && ps_iter_samples <= 1) effective_samples = 2; color_bytes_per_pixel *= effective_samples; } const struct radv_bin_size_entry *color_entry = color_size_table[log_num_rb_per_se][log_num_se]; while (color_entry[1].bpp <= color_bytes_per_pixel) ++color_entry; extent = color_entry->extent; if (subpass->depth_stencil_attachment) { struct radv_render_pass_attachment *attachment = pass->attachments + subpass->depth_stencil_attachment->attachment; /* Coefficients taken from AMDVLK */ unsigned depth_coeff = vk_format_has_depth(attachment->format) ? 5 : 0; unsigned stencil_coeff = vk_format_has_stencil(attachment->format) ? 1 : 0; unsigned ds_bytes_per_pixel = 4 * (depth_coeff + stencil_coeff) * total_samples; const struct radv_bin_size_entry *ds_entry = ds_size_table[log_num_rb_per_se][log_num_se]; while (ds_entry[1].bpp <= ds_bytes_per_pixel) ++ds_entry; if (ds_entry->extent.width * ds_entry->extent.height < extent.width * extent.height) extent = ds_entry->extent; } return extent; } static VkExtent2D radv_gfx10_compute_bin_size(const struct radv_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo) { RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass); struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass; VkExtent2D extent = {512, 512}; const unsigned db_tag_size = 64; const unsigned db_tag_count = 312; const unsigned color_tag_size = 1024; const unsigned color_tag_count = 31; const unsigned fmask_tag_size = 256; const unsigned fmask_tag_count = 44; const unsigned rb_count = pipeline->device->physical_device->rad_info.max_render_backends; const unsigned pipe_count = MAX2(rb_count, pipeline->device->physical_device->rad_info.num_tcc_blocks); const unsigned db_tag_part = (db_tag_count * rb_count / pipe_count) * db_tag_size * pipe_count; const unsigned color_tag_part = (color_tag_count * rb_count / pipe_count) * color_tag_size * pipe_count; const unsigned fmask_tag_part = (fmask_tag_count * rb_count / pipe_count) * fmask_tag_size * pipe_count; const unsigned total_samples = 1u << G_028BE0_MSAA_NUM_SAMPLES(pipeline->graphics.ms.pa_sc_aa_config); const unsigned samples_log = util_logbase2_ceil(total_samples); unsigned color_bytes_per_pixel = 0; unsigned fmask_bytes_per_pixel = 0; const VkPipelineColorBlendStateCreateInfo *vkblend = radv_pipeline_get_color_blend_state(pCreateInfo); if (vkblend) { for (unsigned i = 0; i < subpass->color_count; i++) { if (!vkblend->pAttachments[i].colorWriteMask) continue; if (subpass->color_attachments[i].attachment == VK_ATTACHMENT_UNUSED) continue; VkFormat format = pass->attachments[subpass->color_attachments[i].attachment].format; color_bytes_per_pixel += vk_format_get_blocksize(format); if (total_samples > 1) { assert(samples_log <= 3); const unsigned fmask_array[] = {0, 1, 1, 4}; fmask_bytes_per_pixel += fmask_array[samples_log]; } } color_bytes_per_pixel *= total_samples; } color_bytes_per_pixel = MAX2(color_bytes_per_pixel, 1); const unsigned color_pixel_count_log = util_logbase2(color_tag_part / color_bytes_per_pixel); extent.width = 1ull << ((color_pixel_count_log + 1) / 2); extent.height = 1ull << (color_pixel_count_log / 2); if (fmask_bytes_per_pixel) { const unsigned fmask_pixel_count_log = util_logbase2(fmask_tag_part / fmask_bytes_per_pixel); const VkExtent2D fmask_extent = (VkExtent2D){.width = 1ull << ((fmask_pixel_count_log + 1) / 2), .height = 1ull << (color_pixel_count_log / 2)}; if (fmask_extent.width * fmask_extent.height < extent.width * extent.height) extent = fmask_extent; } if (subpass->depth_stencil_attachment) { struct radv_render_pass_attachment *attachment = pass->attachments + subpass->depth_stencil_attachment->attachment; /* Coefficients taken from AMDVLK */ unsigned depth_coeff = vk_format_has_depth(attachment->format) ? 5 : 0; unsigned stencil_coeff = vk_format_has_stencil(attachment->format) ? 1 : 0; unsigned db_bytes_per_pixel = (depth_coeff + stencil_coeff) * total_samples; const unsigned db_pixel_count_log = util_logbase2(db_tag_part / db_bytes_per_pixel); const VkExtent2D db_extent = (VkExtent2D){.width = 1ull << ((db_pixel_count_log + 1) / 2), .height = 1ull << (color_pixel_count_log / 2)}; if (db_extent.width * db_extent.height < extent.width * extent.height) extent = db_extent; } extent.width = MAX2(extent.width, 128); extent.height = MAX2(extent.width, 64); return extent; } static void radv_pipeline_init_disabled_binning_state(struct radv_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo) { uint32_t pa_sc_binner_cntl_0 = S_028C44_BINNING_MODE(V_028C44_DISABLE_BINNING_USE_LEGACY_SC) | S_028C44_DISABLE_START_OF_PRIM(1); uint32_t db_dfsm_control = S_028060_PUNCHOUT_MODE(V_028060_FORCE_OFF); if (pipeline->device->physical_device->rad_info.chip_class >= GFX10) { RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass); struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass; const VkPipelineColorBlendStateCreateInfo *vkblend = radv_pipeline_get_color_blend_state(pCreateInfo); unsigned min_bytes_per_pixel = 0; if (vkblend) { for (unsigned i = 0; i < subpass->color_count; i++) { if (!vkblend->pAttachments[i].colorWriteMask) continue; if (subpass->color_attachments[i].attachment == VK_ATTACHMENT_UNUSED) continue; VkFormat format = pass->attachments[subpass->color_attachments[i].attachment].format; unsigned bytes = vk_format_get_blocksize(format); if (!min_bytes_per_pixel || bytes < min_bytes_per_pixel) min_bytes_per_pixel = bytes; } } pa_sc_binner_cntl_0 = S_028C44_BINNING_MODE(V_028C44_DISABLE_BINNING_USE_NEW_SC) | S_028C44_BIN_SIZE_X(0) | S_028C44_BIN_SIZE_Y(0) | S_028C44_BIN_SIZE_X_EXTEND(2) | /* 128 */ S_028C44_BIN_SIZE_Y_EXTEND(min_bytes_per_pixel <= 4 ? 2 : 1) | /* 128 or 64 */ S_028C44_DISABLE_START_OF_PRIM(1); } pipeline->graphics.binning.pa_sc_binner_cntl_0 = pa_sc_binner_cntl_0; pipeline->graphics.binning.db_dfsm_control = db_dfsm_control; } struct radv_binning_settings radv_get_binning_settings(const struct radv_physical_device *pdev) { struct radv_binning_settings settings; if (pdev->rad_info.has_dedicated_vram) { if (pdev->rad_info.max_render_backends > 4) { settings.context_states_per_bin = 1; settings.persistent_states_per_bin = 1; } else { settings.context_states_per_bin = 3; settings.persistent_states_per_bin = 8; } settings.fpovs_per_batch = 63; } else { /* The context states are affected by the scissor bug. */ settings.context_states_per_bin = 6; /* 32 causes hangs for RAVEN. */ settings.persistent_states_per_bin = 16; settings.fpovs_per_batch = 63; } if (pdev->rad_info.has_gfx9_scissor_bug) settings.context_states_per_bin = 1; return settings; } static void radv_pipeline_init_binning_state(struct radv_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo, const struct radv_blend_state *blend) { if (pipeline->device->physical_device->rad_info.chip_class < GFX9) return; VkExtent2D bin_size; if (pipeline->device->physical_device->rad_info.chip_class >= GFX10) { bin_size = radv_gfx10_compute_bin_size(pipeline, pCreateInfo); } else if (pipeline->device->physical_device->rad_info.chip_class == GFX9) { bin_size = radv_gfx9_compute_bin_size(pipeline, pCreateInfo); } else unreachable("Unhandled generation for binning bin size calculation"); if (pipeline->device->pbb_allowed && bin_size.width && bin_size.height) { struct radv_binning_settings settings = radv_get_binning_settings(pipeline->device->physical_device); bool disable_start_of_prim = true; uint32_t db_dfsm_control = S_028060_PUNCHOUT_MODE(V_028060_FORCE_OFF); const struct radv_shader_variant *ps = pipeline->shaders[MESA_SHADER_FRAGMENT]; if (pipeline->device->dfsm_allowed && ps && !ps->info.ps.can_discard && !ps->info.ps.writes_memory && blend->cb_target_enabled_4bit) { db_dfsm_control = S_028060_PUNCHOUT_MODE(V_028060_AUTO); disable_start_of_prim = (blend->blend_enable_4bit & blend->cb_target_enabled_4bit) != 0; } const uint32_t pa_sc_binner_cntl_0 = S_028C44_BINNING_MODE(V_028C44_BINNING_ALLOWED) | S_028C44_BIN_SIZE_X(bin_size.width == 16) | S_028C44_BIN_SIZE_Y(bin_size.height == 16) | S_028C44_BIN_SIZE_X_EXTEND(util_logbase2(MAX2(bin_size.width, 32)) - 5) | S_028C44_BIN_SIZE_Y_EXTEND(util_logbase2(MAX2(bin_size.height, 32)) - 5) | S_028C44_CONTEXT_STATES_PER_BIN(settings.context_states_per_bin - 1) | S_028C44_PERSISTENT_STATES_PER_BIN(settings.persistent_states_per_bin - 1) | S_028C44_DISABLE_START_OF_PRIM(disable_start_of_prim) | S_028C44_FPOVS_PER_BATCH(settings.fpovs_per_batch) | S_028C44_OPTIMAL_BIN_SELECTION(1); pipeline->graphics.binning.pa_sc_binner_cntl_0 = pa_sc_binner_cntl_0; pipeline->graphics.binning.db_dfsm_control = db_dfsm_control; } else radv_pipeline_init_disabled_binning_state(pipeline, pCreateInfo); } static void radv_pipeline_generate_depth_stencil_state(struct radeon_cmdbuf *ctx_cs, const struct radv_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo, const struct radv_graphics_pipeline_create_info *extra) { const VkPipelineDepthStencilStateCreateInfo *vkds = radv_pipeline_get_depth_stencil_state(pCreateInfo); RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass); struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass; struct radv_shader_variant *ps = pipeline->shaders[MESA_SHADER_FRAGMENT]; struct radv_render_pass_attachment *attachment = NULL; uint32_t db_render_control = 0, db_render_override2 = 0; uint32_t db_render_override = 0; if (subpass->depth_stencil_attachment) attachment = pass->attachments + subpass->depth_stencil_attachment->attachment; bool has_depth_attachment = attachment && vk_format_has_depth(attachment->format); if (vkds && has_depth_attachment) { /* from amdvlk: For 4xAA and 8xAA need to decompress on flush for better performance */ db_render_override2 |= S_028010_DECOMPRESS_Z_ON_FLUSH(attachment->samples > 2); if (pipeline->device->physical_device->rad_info.chip_class >= GFX10_3) db_render_override2 |= S_028010_CENTROID_COMPUTATION_MODE(1); } if (attachment && extra) { db_render_control |= S_028000_DEPTH_CLEAR_ENABLE(extra->db_depth_clear); db_render_control |= S_028000_STENCIL_CLEAR_ENABLE(extra->db_stencil_clear); db_render_control |= S_028000_RESUMMARIZE_ENABLE(extra->resummarize_enable); db_render_control |= S_028000_DEPTH_COMPRESS_DISABLE(extra->depth_compress_disable); db_render_control |= S_028000_STENCIL_COMPRESS_DISABLE(extra->stencil_compress_disable); db_render_override2 |= S_028010_DISABLE_ZMASK_EXPCLEAR_OPTIMIZATION(extra->db_depth_disable_expclear); db_render_override2 |= S_028010_DISABLE_SMEM_EXPCLEAR_OPTIMIZATION(extra->db_stencil_disable_expclear); } db_render_override |= S_02800C_FORCE_HIS_ENABLE0(V_02800C_FORCE_DISABLE) | S_02800C_FORCE_HIS_ENABLE1(V_02800C_FORCE_DISABLE); if (!pCreateInfo->pRasterizationState->depthClampEnable && ps->info.ps.writes_z) { /* From VK_EXT_depth_range_unrestricted spec: * * "The behavior described in Primitive Clipping still applies. * If depth clamping is disabled the depth values are still * clipped to 0 ≤ zc ≤ wc before the viewport transform. If * depth clamping is enabled the above equation is ignored and * the depth values are instead clamped to the VkViewport * minDepth and maxDepth values, which in the case of this * extension can be outside of the 0.0 to 1.0 range." */ db_render_override |= S_02800C_DISABLE_VIEWPORT_CLAMP(1); } radeon_set_context_reg(ctx_cs, R_028000_DB_RENDER_CONTROL, db_render_control); radeon_set_context_reg(ctx_cs, R_02800C_DB_RENDER_OVERRIDE, db_render_override); radeon_set_context_reg(ctx_cs, R_028010_DB_RENDER_OVERRIDE2, db_render_override2); } static void radv_pipeline_generate_blend_state(struct radeon_cmdbuf *ctx_cs, const struct radv_pipeline *pipeline, const struct radv_blend_state *blend) { radeon_set_context_reg_seq(ctx_cs, R_028780_CB_BLEND0_CONTROL, 8); radeon_emit_array(ctx_cs, blend->cb_blend_control, 8); radeon_set_context_reg(ctx_cs, R_028808_CB_COLOR_CONTROL, blend->cb_color_control); radeon_set_context_reg(ctx_cs, R_028B70_DB_ALPHA_TO_MASK, blend->db_alpha_to_mask); if (pipeline->device->physical_device->rad_info.has_rbplus) { radeon_set_context_reg_seq(ctx_cs, R_028760_SX_MRT0_BLEND_OPT, 8); radeon_emit_array(ctx_cs, blend->sx_mrt_blend_opt, 8); } radeon_set_context_reg(ctx_cs, R_028714_SPI_SHADER_COL_FORMAT, blend->spi_shader_col_format); radeon_set_context_reg(ctx_cs, R_028238_CB_TARGET_MASK, blend->cb_target_mask); radeon_set_context_reg(ctx_cs, R_02823C_CB_SHADER_MASK, blend->cb_shader_mask); } static void radv_pipeline_generate_raster_state(struct radeon_cmdbuf *ctx_cs, const struct radv_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo) { const VkPipelineRasterizationStateCreateInfo *vkraster = pCreateInfo->pRasterizationState; const VkConservativeRasterizationModeEXT mode = radv_get_conservative_raster_mode(vkraster); uint32_t pa_sc_conservative_rast = S_028C4C_NULL_SQUAD_AA_MASK_ENABLE(1); radeon_set_context_reg(ctx_cs, R_028BDC_PA_SC_LINE_CNTL, S_028BDC_DX10_DIAMOND_TEST_ENA(1)); /* Conservative rasterization. */ if (mode != VK_CONSERVATIVE_RASTERIZATION_MODE_DISABLED_EXT) { pa_sc_conservative_rast = S_028C4C_PREZ_AA_MASK_ENABLE(1) | S_028C4C_POSTZ_AA_MASK_ENABLE(1) | S_028C4C_CENTROID_SAMPLE_OVERRIDE(1); if (mode == VK_CONSERVATIVE_RASTERIZATION_MODE_OVERESTIMATE_EXT) { pa_sc_conservative_rast |= S_028C4C_OVER_RAST_ENABLE(1) | S_028C4C_OVER_RAST_SAMPLE_SELECT(0) | S_028C4C_UNDER_RAST_ENABLE(0) | S_028C4C_UNDER_RAST_SAMPLE_SELECT(1) | S_028C4C_PBB_UNCERTAINTY_REGION_ENABLE(1); } else { assert(mode == VK_CONSERVATIVE_RASTERIZATION_MODE_UNDERESTIMATE_EXT); pa_sc_conservative_rast |= S_028C4C_OVER_RAST_ENABLE(0) | S_028C4C_OVER_RAST_SAMPLE_SELECT(1) | S_028C4C_UNDER_RAST_ENABLE(1) | S_028C4C_UNDER_RAST_SAMPLE_SELECT(0) | S_028C4C_PBB_UNCERTAINTY_REGION_ENABLE(0); } } radeon_set_context_reg(ctx_cs, R_028C4C_PA_SC_CONSERVATIVE_RASTERIZATION_CNTL, pa_sc_conservative_rast); } static void radv_pipeline_generate_multisample_state(struct radeon_cmdbuf *ctx_cs, const struct radv_pipeline *pipeline) { const struct radv_multisample_state *ms = &pipeline->graphics.ms; radeon_set_context_reg_seq(ctx_cs, R_028C38_PA_SC_AA_MASK_X0Y0_X1Y0, 2); radeon_emit(ctx_cs, ms->pa_sc_aa_mask[0]); radeon_emit(ctx_cs, ms->pa_sc_aa_mask[1]); radeon_set_context_reg(ctx_cs, R_028804_DB_EQAA, ms->db_eqaa); radeon_set_context_reg(ctx_cs, R_028A48_PA_SC_MODE_CNTL_0, ms->pa_sc_mode_cntl_0); radeon_set_context_reg(ctx_cs, R_028A4C_PA_SC_MODE_CNTL_1, ms->pa_sc_mode_cntl_1); radeon_set_context_reg(ctx_cs, R_028BE0_PA_SC_AA_CONFIG, ms->pa_sc_aa_config); /* The exclusion bits can be set to improve rasterization efficiency * if no sample lies on the pixel boundary (-8 sample offset). It's * currently always TRUE because the driver doesn't support 16 samples. */ bool exclusion = pipeline->device->physical_device->rad_info.chip_class >= GFX7; radeon_set_context_reg( ctx_cs, R_02882C_PA_SU_PRIM_FILTER_CNTL, S_02882C_XMAX_RIGHT_EXCLUSION(exclusion) | S_02882C_YMAX_BOTTOM_EXCLUSION(exclusion)); /* GFX9: Flush DFSM when the AA mode changes. */ if (pipeline->device->dfsm_allowed) { radeon_emit(ctx_cs, PKT3(PKT3_EVENT_WRITE, 0, 0)); radeon_emit(ctx_cs, EVENT_TYPE(V_028A90_FLUSH_DFSM) | EVENT_INDEX(0)); } } static void radv_pipeline_generate_vgt_gs_mode(struct radeon_cmdbuf *ctx_cs, const struct radv_pipeline *pipeline) { const struct radv_vs_output_info *outinfo = get_vs_output_info(pipeline); const struct radv_shader_variant *vs = pipeline->shaders[MESA_SHADER_TESS_EVAL] ? pipeline->shaders[MESA_SHADER_TESS_EVAL] : pipeline->shaders[MESA_SHADER_VERTEX]; unsigned vgt_primitiveid_en = 0; uint32_t vgt_gs_mode = 0; if (radv_pipeline_has_ngg(pipeline)) return; if (radv_pipeline_has_gs(pipeline)) { const struct radv_shader_variant *gs = pipeline->shaders[MESA_SHADER_GEOMETRY]; vgt_gs_mode = ac_vgt_gs_mode(gs->info.gs.vertices_out, pipeline->device->physical_device->rad_info.chip_class); } else if (outinfo->export_prim_id || vs->info.uses_prim_id) { vgt_gs_mode = S_028A40_MODE(V_028A40_GS_SCENARIO_A); vgt_primitiveid_en |= S_028A84_PRIMITIVEID_EN(1); } radeon_set_context_reg(ctx_cs, R_028A84_VGT_PRIMITIVEID_EN, vgt_primitiveid_en); radeon_set_context_reg(ctx_cs, R_028A40_VGT_GS_MODE, vgt_gs_mode); } static void radv_pipeline_generate_hw_vs(struct radeon_cmdbuf *ctx_cs, struct radeon_cmdbuf *cs, const struct radv_pipeline *pipeline, const struct radv_shader_variant *shader) { uint64_t va = radv_buffer_get_va(shader->bo) + shader->bo_offset; radeon_set_sh_reg_seq(cs, R_00B120_SPI_SHADER_PGM_LO_VS, 4); radeon_emit(cs, va >> 8); radeon_emit(cs, S_00B124_MEM_BASE(va >> 40)); radeon_emit(cs, shader->config.rsrc1); radeon_emit(cs, shader->config.rsrc2); const struct radv_vs_output_info *outinfo = get_vs_output_info(pipeline); unsigned clip_dist_mask, cull_dist_mask, total_mask; clip_dist_mask = outinfo->clip_dist_mask; cull_dist_mask = outinfo->cull_dist_mask; total_mask = clip_dist_mask | cull_dist_mask; bool writes_primitive_shading_rate = outinfo->writes_primitive_shading_rate || pipeline->device->force_vrs != RADV_FORCE_VRS_NONE; bool misc_vec_ena = outinfo->writes_pointsize || outinfo->writes_layer || outinfo->writes_viewport_index || writes_primitive_shading_rate; unsigned spi_vs_out_config, nparams; /* VS is required to export at least one param. */ nparams = MAX2(outinfo->param_exports, 1); spi_vs_out_config = S_0286C4_VS_EXPORT_COUNT(nparams - 1); if (pipeline->device->physical_device->rad_info.chip_class >= GFX10) { spi_vs_out_config |= S_0286C4_NO_PC_EXPORT(outinfo->param_exports == 0); } radeon_set_context_reg(ctx_cs, R_0286C4_SPI_VS_OUT_CONFIG, spi_vs_out_config); radeon_set_context_reg( ctx_cs, R_02870C_SPI_SHADER_POS_FORMAT, S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) | S_02870C_POS1_EXPORT_FORMAT(outinfo->pos_exports > 1 ? V_02870C_SPI_SHADER_4COMP : V_02870C_SPI_SHADER_NONE) | S_02870C_POS2_EXPORT_FORMAT(outinfo->pos_exports > 2 ? V_02870C_SPI_SHADER_4COMP : V_02870C_SPI_SHADER_NONE) | S_02870C_POS3_EXPORT_FORMAT(outinfo->pos_exports > 3 ? V_02870C_SPI_SHADER_4COMP : V_02870C_SPI_SHADER_NONE)); radeon_set_context_reg(ctx_cs, R_02881C_PA_CL_VS_OUT_CNTL, S_02881C_USE_VTX_POINT_SIZE(outinfo->writes_pointsize) | S_02881C_USE_VTX_RENDER_TARGET_INDX(outinfo->writes_layer) | S_02881C_USE_VTX_VIEWPORT_INDX(outinfo->writes_viewport_index) | S_02881C_USE_VTX_VRS_RATE(writes_primitive_shading_rate) | S_02881C_VS_OUT_MISC_VEC_ENA(misc_vec_ena) | S_02881C_VS_OUT_MISC_SIDE_BUS_ENA(misc_vec_ena) | S_02881C_VS_OUT_CCDIST0_VEC_ENA((total_mask & 0x0f) != 0) | S_02881C_VS_OUT_CCDIST1_VEC_ENA((total_mask & 0xf0) != 0) | cull_dist_mask << 8 | clip_dist_mask); if (pipeline->device->physical_device->rad_info.chip_class <= GFX8) radeon_set_context_reg(ctx_cs, R_028AB4_VGT_REUSE_OFF, outinfo->writes_viewport_index); } static void radv_pipeline_generate_hw_es(struct radeon_cmdbuf *cs, const struct radv_pipeline *pipeline, const struct radv_shader_variant *shader) { uint64_t va = radv_buffer_get_va(shader->bo) + shader->bo_offset; radeon_set_sh_reg_seq(cs, R_00B320_SPI_SHADER_PGM_LO_ES, 4); radeon_emit(cs, va >> 8); radeon_emit(cs, S_00B324_MEM_BASE(va >> 40)); radeon_emit(cs, shader->config.rsrc1); radeon_emit(cs, shader->config.rsrc2); } static void radv_pipeline_generate_hw_ls(struct radeon_cmdbuf *cs, const struct radv_pipeline *pipeline, const struct radv_shader_variant *shader) { unsigned num_lds_blocks = pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.num_lds_blocks; uint64_t va = radv_buffer_get_va(shader->bo) + shader->bo_offset; uint32_t rsrc2 = shader->config.rsrc2; radeon_set_sh_reg_seq(cs, R_00B520_SPI_SHADER_PGM_LO_LS, 2); radeon_emit(cs, va >> 8); radeon_emit(cs, S_00B524_MEM_BASE(va >> 40)); rsrc2 |= S_00B52C_LDS_SIZE(num_lds_blocks); if (pipeline->device->physical_device->rad_info.chip_class == GFX7 && pipeline->device->physical_device->rad_info.family != CHIP_HAWAII) radeon_set_sh_reg(cs, R_00B52C_SPI_SHADER_PGM_RSRC2_LS, rsrc2); radeon_set_sh_reg_seq(cs, R_00B528_SPI_SHADER_PGM_RSRC1_LS, 2); radeon_emit(cs, shader->config.rsrc1); radeon_emit(cs, rsrc2); } static void radv_pipeline_generate_hw_ngg(struct radeon_cmdbuf *ctx_cs, struct radeon_cmdbuf *cs, const struct radv_pipeline *pipeline, const struct radv_shader_variant *shader) { uint64_t va = radv_buffer_get_va(shader->bo) + shader->bo_offset; gl_shader_stage es_type = radv_pipeline_has_tess(pipeline) ? MESA_SHADER_TESS_EVAL : MESA_SHADER_VERTEX; struct radv_shader_variant *es = es_type == MESA_SHADER_TESS_EVAL ? pipeline->shaders[MESA_SHADER_TESS_EVAL] : pipeline->shaders[MESA_SHADER_VERTEX]; const struct gfx10_ngg_info *ngg_state = &shader->info.ngg_info; radeon_set_sh_reg_seq(cs, R_00B320_SPI_SHADER_PGM_LO_ES, 2); radeon_emit(cs, va >> 8); radeon_emit(cs, S_00B324_MEM_BASE(va >> 40)); radeon_set_sh_reg_seq(cs, R_00B228_SPI_SHADER_PGM_RSRC1_GS, 2); radeon_emit(cs, shader->config.rsrc1); radeon_emit(cs, shader->config.rsrc2); const struct radv_vs_output_info *outinfo = get_vs_output_info(pipeline); unsigned clip_dist_mask, cull_dist_mask, total_mask; clip_dist_mask = outinfo->clip_dist_mask; cull_dist_mask = outinfo->cull_dist_mask; total_mask = clip_dist_mask | cull_dist_mask; bool writes_primitive_shading_rate = outinfo->writes_primitive_shading_rate || pipeline->device->force_vrs != RADV_FORCE_VRS_NONE; bool misc_vec_ena = outinfo->writes_pointsize || outinfo->writes_layer || outinfo->writes_viewport_index || writes_primitive_shading_rate; bool es_enable_prim_id = outinfo->export_prim_id || (es && es->info.uses_prim_id); bool break_wave_at_eoi = false; unsigned ge_cntl; unsigned nparams; if (es_type == MESA_SHADER_TESS_EVAL) { struct radv_shader_variant *gs = pipeline->shaders[MESA_SHADER_GEOMETRY]; if (es_enable_prim_id || (gs && gs->info.uses_prim_id)) break_wave_at_eoi = true; } nparams = MAX2(outinfo->param_exports, 1); radeon_set_context_reg( ctx_cs, R_0286C4_SPI_VS_OUT_CONFIG, S_0286C4_VS_EXPORT_COUNT(nparams - 1) | S_0286C4_NO_PC_EXPORT(outinfo->param_exports == 0)); radeon_set_context_reg(ctx_cs, R_028708_SPI_SHADER_IDX_FORMAT, S_028708_IDX0_EXPORT_FORMAT(V_028708_SPI_SHADER_1COMP)); radeon_set_context_reg( ctx_cs, R_02870C_SPI_SHADER_POS_FORMAT, S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) | S_02870C_POS1_EXPORT_FORMAT(outinfo->pos_exports > 1 ? V_02870C_SPI_SHADER_4COMP : V_02870C_SPI_SHADER_NONE) | S_02870C_POS2_EXPORT_FORMAT(outinfo->pos_exports > 2 ? V_02870C_SPI_SHADER_4COMP : V_02870C_SPI_SHADER_NONE) | S_02870C_POS3_EXPORT_FORMAT(outinfo->pos_exports > 3 ? V_02870C_SPI_SHADER_4COMP : V_02870C_SPI_SHADER_NONE)); radeon_set_context_reg(ctx_cs, R_02881C_PA_CL_VS_OUT_CNTL, S_02881C_USE_VTX_POINT_SIZE(outinfo->writes_pointsize) | S_02881C_USE_VTX_RENDER_TARGET_INDX(outinfo->writes_layer) | S_02881C_USE_VTX_VIEWPORT_INDX(outinfo->writes_viewport_index) | S_02881C_USE_VTX_VRS_RATE(writes_primitive_shading_rate) | S_02881C_VS_OUT_MISC_VEC_ENA(misc_vec_ena) | S_02881C_VS_OUT_MISC_SIDE_BUS_ENA(misc_vec_ena) | S_02881C_VS_OUT_CCDIST0_VEC_ENA((total_mask & 0x0f) != 0) | S_02881C_VS_OUT_CCDIST1_VEC_ENA((total_mask & 0xf0) != 0) | cull_dist_mask << 8 | clip_dist_mask); radeon_set_context_reg(ctx_cs, R_028A84_VGT_PRIMITIVEID_EN, S_028A84_PRIMITIVEID_EN(es_enable_prim_id) | S_028A84_NGG_DISABLE_PROVOK_REUSE(outinfo->export_prim_id)); radeon_set_context_reg(ctx_cs, R_028AAC_VGT_ESGS_RING_ITEMSIZE, ngg_state->vgt_esgs_ring_itemsize); /* NGG specific registers. */ struct radv_shader_variant *gs = pipeline->shaders[MESA_SHADER_GEOMETRY]; uint32_t gs_num_invocations = gs ? gs->info.gs.invocations : 1; radeon_set_context_reg( ctx_cs, R_028A44_VGT_GS_ONCHIP_CNTL, S_028A44_ES_VERTS_PER_SUBGRP(ngg_state->hw_max_esverts) | S_028A44_GS_PRIMS_PER_SUBGRP(ngg_state->max_gsprims) | S_028A44_GS_INST_PRIMS_IN_SUBGRP(ngg_state->max_gsprims * gs_num_invocations)); radeon_set_context_reg(ctx_cs, R_0287FC_GE_MAX_OUTPUT_PER_SUBGROUP, S_0287FC_MAX_VERTS_PER_SUBGROUP(ngg_state->max_out_verts)); radeon_set_context_reg(ctx_cs, R_028B4C_GE_NGG_SUBGRP_CNTL, S_028B4C_PRIM_AMP_FACTOR(ngg_state->prim_amp_factor) | S_028B4C_THDS_PER_SUBGRP(0)); /* for fast launch */ radeon_set_context_reg( ctx_cs, R_028B90_VGT_GS_INSTANCE_CNT, S_028B90_CNT(gs_num_invocations) | S_028B90_ENABLE(gs_num_invocations > 1) | S_028B90_EN_MAX_VERT_OUT_PER_GS_INSTANCE(ngg_state->max_vert_out_per_gs_instance)); /* User edge flags are set by the pos exports. If user edge flags are * not used, we must use hw-generated edge flags and pass them via * the prim export to prevent drawing lines on internal edges of * decomposed primitives (such as quads) with polygon mode = lines. * * TODO: We should combine hw-generated edge flags with user edge * flags in the shader. */ radeon_set_context_reg( ctx_cs, R_028838_PA_CL_NGG_CNTL, S_028838_INDEX_BUF_EDGE_FLAG_ENA(!radv_pipeline_has_tess(pipeline) && !radv_pipeline_has_gs(pipeline)) | /* Reuse for NGG. */ S_028838_VERTEX_REUSE_DEPTH( pipeline->device->physical_device->rad_info.chip_class >= GFX10_3 ? 30 : 0)); ge_cntl = S_03096C_PRIM_GRP_SIZE(ngg_state->max_gsprims) | S_03096C_VERT_GRP_SIZE(256) | /* 256 = disable vertex grouping */ S_03096C_BREAK_WAVE_AT_EOI(break_wave_at_eoi); /* Bug workaround for a possible hang with non-tessellation cases. * Tessellation always sets GE_CNTL.VERT_GRP_SIZE = 0 * * Requirement: GE_CNTL.VERT_GRP_SIZE = VGT_GS_ONCHIP_CNTL.ES_VERTS_PER_SUBGRP - 5 */ if (pipeline->device->physical_device->rad_info.chip_class == GFX10 && !radv_pipeline_has_tess(pipeline) && ngg_state->hw_max_esverts != 256) { ge_cntl &= C_03096C_VERT_GRP_SIZE; if (ngg_state->hw_max_esverts > 5) { ge_cntl |= S_03096C_VERT_GRP_SIZE(ngg_state->hw_max_esverts - 5); } } radeon_set_uconfig_reg(ctx_cs, R_03096C_GE_CNTL, ge_cntl); } static void radv_pipeline_generate_hw_hs(struct radeon_cmdbuf *cs, const struct radv_pipeline *pipeline, const struct radv_shader_variant *shader) { uint64_t va = radv_buffer_get_va(shader->bo) + shader->bo_offset; if (pipeline->device->physical_device->rad_info.chip_class >= GFX9) { if (pipeline->device->physical_device->rad_info.chip_class >= GFX10) { radeon_set_sh_reg_seq(cs, R_00B520_SPI_SHADER_PGM_LO_LS, 2); radeon_emit(cs, va >> 8); radeon_emit(cs, S_00B524_MEM_BASE(va >> 40)); } else { radeon_set_sh_reg_seq(cs, R_00B410_SPI_SHADER_PGM_LO_LS, 2); radeon_emit(cs, va >> 8); radeon_emit(cs, S_00B414_MEM_BASE(va >> 40)); } radeon_set_sh_reg_seq(cs, R_00B428_SPI_SHADER_PGM_RSRC1_HS, 2); radeon_emit(cs, shader->config.rsrc1); radeon_emit(cs, shader->config.rsrc2); } else { radeon_set_sh_reg_seq(cs, R_00B420_SPI_SHADER_PGM_LO_HS, 4); radeon_emit(cs, va >> 8); radeon_emit(cs, S_00B424_MEM_BASE(va >> 40)); radeon_emit(cs, shader->config.rsrc1); radeon_emit(cs, shader->config.rsrc2); } } static void radv_pipeline_generate_vertex_shader(struct radeon_cmdbuf *ctx_cs, struct radeon_cmdbuf *cs, const struct radv_pipeline *pipeline) { struct radv_shader_variant *vs; /* Skip shaders merged into HS/GS */ vs = pipeline->shaders[MESA_SHADER_VERTEX]; if (!vs) return; if (vs->info.vs.as_ls) radv_pipeline_generate_hw_ls(cs, pipeline, vs); else if (vs->info.vs.as_es) radv_pipeline_generate_hw_es(cs, pipeline, vs); else if (vs->info.is_ngg) radv_pipeline_generate_hw_ngg(ctx_cs, cs, pipeline, vs); else radv_pipeline_generate_hw_vs(ctx_cs, cs, pipeline, vs); } static void radv_pipeline_generate_tess_shaders(struct radeon_cmdbuf *ctx_cs, struct radeon_cmdbuf *cs, const struct radv_pipeline *pipeline) { struct radv_shader_variant *tes, *tcs; tcs = pipeline->shaders[MESA_SHADER_TESS_CTRL]; tes = pipeline->shaders[MESA_SHADER_TESS_EVAL]; if (tes) { if (tes->info.is_ngg) { radv_pipeline_generate_hw_ngg(ctx_cs, cs, pipeline, tes); } else if (tes->info.tes.as_es) radv_pipeline_generate_hw_es(cs, pipeline, tes); else radv_pipeline_generate_hw_vs(ctx_cs, cs, pipeline, tes); } radv_pipeline_generate_hw_hs(cs, pipeline, tcs); if (pipeline->device->physical_device->rad_info.chip_class >= GFX10 && !radv_pipeline_has_gs(pipeline) && !radv_pipeline_has_ngg(pipeline)) { radeon_set_context_reg(ctx_cs, R_028A44_VGT_GS_ONCHIP_CNTL, S_028A44_ES_VERTS_PER_SUBGRP(250) | S_028A44_GS_PRIMS_PER_SUBGRP(126) | S_028A44_GS_INST_PRIMS_IN_SUBGRP(126)); } } static void radv_pipeline_generate_tess_state(struct radeon_cmdbuf *ctx_cs, const struct radv_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo) { struct radv_shader_variant *tes = radv_get_shader(pipeline, MESA_SHADER_TESS_EVAL); unsigned type = 0, partitioning = 0, topology = 0, distribution_mode = 0; unsigned num_tcs_input_cp, num_tcs_output_cp, num_patches; unsigned ls_hs_config; num_tcs_input_cp = pCreateInfo->pTessellationState->patchControlPoints; num_tcs_output_cp = pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.tcs_vertices_out; // TCS VERTICES OUT num_patches = pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.num_tess_patches; ls_hs_config = S_028B58_NUM_PATCHES(num_patches) | S_028B58_HS_NUM_INPUT_CP(num_tcs_input_cp) | S_028B58_HS_NUM_OUTPUT_CP(num_tcs_output_cp); if (pipeline->device->physical_device->rad_info.chip_class >= GFX7) { radeon_set_context_reg_idx(ctx_cs, R_028B58_VGT_LS_HS_CONFIG, 2, ls_hs_config); } else { radeon_set_context_reg(ctx_cs, R_028B58_VGT_LS_HS_CONFIG, ls_hs_config); } switch (tes->info.tes.primitive_mode) { case GL_TRIANGLES: type = V_028B6C_TESS_TRIANGLE; break; case GL_QUADS: type = V_028B6C_TESS_QUAD; break; case GL_ISOLINES: type = V_028B6C_TESS_ISOLINE; break; } switch (tes->info.tes.spacing) { case TESS_SPACING_EQUAL: partitioning = V_028B6C_PART_INTEGER; break; case TESS_SPACING_FRACTIONAL_ODD: partitioning = V_028B6C_PART_FRAC_ODD; break; case TESS_SPACING_FRACTIONAL_EVEN: partitioning = V_028B6C_PART_FRAC_EVEN; break; default: break; } bool ccw = tes->info.tes.ccw; const VkPipelineTessellationDomainOriginStateCreateInfo *domain_origin_state = vk_find_struct_const(pCreateInfo->pTessellationState, PIPELINE_TESSELLATION_DOMAIN_ORIGIN_STATE_CREATE_INFO); if (domain_origin_state && domain_origin_state->domainOrigin != VK_TESSELLATION_DOMAIN_ORIGIN_UPPER_LEFT) ccw = !ccw; if (tes->info.tes.point_mode) topology = V_028B6C_OUTPUT_POINT; else if (tes->info.tes.primitive_mode == GL_ISOLINES) topology = V_028B6C_OUTPUT_LINE; else if (ccw) topology = V_028B6C_OUTPUT_TRIANGLE_CCW; else topology = V_028B6C_OUTPUT_TRIANGLE_CW; if (pipeline->device->physical_device->rad_info.has_distributed_tess) { if (pipeline->device->physical_device->rad_info.family == CHIP_FIJI || pipeline->device->physical_device->rad_info.family >= CHIP_POLARIS10) distribution_mode = V_028B6C_TRAPEZOIDS; else distribution_mode = V_028B6C_DONUTS; } else distribution_mode = V_028B6C_NO_DIST; radeon_set_context_reg(ctx_cs, R_028B6C_VGT_TF_PARAM, S_028B6C_TYPE(type) | S_028B6C_PARTITIONING(partitioning) | S_028B6C_TOPOLOGY(topology) | S_028B6C_DISTRIBUTION_MODE(distribution_mode)); } static void radv_pipeline_generate_hw_gs(struct radeon_cmdbuf *ctx_cs, struct radeon_cmdbuf *cs, const struct radv_pipeline *pipeline, const struct radv_shader_variant *gs) { const struct gfx9_gs_info *gs_state = &gs->info.gs_ring_info; unsigned gs_max_out_vertices; const uint8_t *num_components; uint8_t max_stream; unsigned offset; uint64_t va; gs_max_out_vertices = gs->info.gs.vertices_out; max_stream = gs->info.gs.max_stream; num_components = gs->info.gs.num_stream_output_components; offset = num_components[0] * gs_max_out_vertices; radeon_set_context_reg_seq(ctx_cs, R_028A60_VGT_GSVS_RING_OFFSET_1, 3); radeon_emit(ctx_cs, offset); if (max_stream >= 1) offset += num_components[1] * gs_max_out_vertices; radeon_emit(ctx_cs, offset); if (max_stream >= 2) offset += num_components[2] * gs_max_out_vertices; radeon_emit(ctx_cs, offset); if (max_stream >= 3) offset += num_components[3] * gs_max_out_vertices; radeon_set_context_reg(ctx_cs, R_028AB0_VGT_GSVS_RING_ITEMSIZE, offset); radeon_set_context_reg_seq(ctx_cs, R_028B5C_VGT_GS_VERT_ITEMSIZE, 4); radeon_emit(ctx_cs, num_components[0]); radeon_emit(ctx_cs, (max_stream >= 1) ? num_components[1] : 0); radeon_emit(ctx_cs, (max_stream >= 2) ? num_components[2] : 0); radeon_emit(ctx_cs, (max_stream >= 3) ? num_components[3] : 0); uint32_t gs_num_invocations = gs->info.gs.invocations; radeon_set_context_reg( ctx_cs, R_028B90_VGT_GS_INSTANCE_CNT, S_028B90_CNT(MIN2(gs_num_invocations, 127)) | S_028B90_ENABLE(gs_num_invocations > 0)); radeon_set_context_reg(ctx_cs, R_028AAC_VGT_ESGS_RING_ITEMSIZE, gs_state->vgt_esgs_ring_itemsize); va = radv_buffer_get_va(gs->bo) + gs->bo_offset; if (pipeline->device->physical_device->rad_info.chip_class >= GFX9) { if (pipeline->device->physical_device->rad_info.chip_class >= GFX10) { radeon_set_sh_reg_seq(cs, R_00B320_SPI_SHADER_PGM_LO_ES, 2); radeon_emit(cs, va >> 8); radeon_emit(cs, S_00B324_MEM_BASE(va >> 40)); } else { radeon_set_sh_reg_seq(cs, R_00B210_SPI_SHADER_PGM_LO_ES, 2); radeon_emit(cs, va >> 8); radeon_emit(cs, S_00B214_MEM_BASE(va >> 40)); } radeon_set_sh_reg_seq(cs, R_00B228_SPI_SHADER_PGM_RSRC1_GS, 2); radeon_emit(cs, gs->config.rsrc1); radeon_emit(cs, gs->config.rsrc2 | S_00B22C_LDS_SIZE(gs_state->lds_size)); radeon_set_context_reg(ctx_cs, R_028A44_VGT_GS_ONCHIP_CNTL, gs_state->vgt_gs_onchip_cntl); radeon_set_context_reg(ctx_cs, R_028A94_VGT_GS_MAX_PRIMS_PER_SUBGROUP, gs_state->vgt_gs_max_prims_per_subgroup); } else { radeon_set_sh_reg_seq(cs, R_00B220_SPI_SHADER_PGM_LO_GS, 4); radeon_emit(cs, va >> 8); radeon_emit(cs, S_00B224_MEM_BASE(va >> 40)); radeon_emit(cs, gs->config.rsrc1); radeon_emit(cs, gs->config.rsrc2); } radv_pipeline_generate_hw_vs(ctx_cs, cs, pipeline, pipeline->gs_copy_shader); } static void radv_pipeline_generate_geometry_shader(struct radeon_cmdbuf *ctx_cs, struct radeon_cmdbuf *cs, const struct radv_pipeline *pipeline) { struct radv_shader_variant *gs; gs = pipeline->shaders[MESA_SHADER_GEOMETRY]; if (!gs) return; if (gs->info.is_ngg) radv_pipeline_generate_hw_ngg(ctx_cs, cs, pipeline, gs); else radv_pipeline_generate_hw_gs(ctx_cs, cs, pipeline, gs); radeon_set_context_reg(ctx_cs, R_028B38_VGT_GS_MAX_VERT_OUT, gs->info.gs.vertices_out); } static uint32_t offset_to_ps_input(uint32_t offset, bool flat_shade, bool explicit, bool float16) { uint32_t ps_input_cntl; if (offset <= AC_EXP_PARAM_OFFSET_31) { ps_input_cntl = S_028644_OFFSET(offset); if (flat_shade || explicit) ps_input_cntl |= S_028644_FLAT_SHADE(1); if (explicit) { /* Force parameter cache to be read in passthrough * mode. */ ps_input_cntl |= S_028644_OFFSET(1 << 5); } if (float16) { ps_input_cntl |= S_028644_FP16_INTERP_MODE(1) | S_028644_ATTR0_VALID(1); } } else { /* The input is a DEFAULT_VAL constant. */ assert(offset >= AC_EXP_PARAM_DEFAULT_VAL_0000 && offset <= AC_EXP_PARAM_DEFAULT_VAL_1111); offset -= AC_EXP_PARAM_DEFAULT_VAL_0000; ps_input_cntl = S_028644_OFFSET(0x20) | S_028644_DEFAULT_VAL(offset); } return ps_input_cntl; } static void radv_pipeline_generate_ps_inputs(struct radeon_cmdbuf *ctx_cs, const struct radv_pipeline *pipeline) { struct radv_shader_variant *ps = pipeline->shaders[MESA_SHADER_FRAGMENT]; const struct radv_vs_output_info *outinfo = get_vs_output_info(pipeline); uint32_t ps_input_cntl[32]; unsigned ps_offset = 0; if (ps->info.ps.prim_id_input) { unsigned vs_offset = outinfo->vs_output_param_offset[VARYING_SLOT_PRIMITIVE_ID]; if (vs_offset != AC_EXP_PARAM_UNDEFINED) { ps_input_cntl[ps_offset] = offset_to_ps_input(vs_offset, true, false, false); ++ps_offset; } } if (ps->info.ps.layer_input || ps->info.needs_multiview_view_index) { unsigned vs_offset = outinfo->vs_output_param_offset[VARYING_SLOT_LAYER]; if (vs_offset != AC_EXP_PARAM_UNDEFINED) ps_input_cntl[ps_offset] = offset_to_ps_input(vs_offset, true, false, false); else ps_input_cntl[ps_offset] = offset_to_ps_input(AC_EXP_PARAM_DEFAULT_VAL_0000, true, false, false); ++ps_offset; } if (ps->info.ps.viewport_index_input) { unsigned vs_offset = outinfo->vs_output_param_offset[VARYING_SLOT_VIEWPORT]; if (vs_offset != AC_EXP_PARAM_UNDEFINED) ps_input_cntl[ps_offset] = offset_to_ps_input(vs_offset, true, false, false); else ps_input_cntl[ps_offset] = offset_to_ps_input(AC_EXP_PARAM_DEFAULT_VAL_0000, true, false, false); ++ps_offset; } if (ps->info.ps.has_pcoord) { unsigned val; val = S_028644_PT_SPRITE_TEX(1) | S_028644_OFFSET(0x20); ps_input_cntl[ps_offset] = val; ps_offset++; } if (ps->info.ps.num_input_clips_culls) { unsigned vs_offset; vs_offset = outinfo->vs_output_param_offset[VARYING_SLOT_CLIP_DIST0]; if (vs_offset != AC_EXP_PARAM_UNDEFINED) { ps_input_cntl[ps_offset] = offset_to_ps_input(vs_offset, false, false, false); ++ps_offset; } vs_offset = outinfo->vs_output_param_offset[VARYING_SLOT_CLIP_DIST1]; if (vs_offset != AC_EXP_PARAM_UNDEFINED && ps->info.ps.num_input_clips_culls > 4) { ps_input_cntl[ps_offset] = offset_to_ps_input(vs_offset, false, false, false); ++ps_offset; } } for (unsigned i = 0; i < 32 && (1u << i) <= ps->info.ps.input_mask; ++i) { unsigned vs_offset; bool flat_shade; bool explicit; bool float16; if (!(ps->info.ps.input_mask & (1u << i))) continue; vs_offset = outinfo->vs_output_param_offset[VARYING_SLOT_VAR0 + i]; if (vs_offset == AC_EXP_PARAM_UNDEFINED) { ps_input_cntl[ps_offset] = S_028644_OFFSET(0x20); ++ps_offset; continue; } flat_shade = !!(ps->info.ps.flat_shaded_mask & (1u << ps_offset)); explicit = !!(ps->info.ps.explicit_shaded_mask & (1u << ps_offset)); float16 = !!(ps->info.ps.float16_shaded_mask & (1u << ps_offset)); ps_input_cntl[ps_offset] = offset_to_ps_input(vs_offset, flat_shade, explicit, float16); ++ps_offset; } if (ps_offset) { radeon_set_context_reg_seq(ctx_cs, R_028644_SPI_PS_INPUT_CNTL_0, ps_offset); for (unsigned i = 0; i < ps_offset; i++) { radeon_emit(ctx_cs, ps_input_cntl[i]); } } } static uint32_t radv_compute_db_shader_control(const struct radv_device *device, const struct radv_pipeline *pipeline, const struct radv_shader_variant *ps) { unsigned conservative_z_export = V_02880C_EXPORT_ANY_Z; unsigned z_order; if (ps->info.ps.early_fragment_test || !ps->info.ps.writes_memory) z_order = V_02880C_EARLY_Z_THEN_LATE_Z; else z_order = V_02880C_LATE_Z; if (ps->info.ps.depth_layout == FRAG_DEPTH_LAYOUT_GREATER) conservative_z_export = V_02880C_EXPORT_GREATER_THAN_Z; else if (ps->info.ps.depth_layout == FRAG_DEPTH_LAYOUT_LESS) conservative_z_export = V_02880C_EXPORT_LESS_THAN_Z; bool disable_rbplus = device->physical_device->rad_info.has_rbplus && !device->physical_device->rad_info.rbplus_allowed; /* It shouldn't be needed to export gl_SampleMask when MSAA is disabled * but this appears to break Project Cars (DXVK). See * https://bugs.freedesktop.org/show_bug.cgi?id=109401 */ bool mask_export_enable = ps->info.ps.writes_sample_mask; return S_02880C_Z_EXPORT_ENABLE(ps->info.ps.writes_z) | S_02880C_STENCIL_TEST_VAL_EXPORT_ENABLE(ps->info.ps.writes_stencil) | S_02880C_KILL_ENABLE(!!ps->info.ps.can_discard) | S_02880C_MASK_EXPORT_ENABLE(mask_export_enable) | S_02880C_CONSERVATIVE_Z_EXPORT(conservative_z_export) | S_02880C_Z_ORDER(z_order) | S_02880C_DEPTH_BEFORE_SHADER(ps->info.ps.early_fragment_test) | S_02880C_PRE_SHADER_DEPTH_COVERAGE_ENABLE(ps->info.ps.post_depth_coverage) | S_02880C_EXEC_ON_HIER_FAIL(ps->info.ps.writes_memory) | S_02880C_EXEC_ON_NOOP(ps->info.ps.writes_memory) | S_02880C_DUAL_QUAD_DISABLE(disable_rbplus); } static void radv_pipeline_generate_fragment_shader(struct radeon_cmdbuf *ctx_cs, struct radeon_cmdbuf *cs, struct radv_pipeline *pipeline) { struct radv_shader_variant *ps; uint64_t va; assert(pipeline->shaders[MESA_SHADER_FRAGMENT]); ps = pipeline->shaders[MESA_SHADER_FRAGMENT]; va = radv_buffer_get_va(ps->bo) + ps->bo_offset; radeon_set_sh_reg_seq(cs, R_00B020_SPI_SHADER_PGM_LO_PS, 4); radeon_emit(cs, va >> 8); radeon_emit(cs, S_00B024_MEM_BASE(va >> 40)); radeon_emit(cs, ps->config.rsrc1); radeon_emit(cs, ps->config.rsrc2); radeon_set_context_reg(ctx_cs, R_02880C_DB_SHADER_CONTROL, radv_compute_db_shader_control(pipeline->device, pipeline, ps)); radeon_set_context_reg(ctx_cs, R_0286CC_SPI_PS_INPUT_ENA, ps->config.spi_ps_input_ena); radeon_set_context_reg(ctx_cs, R_0286D0_SPI_PS_INPUT_ADDR, ps->config.spi_ps_input_addr); radeon_set_context_reg( ctx_cs, R_0286D8_SPI_PS_IN_CONTROL, S_0286D8_NUM_INTERP(ps->info.ps.num_interp) | S_0286D8_PS_W32_EN(ps->info.wave_size == 32)); radeon_set_context_reg(ctx_cs, R_0286E0_SPI_BARYC_CNTL, pipeline->graphics.spi_baryc_cntl); radeon_set_context_reg( ctx_cs, R_028710_SPI_SHADER_Z_FORMAT, ac_get_spi_shader_z_format(ps->info.ps.writes_z, ps->info.ps.writes_stencil, ps->info.ps.writes_sample_mask)); if (pipeline->device->dfsm_allowed) { /* optimise this? */ radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0)); radeon_emit(cs, EVENT_TYPE(V_028A90_FLUSH_DFSM) | EVENT_INDEX(0)); } } static void radv_pipeline_generate_vgt_vertex_reuse(struct radeon_cmdbuf *ctx_cs, const struct radv_pipeline *pipeline) { if (pipeline->device->physical_device->rad_info.family < CHIP_POLARIS10 || pipeline->device->physical_device->rad_info.chip_class >= GFX10) return; unsigned vtx_reuse_depth = 30; if (radv_pipeline_has_tess(pipeline) && radv_get_shader(pipeline, MESA_SHADER_TESS_EVAL)->info.tes.spacing == TESS_SPACING_FRACTIONAL_ODD) { vtx_reuse_depth = 14; } radeon_set_context_reg(ctx_cs, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL, S_028C58_VTX_REUSE_DEPTH(vtx_reuse_depth)); } static void radv_pipeline_generate_vgt_shader_config(struct radeon_cmdbuf *ctx_cs, const struct radv_pipeline *pipeline) { uint32_t stages = 0; if (radv_pipeline_has_tess(pipeline)) { stages |= S_028B54_LS_EN(V_028B54_LS_STAGE_ON) | S_028B54_HS_EN(1) | S_028B54_DYNAMIC_HS(1); if (radv_pipeline_has_gs(pipeline)) stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS) | S_028B54_GS_EN(1); else if (radv_pipeline_has_ngg(pipeline)) stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS); else stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_DS); } else if (radv_pipeline_has_gs(pipeline)) { stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL) | S_028B54_GS_EN(1); } else if (radv_pipeline_has_ngg(pipeline)) { stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL); } if (radv_pipeline_has_ngg(pipeline)) { stages |= S_028B54_PRIMGEN_EN(1); if (pipeline->streamout_shader) stages |= S_028B54_NGG_WAVE_ID_EN(1); if (radv_pipeline_has_ngg_passthrough(pipeline)) stages |= S_028B54_PRIMGEN_PASSTHRU_EN(1); } else if (radv_pipeline_has_gs(pipeline)) { stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER); } if (pipeline->device->physical_device->rad_info.chip_class >= GFX9) stages |= S_028B54_MAX_PRIMGRP_IN_WAVE(2); if (pipeline->device->physical_device->rad_info.chip_class >= GFX10) { uint8_t hs_size = 64, gs_size = 64, vs_size = 64; if (radv_pipeline_has_tess(pipeline)) hs_size = pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.wave_size; if (pipeline->shaders[MESA_SHADER_GEOMETRY]) { vs_size = gs_size = pipeline->shaders[MESA_SHADER_GEOMETRY]->info.wave_size; if (radv_pipeline_has_gs_copy_shader(pipeline)) vs_size = pipeline->gs_copy_shader->info.wave_size; } else if (pipeline->shaders[MESA_SHADER_TESS_EVAL]) vs_size = pipeline->shaders[MESA_SHADER_TESS_EVAL]->info.wave_size; else if (pipeline->shaders[MESA_SHADER_VERTEX]) vs_size = pipeline->shaders[MESA_SHADER_VERTEX]->info.wave_size; if (radv_pipeline_has_ngg(pipeline)) gs_size = vs_size; /* legacy GS only supports Wave64 */ stages |= S_028B54_HS_W32_EN(hs_size == 32 ? 1 : 0) | S_028B54_GS_W32_EN(gs_size == 32 ? 1 : 0) | S_028B54_VS_W32_EN(vs_size == 32 ? 1 : 0); } radeon_set_context_reg(ctx_cs, R_028B54_VGT_SHADER_STAGES_EN, stages); } static void radv_pipeline_generate_cliprect_rule(struct radeon_cmdbuf *ctx_cs, const VkGraphicsPipelineCreateInfo *pCreateInfo) { const VkPipelineDiscardRectangleStateCreateInfoEXT *discard_rectangle_info = vk_find_struct_const(pCreateInfo->pNext, PIPELINE_DISCARD_RECTANGLE_STATE_CREATE_INFO_EXT); uint32_t cliprect_rule = 0; if (!discard_rectangle_info) { cliprect_rule = 0xffff; } else { for (unsigned i = 0; i < (1u << MAX_DISCARD_RECTANGLES); ++i) { /* Interpret i as a bitmask, and then set the bit in * the mask if that combination of rectangles in which * the pixel is contained should pass the cliprect * test. */ unsigned relevant_subset = i & ((1u << discard_rectangle_info->discardRectangleCount) - 1); if (discard_rectangle_info->discardRectangleMode == VK_DISCARD_RECTANGLE_MODE_INCLUSIVE_EXT && !relevant_subset) continue; if (discard_rectangle_info->discardRectangleMode == VK_DISCARD_RECTANGLE_MODE_EXCLUSIVE_EXT && relevant_subset) continue; cliprect_rule |= 1u << i; } } radeon_set_context_reg(ctx_cs, R_02820C_PA_SC_CLIPRECT_RULE, cliprect_rule); } static void gfx10_pipeline_generate_ge_cntl(struct radeon_cmdbuf *ctx_cs, struct radv_pipeline *pipeline) { bool break_wave_at_eoi = false; unsigned primgroup_size; unsigned vertgroup_size = 256; /* 256 = disable vertex grouping */ if (radv_pipeline_has_tess(pipeline)) { primgroup_size = pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.num_tess_patches; } else if (radv_pipeline_has_gs(pipeline)) { const struct gfx9_gs_info *gs_state = &pipeline->shaders[MESA_SHADER_GEOMETRY]->info.gs_ring_info; unsigned vgt_gs_onchip_cntl = gs_state->vgt_gs_onchip_cntl; primgroup_size = G_028A44_GS_PRIMS_PER_SUBGRP(vgt_gs_onchip_cntl); } else { primgroup_size = 128; /* recommended without a GS and tess */ } if (radv_pipeline_has_tess(pipeline)) { if (pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.uses_prim_id || radv_get_shader(pipeline, MESA_SHADER_TESS_EVAL)->info.uses_prim_id) break_wave_at_eoi = true; } radeon_set_uconfig_reg(ctx_cs, R_03096C_GE_CNTL, S_03096C_PRIM_GRP_SIZE(primgroup_size) | S_03096C_VERT_GRP_SIZE(vertgroup_size) | S_03096C_PACKET_TO_ONE_PA(0) /* line stipple */ | S_03096C_BREAK_WAVE_AT_EOI(break_wave_at_eoi)); } static void radv_pipeline_generate_vgt_gs_out(struct radeon_cmdbuf *ctx_cs, const struct radv_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo, const struct radv_graphics_pipeline_create_info *extra) { uint32_t gs_out; if (radv_pipeline_has_gs(pipeline)) { gs_out = si_conv_gl_prim_to_gs_out(pipeline->shaders[MESA_SHADER_GEOMETRY]->info.gs.output_prim); } else if (radv_pipeline_has_tess(pipeline)) { if (pipeline->shaders[MESA_SHADER_TESS_EVAL]->info.tes.point_mode) { gs_out = V_028A6C_POINTLIST; } else { gs_out = si_conv_gl_prim_to_gs_out( pipeline->shaders[MESA_SHADER_TESS_EVAL]->info.tes.primitive_mode); } } else { gs_out = si_conv_prim_to_gs_out(pCreateInfo->pInputAssemblyState->topology); } if (extra && extra->use_rectlist) { gs_out = V_028A6C_TRISTRIP; if (radv_pipeline_has_ngg(pipeline)) gs_out = V_028A6C_RECTLIST; } radeon_set_context_reg(ctx_cs, R_028A6C_VGT_GS_OUT_PRIM_TYPE, gs_out); } static bool gfx103_pipeline_vrs_coarse_shading(const struct radv_pipeline *pipeline) { struct radv_shader_variant *ps = pipeline->shaders[MESA_SHADER_FRAGMENT]; struct radv_device *device = pipeline->device; if (device->instance->debug_flags & RADV_DEBUG_NO_VRS_FLAT_SHADING) return false; if (!ps->info.ps.allow_flat_shading) return false; return true; } static void gfx103_pipeline_generate_vrs_state(struct radeon_cmdbuf *ctx_cs, const struct radv_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo) { uint32_t mode = V_028064_VRS_COMB_MODE_PASSTHRU; uint8_t rate_x = 0, rate_y = 0; bool enable_vrs = false; if (vk_find_struct_const(pCreateInfo->pNext, PIPELINE_FRAGMENT_SHADING_RATE_STATE_CREATE_INFO_KHR) || radv_is_state_dynamic(pCreateInfo, VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR)) { /* Enable draw call VRS because it's explicitly requested. */ enable_vrs = true; } else if (gfx103_pipeline_vrs_coarse_shading(pipeline)) { /* Enable VRS coarse shading 2x2 if the driver determined that * it's safe to enable. */ mode = V_028064_VRS_COMB_MODE_OVERRIDE; rate_x = rate_y = 1; } else if (pipeline->device->force_vrs != RADV_FORCE_VRS_NONE) { /* Force enable vertex VRS if requested by the user. */ radeon_set_context_reg( ctx_cs, R_028848_PA_CL_VRS_CNTL, S_028848_SAMPLE_ITER_COMBINER_MODE(V_028848_VRS_COMB_MODE_OVERRIDE) | S_028848_VERTEX_RATE_COMBINER_MODE(V_028848_VRS_COMB_MODE_OVERRIDE)); /* If the shader is using discard, turn off coarse shading * because discard at 2x2 pixel granularity degrades quality * too much. MIN allows sample shading but not coarse shading. */ struct radv_shader_variant *ps = pipeline->shaders[MESA_SHADER_FRAGMENT]; mode = ps->info.ps.can_discard ? V_028064_VRS_COMB_MODE_MIN : V_028064_VRS_COMB_MODE_PASSTHRU; } radeon_set_context_reg(ctx_cs, R_028A98_VGT_DRAW_PAYLOAD_CNTL, S_028A98_EN_VRS_RATE(enable_vrs)); radeon_set_context_reg(ctx_cs, R_028064_DB_VRS_OVERRIDE_CNTL, S_028064_VRS_OVERRIDE_RATE_COMBINER_MODE(mode) | S_028064_VRS_OVERRIDE_RATE_X(rate_x) | S_028064_VRS_OVERRIDE_RATE_Y(rate_y)); } static void radv_pipeline_generate_pm4(struct radv_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo, const struct radv_graphics_pipeline_create_info *extra, const struct radv_blend_state *blend) { struct radeon_cmdbuf *ctx_cs = &pipeline->ctx_cs; struct radeon_cmdbuf *cs = &pipeline->cs; cs->max_dw = 64; ctx_cs->max_dw = 256; cs->buf = malloc(4 * (cs->max_dw + ctx_cs->max_dw)); ctx_cs->buf = cs->buf + cs->max_dw; radv_pipeline_generate_depth_stencil_state(ctx_cs, pipeline, pCreateInfo, extra); radv_pipeline_generate_blend_state(ctx_cs, pipeline, blend); radv_pipeline_generate_raster_state(ctx_cs, pipeline, pCreateInfo); radv_pipeline_generate_multisample_state(ctx_cs, pipeline); radv_pipeline_generate_vgt_gs_mode(ctx_cs, pipeline); radv_pipeline_generate_vertex_shader(ctx_cs, cs, pipeline); if (radv_pipeline_has_tess(pipeline)) { radv_pipeline_generate_tess_shaders(ctx_cs, cs, pipeline); radv_pipeline_generate_tess_state(ctx_cs, pipeline, pCreateInfo); } radv_pipeline_generate_geometry_shader(ctx_cs, cs, pipeline); radv_pipeline_generate_fragment_shader(ctx_cs, cs, pipeline); radv_pipeline_generate_ps_inputs(ctx_cs, pipeline); radv_pipeline_generate_vgt_vertex_reuse(ctx_cs, pipeline); radv_pipeline_generate_vgt_shader_config(ctx_cs, pipeline); radv_pipeline_generate_cliprect_rule(ctx_cs, pCreateInfo); radv_pipeline_generate_vgt_gs_out(ctx_cs, pipeline, pCreateInfo, extra); if (pipeline->device->physical_device->rad_info.chip_class >= GFX10 && !radv_pipeline_has_ngg(pipeline)) gfx10_pipeline_generate_ge_cntl(ctx_cs, pipeline); if (pipeline->device->physical_device->rad_info.chip_class >= GFX10_3) gfx103_pipeline_generate_vrs_state(ctx_cs, pipeline, pCreateInfo); pipeline->ctx_cs_hash = _mesa_hash_data(ctx_cs->buf, ctx_cs->cdw * 4); assert(ctx_cs->cdw <= ctx_cs->max_dw); assert(cs->cdw <= cs->max_dw); } static void radv_pipeline_init_vertex_input_state(struct radv_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo) { const struct radv_shader_info *info = &radv_get_shader(pipeline, MESA_SHADER_VERTEX)->info; const VkPipelineVertexInputStateCreateInfo *vi_info = pCreateInfo->pVertexInputState; for (uint32_t i = 0; i < vi_info->vertexBindingDescriptionCount; i++) { const VkVertexInputBindingDescription *desc = &vi_info->pVertexBindingDescriptions[i]; pipeline->binding_stride[desc->binding] = desc->stride; } for (uint32_t i = 0; i < vi_info->vertexAttributeDescriptionCount; i++) { const VkVertexInputAttributeDescription *desc = &vi_info->pVertexAttributeDescriptions[i]; uint32_t end = desc->offset + vk_format_get_blocksize(desc->format); pipeline->attrib_ends[desc->location] = end; pipeline->attrib_bindings[desc->location] = desc->binding; } pipeline->use_per_attribute_vb_descs = info->vs.use_per_attribute_vb_descs; pipeline->vb_desc_usage_mask = info->vs.vb_desc_usage_mask; } static struct radv_shader_variant * radv_pipeline_get_streamout_shader(struct radv_pipeline *pipeline) { int i; for (i = MESA_SHADER_GEOMETRY; i >= MESA_SHADER_VERTEX; i--) { struct radv_shader_variant *shader = radv_get_shader(pipeline, i); if (shader && shader->info.so.num_outputs > 0) return shader; } return NULL; } static void radv_pipeline_init_shader_stages_state(struct radv_pipeline *pipeline) { struct radv_device *device = pipeline->device; for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { pipeline->user_data_0[i] = radv_pipeline_stage_to_user_data_0( pipeline, i, device->physical_device->rad_info.chip_class); if (pipeline->shaders[i]) { pipeline->need_indirect_descriptor_sets |= pipeline->shaders[i]->info.need_indirect_descriptor_sets; } } struct radv_userdata_info *loc = radv_lookup_user_sgpr(pipeline, MESA_SHADER_VERTEX, AC_UD_VS_BASE_VERTEX_START_INSTANCE); if (loc->sgpr_idx != -1) { pipeline->graphics.vtx_base_sgpr = pipeline->user_data_0[MESA_SHADER_VERTEX]; pipeline->graphics.vtx_base_sgpr += loc->sgpr_idx * 4; pipeline->graphics.vtx_emit_num = loc->num_sgprs; pipeline->graphics.uses_drawid = radv_get_shader(pipeline, MESA_SHADER_VERTEX)->info.vs.needs_draw_id; pipeline->graphics.uses_baseinstance = radv_get_shader(pipeline, MESA_SHADER_VERTEX)->info.vs.needs_base_instance; } } static VkResult radv_pipeline_init(struct radv_pipeline *pipeline, struct radv_device *device, struct radv_pipeline_cache *cache, const VkGraphicsPipelineCreateInfo *pCreateInfo, const struct radv_graphics_pipeline_create_info *extra) { VkResult result; pipeline->device = device; pipeline->layout = radv_pipeline_layout_from_handle(pCreateInfo->layout); assert(pipeline->layout); struct radv_blend_state blend = radv_pipeline_init_blend_state(pipeline, pCreateInfo, extra); const VkPipelineCreationFeedbackCreateInfoEXT *creation_feedback = vk_find_struct_const(pCreateInfo->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO_EXT); radv_init_feedback(creation_feedback); VkPipelineCreationFeedbackEXT *pipeline_feedback = creation_feedback ? creation_feedback->pPipelineCreationFeedback : NULL; const VkPipelineShaderStageCreateInfo *pStages[MESA_SHADER_STAGES] = { 0, }; VkPipelineCreationFeedbackEXT *stage_feedbacks[MESA_SHADER_STAGES] = {0}; for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) { gl_shader_stage stage = ffs(pCreateInfo->pStages[i].stage) - 1; pStages[stage] = &pCreateInfo->pStages[i]; if (creation_feedback) stage_feedbacks[stage] = &creation_feedback->pPipelineStageCreationFeedbacks[i]; } struct radv_pipeline_key key = radv_generate_graphics_pipeline_key(pipeline, pCreateInfo, &blend); result = radv_create_shaders(pipeline, device, cache, &key, pStages, pCreateInfo->flags, pipeline_feedback, stage_feedbacks); if (result != VK_SUCCESS) return result; pipeline->graphics.spi_baryc_cntl = S_0286E0_FRONT_FACE_ALL_BITS(1); radv_pipeline_init_multisample_state(pipeline, &blend, pCreateInfo); radv_pipeline_init_input_assembly_state(pipeline, pCreateInfo, extra); radv_pipeline_init_dynamic_state(pipeline, pCreateInfo, extra); radv_pipeline_init_raster_state(pipeline, pCreateInfo); radv_pipeline_init_depth_stencil_state(pipeline, pCreateInfo); if (pipeline->device->physical_device->rad_info.chip_class >= GFX10_3) gfx103_pipeline_init_vrs_state(pipeline, pCreateInfo); /* Ensure that some export memory is always allocated, for two reasons: * * 1) Correctness: The hardware ignores the EXEC mask if no export * memory is allocated, so KILL and alpha test do not work correctly * without this. * 2) Performance: Every shader needs at least a NULL export, even when * it writes no color/depth output. The NULL export instruction * stalls without this setting. * * Don't add this to CB_SHADER_MASK. * * GFX10 supports pixel shaders without exports by setting both the * color and Z formats to SPI_SHADER_ZERO. The hw will skip export * instructions if any are present. */ struct radv_shader_variant *ps = pipeline->shaders[MESA_SHADER_FRAGMENT]; if ((pipeline->device->physical_device->rad_info.chip_class <= GFX9 || ps->info.ps.can_discard) && !blend.spi_shader_col_format) { if (!ps->info.ps.writes_z && !ps->info.ps.writes_stencil && !ps->info.ps.writes_sample_mask) blend.spi_shader_col_format = V_028714_SPI_SHADER_32_R; } if (extra && (extra->custom_blend_mode == V_028808_CB_ELIMINATE_FAST_CLEAR || extra->custom_blend_mode == V_028808_CB_FMASK_DECOMPRESS || extra->custom_blend_mode == V_028808_CB_DCC_DECOMPRESS || extra->custom_blend_mode == V_028808_CB_RESOLVE)) { /* According to the CB spec states, CB_SHADER_MASK should be * set to enable writes to all four channels of MRT0. */ blend.cb_shader_mask = 0xf; } pipeline->graphics.col_format = blend.spi_shader_col_format; pipeline->graphics.cb_target_mask = blend.cb_target_mask; if (radv_pipeline_has_gs(pipeline) && !radv_pipeline_has_ngg(pipeline)) { struct radv_shader_variant *gs = pipeline->shaders[MESA_SHADER_GEOMETRY]; radv_pipeline_init_gs_ring_state(pipeline, &gs->info.gs_ring_info); } if (radv_pipeline_has_tess(pipeline)) { pipeline->graphics.tess_patch_control_points = pCreateInfo->pTessellationState->patchControlPoints; } radv_pipeline_init_vertex_input_state(pipeline, pCreateInfo); radv_pipeline_init_binning_state(pipeline, pCreateInfo, &blend); radv_pipeline_init_shader_stages_state(pipeline); radv_pipeline_init_scratch(device, pipeline); /* Find the last vertex shader stage that eventually uses streamout. */ pipeline->streamout_shader = radv_pipeline_get_streamout_shader(pipeline); pipeline->graphics.is_ngg = radv_pipeline_has_ngg(pipeline); radv_pipeline_generate_pm4(pipeline, pCreateInfo, extra, &blend); return result; } VkResult radv_graphics_pipeline_create(VkDevice _device, VkPipelineCache _cache, const VkGraphicsPipelineCreateInfo *pCreateInfo, const struct radv_graphics_pipeline_create_info *extra, const VkAllocationCallbacks *pAllocator, VkPipeline *pPipeline) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_pipeline_cache, cache, _cache); struct radv_pipeline *pipeline; VkResult result; pipeline = vk_zalloc2(&device->vk.alloc, pAllocator, sizeof(*pipeline), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (pipeline == NULL) return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY); vk_object_base_init(&device->vk, &pipeline->base, VK_OBJECT_TYPE_PIPELINE); result = radv_pipeline_init(pipeline, device, cache, pCreateInfo, extra); if (result != VK_SUCCESS) { radv_pipeline_destroy(device, pipeline, pAllocator); return result; } *pPipeline = radv_pipeline_to_handle(pipeline); return VK_SUCCESS; } VkResult radv_CreateGraphicsPipelines(VkDevice _device, VkPipelineCache pipelineCache, uint32_t count, const VkGraphicsPipelineCreateInfo *pCreateInfos, const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines) { VkResult result = VK_SUCCESS; unsigned i = 0; for (; i < count; i++) { VkResult r; r = radv_graphics_pipeline_create(_device, pipelineCache, &pCreateInfos[i], NULL, pAllocator, &pPipelines[i]); if (r != VK_SUCCESS) { result = r; pPipelines[i] = VK_NULL_HANDLE; if (pCreateInfos[i].flags & VK_PIPELINE_CREATE_EARLY_RETURN_ON_FAILURE_BIT_EXT) break; } } for (; i < count; ++i) pPipelines[i] = VK_NULL_HANDLE; return result; } static void radv_pipeline_generate_hw_cs(struct radeon_cmdbuf *cs, const struct radv_pipeline *pipeline) { struct radv_shader_variant *shader = pipeline->shaders[MESA_SHADER_COMPUTE]; uint64_t va = radv_buffer_get_va(shader->bo) + shader->bo_offset; struct radv_device *device = pipeline->device; radeon_set_sh_reg_seq(cs, R_00B830_COMPUTE_PGM_LO, 2); radeon_emit(cs, va >> 8); radeon_emit(cs, S_00B834_DATA(va >> 40)); radeon_set_sh_reg_seq(cs, R_00B848_COMPUTE_PGM_RSRC1, 2); radeon_emit(cs, shader->config.rsrc1); radeon_emit(cs, shader->config.rsrc2); if (device->physical_device->rad_info.chip_class >= GFX10) { radeon_set_sh_reg(cs, R_00B8A0_COMPUTE_PGM_RSRC3, shader->config.rsrc3); } } static void radv_pipeline_generate_compute_state(struct radeon_cmdbuf *cs, const struct radv_pipeline *pipeline) { struct radv_shader_variant *shader = pipeline->shaders[MESA_SHADER_COMPUTE]; struct radv_device *device = pipeline->device; unsigned threads_per_threadgroup; unsigned threadgroups_per_cu = 1; unsigned waves_per_threadgroup; unsigned max_waves_per_sh = 0; /* Calculate best compute resource limits. */ threads_per_threadgroup = shader->info.cs.block_size[0] * shader->info.cs.block_size[1] * shader->info.cs.block_size[2]; waves_per_threadgroup = DIV_ROUND_UP(threads_per_threadgroup, shader->info.wave_size); if (device->physical_device->rad_info.chip_class >= GFX10 && waves_per_threadgroup == 1) threadgroups_per_cu = 2; radeon_set_sh_reg( cs, R_00B854_COMPUTE_RESOURCE_LIMITS, ac_get_compute_resource_limits(&device->physical_device->rad_info, waves_per_threadgroup, max_waves_per_sh, threadgroups_per_cu)); radeon_set_sh_reg_seq(cs, R_00B81C_COMPUTE_NUM_THREAD_X, 3); radeon_emit(cs, S_00B81C_NUM_THREAD_FULL(shader->info.cs.block_size[0])); radeon_emit(cs, S_00B81C_NUM_THREAD_FULL(shader->info.cs.block_size[1])); radeon_emit(cs, S_00B81C_NUM_THREAD_FULL(shader->info.cs.block_size[2])); } static void radv_compute_generate_pm4(struct radv_pipeline *pipeline) { struct radv_device *device = pipeline->device; struct radeon_cmdbuf *cs = &pipeline->cs; cs->max_dw = device->physical_device->rad_info.chip_class >= GFX10 ? 19 : 16; cs->buf = malloc(cs->max_dw * 4); radv_pipeline_generate_hw_cs(cs, pipeline); radv_pipeline_generate_compute_state(cs, pipeline); assert(pipeline->cs.cdw <= pipeline->cs.max_dw); } static struct radv_pipeline_key radv_generate_compute_pipeline_key(struct radv_pipeline *pipeline, const VkComputePipelineCreateInfo *pCreateInfo) { const VkPipelineShaderStageCreateInfo *stage = &pCreateInfo->stage; struct radv_pipeline_key key; memset(&key, 0, sizeof(key)); if (pCreateInfo->flags & VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT) key.optimisations_disabled = 1; const VkPipelineShaderStageRequiredSubgroupSizeCreateInfoEXT *subgroup_size = vk_find_struct_const(stage->pNext, PIPELINE_SHADER_STAGE_REQUIRED_SUBGROUP_SIZE_CREATE_INFO_EXT); if (subgroup_size) { assert(subgroup_size->requiredSubgroupSize == 32 || subgroup_size->requiredSubgroupSize == 64); key.compute_subgroup_size = subgroup_size->requiredSubgroupSize; } else if (stage->flags & VK_PIPELINE_SHADER_STAGE_CREATE_REQUIRE_FULL_SUBGROUPS_BIT_EXT) { key.require_full_subgroups = true; } return key; } static VkResult radv_compute_pipeline_create(VkDevice _device, VkPipelineCache _cache, const VkComputePipelineCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkPipeline *pPipeline) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_pipeline_cache, cache, _cache); const VkPipelineShaderStageCreateInfo *pStages[MESA_SHADER_STAGES] = { 0, }; VkPipelineCreationFeedbackEXT *stage_feedbacks[MESA_SHADER_STAGES] = {0}; struct radv_pipeline *pipeline; VkResult result; pipeline = vk_zalloc2(&device->vk.alloc, pAllocator, sizeof(*pipeline), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (pipeline == NULL) return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY); vk_object_base_init(&device->vk, &pipeline->base, VK_OBJECT_TYPE_PIPELINE); pipeline->device = device; pipeline->layout = radv_pipeline_layout_from_handle(pCreateInfo->layout); assert(pipeline->layout); const VkPipelineCreationFeedbackCreateInfoEXT *creation_feedback = vk_find_struct_const(pCreateInfo->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO_EXT); radv_init_feedback(creation_feedback); VkPipelineCreationFeedbackEXT *pipeline_feedback = creation_feedback ? creation_feedback->pPipelineCreationFeedback : NULL; if (creation_feedback) stage_feedbacks[MESA_SHADER_COMPUTE] = &creation_feedback->pPipelineStageCreationFeedbacks[0]; pStages[MESA_SHADER_COMPUTE] = &pCreateInfo->stage; struct radv_pipeline_key key = radv_generate_compute_pipeline_key(pipeline, pCreateInfo); result = radv_create_shaders(pipeline, device, cache, &key, pStages, pCreateInfo->flags, pipeline_feedback, stage_feedbacks); if (result != VK_SUCCESS) { radv_pipeline_destroy(device, pipeline, pAllocator); return result; } pipeline->user_data_0[MESA_SHADER_COMPUTE] = radv_pipeline_stage_to_user_data_0( pipeline, MESA_SHADER_COMPUTE, device->physical_device->rad_info.chip_class); pipeline->need_indirect_descriptor_sets |= pipeline->shaders[MESA_SHADER_COMPUTE]->info.need_indirect_descriptor_sets; radv_pipeline_init_scratch(device, pipeline); radv_compute_generate_pm4(pipeline); *pPipeline = radv_pipeline_to_handle(pipeline); return VK_SUCCESS; } VkResult radv_CreateComputePipelines(VkDevice _device, VkPipelineCache pipelineCache, uint32_t count, const VkComputePipelineCreateInfo *pCreateInfos, const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines) { VkResult result = VK_SUCCESS; unsigned i = 0; for (; i < count; i++) { VkResult r; r = radv_compute_pipeline_create(_device, pipelineCache, &pCreateInfos[i], pAllocator, &pPipelines[i]); if (r != VK_SUCCESS) { result = r; pPipelines[i] = VK_NULL_HANDLE; if (pCreateInfos[i].flags & VK_PIPELINE_CREATE_EARLY_RETURN_ON_FAILURE_BIT_EXT) break; } } for (; i < count; ++i) pPipelines[i] = VK_NULL_HANDLE; return result; } static uint32_t radv_get_executable_count(const struct radv_pipeline *pipeline) { uint32_t ret = 0; for (int i = 0; i < MESA_SHADER_STAGES; ++i) { if (!pipeline->shaders[i]) continue; if (i == MESA_SHADER_GEOMETRY && !radv_pipeline_has_ngg(pipeline)) { ret += 2u; } else { ret += 1u; } } return ret; } static struct radv_shader_variant * radv_get_shader_from_executable_index(const struct radv_pipeline *pipeline, int index, gl_shader_stage *stage) { for (int i = 0; i < MESA_SHADER_STAGES; ++i) { if (!pipeline->shaders[i]) continue; if (!index) { *stage = i; return pipeline->shaders[i]; } --index; if (i == MESA_SHADER_GEOMETRY && !radv_pipeline_has_ngg(pipeline)) { if (!index) { *stage = i; return pipeline->gs_copy_shader; } --index; } } *stage = -1; return NULL; } /* Basically strlcpy (which does not exist on linux) specialized for * descriptions. */ static void desc_copy(char *desc, const char *src) { int len = strlen(src); assert(len < VK_MAX_DESCRIPTION_SIZE); memcpy(desc, src, len); memset(desc + len, 0, VK_MAX_DESCRIPTION_SIZE - len); } VkResult radv_GetPipelineExecutablePropertiesKHR(VkDevice _device, const VkPipelineInfoKHR *pPipelineInfo, uint32_t *pExecutableCount, VkPipelineExecutablePropertiesKHR *pProperties) { RADV_FROM_HANDLE(radv_pipeline, pipeline, pPipelineInfo->pipeline); const uint32_t total_count = radv_get_executable_count(pipeline); if (!pProperties) { *pExecutableCount = total_count; return VK_SUCCESS; } const uint32_t count = MIN2(total_count, *pExecutableCount); for (unsigned i = 0, executable_idx = 0; i < MESA_SHADER_STAGES && executable_idx < count; ++i) { if (!pipeline->shaders[i]) continue; pProperties[executable_idx].stages = mesa_to_vk_shader_stage(i); const char *name = NULL; const char *description = NULL; switch (i) { case MESA_SHADER_VERTEX: name = "Vertex Shader"; description = "Vulkan Vertex Shader"; break; case MESA_SHADER_TESS_CTRL: if (!pipeline->shaders[MESA_SHADER_VERTEX]) { pProperties[executable_idx].stages |= VK_SHADER_STAGE_VERTEX_BIT; name = "Vertex + Tessellation Control Shaders"; description = "Combined Vulkan Vertex and Tessellation Control Shaders"; } else { name = "Tessellation Control Shader"; description = "Vulkan Tessellation Control Shader"; } break; case MESA_SHADER_TESS_EVAL: name = "Tessellation Evaluation Shader"; description = "Vulkan Tessellation Evaluation Shader"; break; case MESA_SHADER_GEOMETRY: if (radv_pipeline_has_tess(pipeline) && !pipeline->shaders[MESA_SHADER_TESS_EVAL]) { pProperties[executable_idx].stages |= VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT; name = "Tessellation Evaluation + Geometry Shaders"; description = "Combined Vulkan Tessellation Evaluation and Geometry Shaders"; } else if (!radv_pipeline_has_tess(pipeline) && !pipeline->shaders[MESA_SHADER_VERTEX]) { pProperties[executable_idx].stages |= VK_SHADER_STAGE_VERTEX_BIT; name = "Vertex + Geometry Shader"; description = "Combined Vulkan Vertex and Geometry Shaders"; } else { name = "Geometry Shader"; description = "Vulkan Geometry Shader"; } break; case MESA_SHADER_FRAGMENT: name = "Fragment Shader"; description = "Vulkan Fragment Shader"; break; case MESA_SHADER_COMPUTE: name = "Compute Shader"; description = "Vulkan Compute Shader"; break; } pProperties[executable_idx].subgroupSize = pipeline->shaders[i]->info.wave_size; desc_copy(pProperties[executable_idx].name, name); desc_copy(pProperties[executable_idx].description, description); ++executable_idx; if (i == MESA_SHADER_GEOMETRY && !radv_pipeline_has_ngg(pipeline)) { assert(pipeline->gs_copy_shader); if (executable_idx >= count) break; pProperties[executable_idx].stages = VK_SHADER_STAGE_GEOMETRY_BIT; pProperties[executable_idx].subgroupSize = 64; desc_copy(pProperties[executable_idx].name, "GS Copy Shader"); desc_copy(pProperties[executable_idx].description, "Extra shader stage that loads the GS output ringbuffer into the rasterizer"); ++executable_idx; } } VkResult result = *pExecutableCount < total_count ? VK_INCOMPLETE : VK_SUCCESS; *pExecutableCount = count; return result; } VkResult radv_GetPipelineExecutableStatisticsKHR(VkDevice _device, const VkPipelineExecutableInfoKHR *pExecutableInfo, uint32_t *pStatisticCount, VkPipelineExecutableStatisticKHR *pStatistics) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_pipeline, pipeline, pExecutableInfo->pipeline); gl_shader_stage stage; struct radv_shader_variant *shader = radv_get_shader_from_executable_index(pipeline, pExecutableInfo->executableIndex, &stage); enum chip_class chip_class = device->physical_device->rad_info.chip_class; unsigned lds_increment = chip_class >= GFX7 ? 512 : 256; unsigned max_waves = radv_get_max_waves(device, shader, stage); VkPipelineExecutableStatisticKHR *s = pStatistics; VkPipelineExecutableStatisticKHR *end = s + (pStatistics ? *pStatisticCount : 0); VkResult result = VK_SUCCESS; if (s < end) { desc_copy(s->name, "SGPRs"); desc_copy(s->description, "Number of SGPR registers allocated per subgroup"); s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR; s->value.u64 = shader->config.num_sgprs; } ++s; if (s < end) { desc_copy(s->name, "VGPRs"); desc_copy(s->description, "Number of VGPR registers allocated per subgroup"); s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR; s->value.u64 = shader->config.num_vgprs; } ++s; if (s < end) { desc_copy(s->name, "Spilled SGPRs"); desc_copy(s->description, "Number of SGPR registers spilled per subgroup"); s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR; s->value.u64 = shader->config.spilled_sgprs; } ++s; if (s < end) { desc_copy(s->name, "Spilled VGPRs"); desc_copy(s->description, "Number of VGPR registers spilled per subgroup"); s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR; s->value.u64 = shader->config.spilled_vgprs; } ++s; if (s < end) { desc_copy(s->name, "PrivMem VGPRs"); desc_copy(s->description, "Number of VGPRs stored in private memory per subgroup"); s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR; s->value.u64 = shader->info.private_mem_vgprs; } ++s; if (s < end) { desc_copy(s->name, "Code size"); desc_copy(s->description, "Code size in bytes"); s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR; s->value.u64 = shader->exec_size; } ++s; if (s < end) { desc_copy(s->name, "LDS size"); desc_copy(s->description, "LDS size in bytes per workgroup"); s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR; s->value.u64 = shader->config.lds_size * lds_increment; } ++s; if (s < end) { desc_copy(s->name, "Scratch size"); desc_copy(s->description, "Private memory in bytes per subgroup"); s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR; s->value.u64 = shader->config.scratch_bytes_per_wave; } ++s; if (s < end) { desc_copy(s->name, "Subgroups per SIMD"); desc_copy(s->description, "The maximum number of subgroups in flight on a SIMD unit"); s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR; s->value.u64 = max_waves; } ++s; if (shader->statistics) { for (unsigned i = 0; i < aco_num_statistics; i++) { const struct aco_compiler_statistic_info *info = &aco_statistic_infos[i]; if (s < end) { desc_copy(s->name, info->name); desc_copy(s->description, info->desc); s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR; s->value.u64 = shader->statistics[i]; } ++s; } } if (!pStatistics) *pStatisticCount = s - pStatistics; else if (s > end) { *pStatisticCount = end - pStatistics; result = VK_INCOMPLETE; } else { *pStatisticCount = s - pStatistics; } return result; } static VkResult radv_copy_representation(void *data, size_t *data_size, const char *src) { size_t total_size = strlen(src) + 1; if (!data) { *data_size = total_size; return VK_SUCCESS; } size_t size = MIN2(total_size, *data_size); memcpy(data, src, size); if (size) *((char *)data + size - 1) = 0; return size < total_size ? VK_INCOMPLETE : VK_SUCCESS; } VkResult radv_GetPipelineExecutableInternalRepresentationsKHR( VkDevice device, const VkPipelineExecutableInfoKHR *pExecutableInfo, uint32_t *pInternalRepresentationCount, VkPipelineExecutableInternalRepresentationKHR *pInternalRepresentations) { RADV_FROM_HANDLE(radv_pipeline, pipeline, pExecutableInfo->pipeline); gl_shader_stage stage; struct radv_shader_variant *shader = radv_get_shader_from_executable_index(pipeline, pExecutableInfo->executableIndex, &stage); VkPipelineExecutableInternalRepresentationKHR *p = pInternalRepresentations; VkPipelineExecutableInternalRepresentationKHR *end = p + (pInternalRepresentations ? *pInternalRepresentationCount : 0); VkResult result = VK_SUCCESS; /* optimized NIR */ if (p < end) { p->isText = true; desc_copy(p->name, "NIR Shader(s)"); desc_copy(p->description, "The optimized NIR shader(s)"); if (radv_copy_representation(p->pData, &p->dataSize, shader->nir_string) != VK_SUCCESS) result = VK_INCOMPLETE; } ++p; /* backend IR */ if (p < end) { p->isText = true; if (radv_use_llvm_for_stage(pipeline->device, stage)) { desc_copy(p->name, "LLVM IR"); desc_copy(p->description, "The LLVM IR after some optimizations"); } else { desc_copy(p->name, "ACO IR"); desc_copy(p->description, "The ACO IR after some optimizations"); } if (radv_copy_representation(p->pData, &p->dataSize, shader->ir_string) != VK_SUCCESS) result = VK_INCOMPLETE; } ++p; /* Disassembler */ if (p < end) { p->isText = true; desc_copy(p->name, "Assembly"); desc_copy(p->description, "Final Assembly"); if (radv_copy_representation(p->pData, &p->dataSize, shader->disasm_string) != VK_SUCCESS) result = VK_INCOMPLETE; } ++p; if (!pInternalRepresentations) *pInternalRepresentationCount = p - pInternalRepresentations; else if (p > end) { result = VK_INCOMPLETE; *pInternalRepresentationCount = end - pInternalRepresentations; } else { *pInternalRepresentationCount = p - pInternalRepresentations; } return result; }