/* * Copyright © 2016 Red Hat. * Copyright © 2016 Bas Nieuwenhuizen * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ /** * @file * * We use the bindless descriptor model, which maps fairly closely to how * Vulkan descriptor sets work. The two exceptions are input attachments and * dynamic descriptors, which have to be patched when recording command * buffers. We reserve an extra descriptor set for these. This descriptor set * contains all the input attachments in the pipeline, in order, and then all * the dynamic descriptors. The dynamic descriptors are stored in the CPU-side * datastructure for each tu_descriptor_set, and then combined into one big * descriptor set at CmdBindDescriptors time/draw time. */ #include "tu_private.h" #include #include #include #include #include #include "util/mesa-sha1.h" #include "vk_descriptors.h" #include "vk_util.h" static inline uint8_t * pool_base(struct tu_descriptor_pool *pool) { return pool->host_bo ?: pool->bo->map; } static uint32_t descriptor_size(struct tu_device *dev, VkDescriptorType type) { switch (type) { case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT: /* Input attachment doesn't use descriptor sets at all */ return 0; case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER: /* We make offsets and sizes all 16 dwords, to match how the hardware * interprets indices passed to sample/load/store instructions in * multiples of 16 dwords. This means that "normal" descriptors are all * of size 16, with padding for smaller descriptors like uniform storage * descriptors which are less than 16 dwords. However combined images * and samplers are actually two descriptors, so they have size 2. */ return A6XX_TEX_CONST_DWORDS * 4 * 2; case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER: case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: /* When we support 16-bit storage, we need an extra descriptor setup as * a 32-bit array for isam to work. */ if (dev->physical_device->info->a6xx.storage_16bit) { return A6XX_TEX_CONST_DWORDS * 4 * 2; } else { return A6XX_TEX_CONST_DWORDS * 4; } default: return A6XX_TEX_CONST_DWORDS * 4; } } static bool is_dynamic(VkDescriptorType type) { return type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC || type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC; } static uint32_t mutable_descriptor_size(struct tu_device *dev, const VkMutableDescriptorTypeListVALVE *list) { uint32_t max_size = 0; for (uint32_t i = 0; i < list->descriptorTypeCount; i++) { uint32_t size = descriptor_size(dev, list->pDescriptorTypes[i]); max_size = MAX2(max_size, size); } return max_size; } VKAPI_ATTR VkResult VKAPI_CALL tu_CreateDescriptorSetLayout( VkDevice _device, const VkDescriptorSetLayoutCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkDescriptorSetLayout *pSetLayout) { TU_FROM_HANDLE(tu_device, device, _device); struct tu_descriptor_set_layout *set_layout; assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO); const VkDescriptorSetLayoutBindingFlagsCreateInfo *variable_flags = vk_find_struct_const( pCreateInfo->pNext, DESCRIPTOR_SET_LAYOUT_BINDING_FLAGS_CREATE_INFO); const VkMutableDescriptorTypeCreateInfoVALVE *mutable_info = vk_find_struct_const( pCreateInfo->pNext, MUTABLE_DESCRIPTOR_TYPE_CREATE_INFO_VALVE); uint32_t num_bindings = 0; uint32_t immutable_sampler_count = 0; uint32_t ycbcr_sampler_count = 0; for (uint32_t j = 0; j < pCreateInfo->bindingCount; j++) { num_bindings = MAX2(num_bindings, pCreateInfo->pBindings[j].binding + 1); if ((pCreateInfo->pBindings[j].descriptorType == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER || pCreateInfo->pBindings[j].descriptorType == VK_DESCRIPTOR_TYPE_SAMPLER) && pCreateInfo->pBindings[j].pImmutableSamplers) { immutable_sampler_count += pCreateInfo->pBindings[j].descriptorCount; bool has_ycbcr_sampler = false; for (unsigned i = 0; i < pCreateInfo->pBindings[j].descriptorCount; ++i) { if (tu_sampler_from_handle(pCreateInfo->pBindings[j].pImmutableSamplers[i])->ycbcr_sampler) has_ycbcr_sampler = true; } if (has_ycbcr_sampler) ycbcr_sampler_count += pCreateInfo->pBindings[j].descriptorCount; } } uint32_t samplers_offset = offsetof(struct tu_descriptor_set_layout, binding[num_bindings]); /* note: only need to store TEX_SAMP_DWORDS for immutable samples, * but using struct tu_sampler makes things simpler */ uint32_t size = samplers_offset + immutable_sampler_count * sizeof(struct tu_sampler) + ycbcr_sampler_count * sizeof(struct tu_sampler_ycbcr_conversion); set_layout = vk_object_zalloc(&device->vk, NULL, size, VK_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT); if (!set_layout) return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY); set_layout->flags = pCreateInfo->flags; /* We just allocate all the immutable samplers at the end of the struct */ struct tu_sampler *samplers = (void*) &set_layout->binding[num_bindings]; struct tu_sampler_ycbcr_conversion *ycbcr_samplers = (void*) &samplers[immutable_sampler_count]; VkDescriptorSetLayoutBinding *bindings = NULL; VkResult result = vk_create_sorted_bindings( pCreateInfo->pBindings, pCreateInfo->bindingCount, &bindings); if (result != VK_SUCCESS) { vk_object_free(&device->vk, pAllocator, set_layout); return vk_error(device, result); } set_layout->ref_cnt = 1; set_layout->binding_count = num_bindings; set_layout->shader_stages = 0; set_layout->has_immutable_samplers = false; set_layout->size = 0; uint32_t dynamic_offset_size = 0; for (uint32_t j = 0; j < pCreateInfo->bindingCount; j++) { const VkDescriptorSetLayoutBinding *binding = bindings + j; uint32_t b = binding->binding; set_layout->binding[b].type = binding->descriptorType; set_layout->binding[b].array_size = binding->descriptorCount; set_layout->binding[b].offset = set_layout->size; set_layout->binding[b].dynamic_offset_offset = dynamic_offset_size; set_layout->binding[b].shader_stages = binding->stageFlags; if (binding->descriptorType == VK_DESCRIPTOR_TYPE_MUTABLE_VALVE) { /* For mutable descriptor types we must allocate a size that fits the * largest descriptor type that the binding can mutate to. */ set_layout->binding[b].size = mutable_descriptor_size(device, &mutable_info->pMutableDescriptorTypeLists[j]); } else { set_layout->binding[b].size = descriptor_size(device, binding->descriptorType); } if (variable_flags && binding->binding < variable_flags->bindingCount && (variable_flags->pBindingFlags[binding->binding] & VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT)) { assert(!binding->pImmutableSamplers); /* Terribly ill defined how many samplers are valid */ assert(binding->binding == num_bindings - 1); set_layout->has_variable_descriptors = true; } if ((binding->descriptorType == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER || binding->descriptorType == VK_DESCRIPTOR_TYPE_SAMPLER) && binding->pImmutableSamplers) { set_layout->binding[b].immutable_samplers_offset = samplers_offset; set_layout->has_immutable_samplers = true; for (uint32_t i = 0; i < binding->descriptorCount; i++) samplers[i] = *tu_sampler_from_handle(binding->pImmutableSamplers[i]); samplers += binding->descriptorCount; samplers_offset += sizeof(struct tu_sampler) * binding->descriptorCount; bool has_ycbcr_sampler = false; for (unsigned i = 0; i < pCreateInfo->pBindings[j].descriptorCount; ++i) { if (tu_sampler_from_handle(binding->pImmutableSamplers[i])->ycbcr_sampler) has_ycbcr_sampler = true; } if (has_ycbcr_sampler) { set_layout->binding[b].ycbcr_samplers_offset = (const char*)ycbcr_samplers - (const char*)set_layout; for (uint32_t i = 0; i < binding->descriptorCount; i++) { struct tu_sampler *sampler = tu_sampler_from_handle(binding->pImmutableSamplers[i]); if (sampler->ycbcr_sampler) ycbcr_samplers[i] = *sampler->ycbcr_sampler; else ycbcr_samplers[i].ycbcr_model = VK_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY; } ycbcr_samplers += binding->descriptorCount; } else { set_layout->binding[b].ycbcr_samplers_offset = 0; } } if (is_dynamic(binding->descriptorType)) { dynamic_offset_size += binding->descriptorCount * set_layout->binding[b].size; } else { set_layout->size += binding->descriptorCount * set_layout->binding[b].size; } set_layout->shader_stages |= binding->stageFlags; } free(bindings); set_layout->dynamic_offset_size = dynamic_offset_size; *pSetLayout = tu_descriptor_set_layout_to_handle(set_layout); return VK_SUCCESS; } VKAPI_ATTR void VKAPI_CALL tu_DestroyDescriptorSetLayout(VkDevice _device, VkDescriptorSetLayout _set_layout, const VkAllocationCallbacks *pAllocator) { TU_FROM_HANDLE(tu_device, device, _device); TU_FROM_HANDLE(tu_descriptor_set_layout, set_layout, _set_layout); if (!set_layout) return; tu_descriptor_set_layout_unref(device, set_layout); } void tu_descriptor_set_layout_destroy(struct tu_device *device, struct tu_descriptor_set_layout *layout) { assert(layout->ref_cnt == 0); vk_object_free(&device->vk, NULL, layout); } VKAPI_ATTR void VKAPI_CALL tu_GetDescriptorSetLayoutSupport( VkDevice _device, const VkDescriptorSetLayoutCreateInfo *pCreateInfo, VkDescriptorSetLayoutSupport *pSupport) { TU_FROM_HANDLE(tu_device, device, _device); VkDescriptorSetLayoutBinding *bindings = NULL; VkResult result = vk_create_sorted_bindings( pCreateInfo->pBindings, pCreateInfo->bindingCount, &bindings); if (result != VK_SUCCESS) { pSupport->supported = false; return; } const VkDescriptorSetLayoutBindingFlagsCreateInfo *variable_flags = vk_find_struct_const( pCreateInfo->pNext, DESCRIPTOR_SET_LAYOUT_BINDING_FLAGS_CREATE_INFO); VkDescriptorSetVariableDescriptorCountLayoutSupport *variable_count = vk_find_struct( (void *) pCreateInfo->pNext, DESCRIPTOR_SET_VARIABLE_DESCRIPTOR_COUNT_LAYOUT_SUPPORT); const VkMutableDescriptorTypeCreateInfoVALVE *mutable_info = vk_find_struct_const( pCreateInfo->pNext, MUTABLE_DESCRIPTOR_TYPE_CREATE_INFO_VALVE); if (variable_count) { variable_count->maxVariableDescriptorCount = 0; } bool supported = true; uint64_t size = 0; for (uint32_t i = 0; i < pCreateInfo->bindingCount; i++) { const VkDescriptorSetLayoutBinding *binding = bindings + i; uint64_t descriptor_sz; if (is_dynamic(binding->descriptorType)) { descriptor_sz = 0; } else if (binding->descriptorType == VK_DESCRIPTOR_TYPE_MUTABLE_VALVE) { const VkMutableDescriptorTypeListVALVE *list = &mutable_info->pMutableDescriptorTypeLists[i]; for (uint32_t j = 0; j < list->descriptorTypeCount; j++) { /* Don't support the input attachement and combined image sampler type * for mutable descriptors */ if (list->pDescriptorTypes[j] == VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT || list->pDescriptorTypes[j] == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER) { supported = false; goto out; } } descriptor_sz = mutable_descriptor_size(device, &mutable_info->pMutableDescriptorTypeLists[i]); } else { descriptor_sz = descriptor_size(device, binding->descriptorType); } uint64_t descriptor_alignment = 8; if (size && !ALIGN_POT(size, descriptor_alignment)) { supported = false; } size = ALIGN_POT(size, descriptor_alignment); uint64_t max_count = UINT64_MAX; if (descriptor_sz) max_count = (UINT64_MAX - size) / descriptor_sz; if (max_count < binding->descriptorCount) { supported = false; } if (variable_flags && binding->binding < variable_flags->bindingCount && variable_count && (variable_flags->pBindingFlags[binding->binding] & VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT)) { variable_count->maxVariableDescriptorCount = MIN2(UINT32_MAX, max_count); } size += binding->descriptorCount * descriptor_sz; } out: free(bindings); pSupport->supported = supported; } /* Note: we must hash any values used in tu_lower_io(). */ #define SHA1_UPDATE_VALUE(ctx, x) _mesa_sha1_update(ctx, &(x), sizeof(x)); static void sha1_update_ycbcr_sampler(struct mesa_sha1 *ctx, const struct tu_sampler_ycbcr_conversion *sampler) { SHA1_UPDATE_VALUE(ctx, sampler->ycbcr_model); SHA1_UPDATE_VALUE(ctx, sampler->ycbcr_range); SHA1_UPDATE_VALUE(ctx, sampler->format); } static void sha1_update_descriptor_set_binding_layout(struct mesa_sha1 *ctx, const struct tu_descriptor_set_binding_layout *layout, const struct tu_descriptor_set_layout *set_layout) { SHA1_UPDATE_VALUE(ctx, layout->type); SHA1_UPDATE_VALUE(ctx, layout->offset); SHA1_UPDATE_VALUE(ctx, layout->size); SHA1_UPDATE_VALUE(ctx, layout->array_size); SHA1_UPDATE_VALUE(ctx, layout->dynamic_offset_offset); SHA1_UPDATE_VALUE(ctx, layout->immutable_samplers_offset); const struct tu_sampler_ycbcr_conversion *ycbcr_samplers = tu_immutable_ycbcr_samplers(set_layout, layout); if (ycbcr_samplers) { for (unsigned i = 0; i < layout->array_size; i++) sha1_update_ycbcr_sampler(ctx, ycbcr_samplers + i); } } static void sha1_update_descriptor_set_layout(struct mesa_sha1 *ctx, const struct tu_descriptor_set_layout *layout) { for (uint16_t i = 0; i < layout->binding_count; i++) sha1_update_descriptor_set_binding_layout(ctx, &layout->binding[i], layout); } /* * Pipeline layouts. These have nothing to do with the pipeline. They are * just multiple descriptor set layouts pasted together. */ VKAPI_ATTR VkResult VKAPI_CALL tu_CreatePipelineLayout(VkDevice _device, const VkPipelineLayoutCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkPipelineLayout *pPipelineLayout) { TU_FROM_HANDLE(tu_device, device, _device); struct tu_pipeline_layout *layout; assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO); layout = vk_object_alloc(&device->vk, pAllocator, sizeof(*layout), VK_OBJECT_TYPE_PIPELINE_LAYOUT); if (layout == NULL) return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY); layout->num_sets = pCreateInfo->setLayoutCount; layout->dynamic_offset_size = 0; unsigned dynamic_offset_size = 0; for (uint32_t set = 0; set < pCreateInfo->setLayoutCount; set++) { TU_FROM_HANDLE(tu_descriptor_set_layout, set_layout, pCreateInfo->pSetLayouts[set]); assert(set < MAX_SETS); layout->set[set].layout = set_layout; layout->set[set].dynamic_offset_start = dynamic_offset_size; tu_descriptor_set_layout_ref(set_layout); dynamic_offset_size += set_layout->dynamic_offset_size; } layout->dynamic_offset_size = dynamic_offset_size; layout->push_constant_size = 0; for (unsigned i = 0; i < pCreateInfo->pushConstantRangeCount; ++i) { const VkPushConstantRange *range = pCreateInfo->pPushConstantRanges + i; layout->push_constant_size = MAX2(layout->push_constant_size, range->offset + range->size); } layout->push_constant_size = align(layout->push_constant_size, 16); struct mesa_sha1 ctx; _mesa_sha1_init(&ctx); for (unsigned s = 0; s < layout->num_sets; s++) { sha1_update_descriptor_set_layout(&ctx, layout->set[s].layout); _mesa_sha1_update(&ctx, &layout->set[s].dynamic_offset_start, sizeof(layout->set[s].dynamic_offset_start)); } _mesa_sha1_update(&ctx, &layout->num_sets, sizeof(layout->num_sets)); _mesa_sha1_update(&ctx, &layout->push_constant_size, sizeof(layout->push_constant_size)); _mesa_sha1_final(&ctx, layout->sha1); *pPipelineLayout = tu_pipeline_layout_to_handle(layout); return VK_SUCCESS; } VKAPI_ATTR void VKAPI_CALL tu_DestroyPipelineLayout(VkDevice _device, VkPipelineLayout _pipelineLayout, const VkAllocationCallbacks *pAllocator) { TU_FROM_HANDLE(tu_device, device, _device); TU_FROM_HANDLE(tu_pipeline_layout, pipeline_layout, _pipelineLayout); if (!pipeline_layout) return; for (uint32_t i = 0; i < pipeline_layout->num_sets; i++) tu_descriptor_set_layout_unref(device, pipeline_layout->set[i].layout); vk_object_free(&device->vk, pAllocator, pipeline_layout); } #define EMPTY 1 static VkResult tu_descriptor_set_create(struct tu_device *device, struct tu_descriptor_pool *pool, struct tu_descriptor_set_layout *layout, const uint32_t *variable_count, struct tu_descriptor_set **out_set) { struct tu_descriptor_set *set; unsigned dynamic_offset = sizeof(struct tu_descriptor_set); unsigned mem_size = dynamic_offset + layout->dynamic_offset_size; if (pool->host_memory_base) { if (pool->host_memory_end - pool->host_memory_ptr < mem_size) return vk_error(device, VK_ERROR_OUT_OF_POOL_MEMORY); set = (struct tu_descriptor_set*)pool->host_memory_ptr; pool->host_memory_ptr += mem_size; } else { set = vk_alloc2(&device->vk.alloc, NULL, mem_size, 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (!set) return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY); } memset(set, 0, mem_size); vk_object_base_init(&device->vk, &set->base, VK_OBJECT_TYPE_DESCRIPTOR_SET); if (layout->dynamic_offset_size) { set->dynamic_descriptors = (uint32_t *)((uint8_t*)set + dynamic_offset); } set->layout = layout; set->pool = pool; uint32_t layout_size = layout->size; if (variable_count) { assert(layout->has_variable_descriptors); uint32_t stride = layout->binding[layout->binding_count - 1].size; layout_size = layout->binding[layout->binding_count - 1].offset + *variable_count * stride; } if (layout_size) { set->size = layout_size; if (!pool->host_memory_base && pool->entry_count == pool->max_entry_count) { vk_object_free(&device->vk, NULL, set); return vk_error(device, VK_ERROR_OUT_OF_POOL_MEMORY); } /* try to allocate linearly first, so that we don't spend * time looking for gaps if the app only allocates & * resets via the pool. */ if (pool->current_offset + layout_size <= pool->size) { set->mapped_ptr = (uint32_t*)(pool_base(pool) + pool->current_offset); set->va = pool->host_bo ? 0 : pool->bo->iova + pool->current_offset; if (!pool->host_memory_base) { pool->entries[pool->entry_count].offset = pool->current_offset; pool->entries[pool->entry_count].size = layout_size; pool->entries[pool->entry_count].set = set; pool->entry_count++; } pool->current_offset += layout_size; } else if (!pool->host_memory_base) { uint64_t offset = 0; int index; for (index = 0; index < pool->entry_count; ++index) { if (pool->entries[index].offset - offset >= layout_size) break; offset = pool->entries[index].offset + pool->entries[index].size; } if (pool->size - offset < layout_size) { vk_object_free(&device->vk, NULL, set); return vk_error(device, VK_ERROR_OUT_OF_POOL_MEMORY); } set->mapped_ptr = (uint32_t*)(pool_base(pool) + offset); set->va = pool->host_bo ? 0 : pool->bo->iova + offset; memmove(&pool->entries[index + 1], &pool->entries[index], sizeof(pool->entries[0]) * (pool->entry_count - index)); pool->entries[index].offset = offset; pool->entries[index].size = layout_size; pool->entries[index].set = set; pool->entry_count++; } else return vk_error(device, VK_ERROR_OUT_OF_POOL_MEMORY); } if (layout->has_immutable_samplers) { for (unsigned i = 0; i < layout->binding_count; ++i) { if (!layout->binding[i].immutable_samplers_offset) continue; unsigned offset = layout->binding[i].offset / 4; if (layout->binding[i].type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER) offset += A6XX_TEX_CONST_DWORDS; const struct tu_sampler *samplers = (const struct tu_sampler *)((const char *)layout + layout->binding[i].immutable_samplers_offset); for (unsigned j = 0; j < layout->binding[i].array_size; ++j) { memcpy(set->mapped_ptr + offset, samplers[j].descriptor, sizeof(samplers[j].descriptor)); offset += layout->binding[i].size / 4; } } } tu_descriptor_set_layout_ref(layout); list_addtail(&set->pool_link, &pool->desc_sets); *out_set = set; return VK_SUCCESS; } static void tu_descriptor_set_destroy(struct tu_device *device, struct tu_descriptor_pool *pool, struct tu_descriptor_set *set, bool free_bo) { assert(!pool->host_memory_base); if (free_bo && set->size && !pool->host_memory_base) { uint32_t offset = (uint8_t*)set->mapped_ptr - pool_base(pool); for (int i = 0; i < pool->entry_count; ++i) { if (pool->entries[i].offset == offset) { memmove(&pool->entries[i], &pool->entries[i+1], sizeof(pool->entries[i]) * (pool->entry_count - i - 1)); --pool->entry_count; break; } } } vk_object_free(&device->vk, NULL, set); } VKAPI_ATTR VkResult VKAPI_CALL tu_CreateDescriptorPool(VkDevice _device, const VkDescriptorPoolCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkDescriptorPool *pDescriptorPool) { TU_FROM_HANDLE(tu_device, device, _device); struct tu_descriptor_pool *pool; uint64_t size = sizeof(struct tu_descriptor_pool); uint64_t bo_size = 0, bo_count = 0, dynamic_size = 0; VkResult ret; const VkMutableDescriptorTypeCreateInfoVALVE *mutable_info = vk_find_struct_const( pCreateInfo->pNext, MUTABLE_DESCRIPTOR_TYPE_CREATE_INFO_VALVE); for (unsigned i = 0; i < pCreateInfo->poolSizeCount; ++i) { if (pCreateInfo->pPoolSizes[i].type != VK_DESCRIPTOR_TYPE_SAMPLER) bo_count += pCreateInfo->pPoolSizes[i].descriptorCount; switch(pCreateInfo->pPoolSizes[i].type) { case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC: case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: dynamic_size += descriptor_size(device, pCreateInfo->pPoolSizes[i].type) * pCreateInfo->pPoolSizes[i].descriptorCount; break; case VK_DESCRIPTOR_TYPE_MUTABLE_VALVE: if (mutable_info && i < mutable_info->mutableDescriptorTypeListCount && mutable_info->pMutableDescriptorTypeLists[i].descriptorTypeCount > 0) { bo_size += mutable_descriptor_size(device, &mutable_info->pMutableDescriptorTypeLists[i]) * pCreateInfo->pPoolSizes[i].descriptorCount; } else { /* Allocate the maximum size possible. */ bo_size += 2 * A6XX_TEX_CONST_DWORDS * 4 * pCreateInfo->pPoolSizes[i].descriptorCount; } continue; default: break; } bo_size += descriptor_size(device, pCreateInfo->pPoolSizes[i].type) * pCreateInfo->pPoolSizes[i].descriptorCount; } if (!(pCreateInfo->flags & VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT)) { uint64_t host_size = pCreateInfo->maxSets * sizeof(struct tu_descriptor_set); host_size += sizeof(struct tu_bo*) * bo_count; host_size += dynamic_size; size += host_size; } else { size += sizeof(struct tu_descriptor_pool_entry) * pCreateInfo->maxSets; } pool = vk_object_zalloc(&device->vk, pAllocator, size, VK_OBJECT_TYPE_DESCRIPTOR_POOL); if (!pool) return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY); if (!(pCreateInfo->flags & VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT)) { pool->host_memory_base = (uint8_t*)pool + sizeof(struct tu_descriptor_pool); pool->host_memory_ptr = pool->host_memory_base; pool->host_memory_end = (uint8_t*)pool + size; } if (bo_size) { if (!(pCreateInfo->flags & VK_DESCRIPTOR_POOL_CREATE_HOST_ONLY_BIT_VALVE)) { ret = tu_bo_init_new(device, &pool->bo, bo_size, TU_BO_ALLOC_ALLOW_DUMP); if (ret) goto fail_alloc; ret = tu_bo_map(device, pool->bo); if (ret) goto fail_map; } else { pool->host_bo = vk_alloc2(&device->vk.alloc, pAllocator, bo_size, 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (!pool->host_bo) { ret = VK_ERROR_OUT_OF_HOST_MEMORY; goto fail_alloc; } } } pool->size = bo_size; pool->max_entry_count = pCreateInfo->maxSets; list_inithead(&pool->desc_sets); *pDescriptorPool = tu_descriptor_pool_to_handle(pool); return VK_SUCCESS; fail_map: tu_bo_finish(device, pool->bo); fail_alloc: vk_object_free(&device->vk, pAllocator, pool); return ret; } VKAPI_ATTR void VKAPI_CALL tu_DestroyDescriptorPool(VkDevice _device, VkDescriptorPool _pool, const VkAllocationCallbacks *pAllocator) { TU_FROM_HANDLE(tu_device, device, _device); TU_FROM_HANDLE(tu_descriptor_pool, pool, _pool); if (!pool) return; list_for_each_entry_safe(struct tu_descriptor_set, set, &pool->desc_sets, pool_link) { tu_descriptor_set_layout_unref(device, set->layout); } if (!pool->host_memory_base) { for(int i = 0; i < pool->entry_count; ++i) { tu_descriptor_set_destroy(device, pool, pool->entries[i].set, false); } } if (pool->size) { if (pool->host_bo) vk_free2(&device->vk.alloc, pAllocator, pool->host_bo); else tu_bo_finish(device, pool->bo); } vk_object_free(&device->vk, pAllocator, pool); } VKAPI_ATTR VkResult VKAPI_CALL tu_ResetDescriptorPool(VkDevice _device, VkDescriptorPool descriptorPool, VkDescriptorPoolResetFlags flags) { TU_FROM_HANDLE(tu_device, device, _device); TU_FROM_HANDLE(tu_descriptor_pool, pool, descriptorPool); list_for_each_entry_safe(struct tu_descriptor_set, set, &pool->desc_sets, pool_link) { tu_descriptor_set_layout_unref(device, set->layout); } list_inithead(&pool->desc_sets); if (!pool->host_memory_base) { for(int i = 0; i < pool->entry_count; ++i) { tu_descriptor_set_destroy(device, pool, pool->entries[i].set, false); } pool->entry_count = 0; } pool->current_offset = 0; pool->host_memory_ptr = pool->host_memory_base; return VK_SUCCESS; } VKAPI_ATTR VkResult VKAPI_CALL tu_AllocateDescriptorSets(VkDevice _device, const VkDescriptorSetAllocateInfo *pAllocateInfo, VkDescriptorSet *pDescriptorSets) { TU_FROM_HANDLE(tu_device, device, _device); TU_FROM_HANDLE(tu_descriptor_pool, pool, pAllocateInfo->descriptorPool); VkResult result = VK_SUCCESS; uint32_t i; struct tu_descriptor_set *set = NULL; const VkDescriptorSetVariableDescriptorCountAllocateInfo *variable_counts = vk_find_struct_const(pAllocateInfo->pNext, DESCRIPTOR_SET_VARIABLE_DESCRIPTOR_COUNT_ALLOCATE_INFO); const uint32_t zero = 0; /* allocate a set of buffers for each shader to contain descriptors */ for (i = 0; i < pAllocateInfo->descriptorSetCount; i++) { TU_FROM_HANDLE(tu_descriptor_set_layout, layout, pAllocateInfo->pSetLayouts[i]); const uint32_t *variable_count = NULL; if (variable_counts) { if (i < variable_counts->descriptorSetCount) variable_count = variable_counts->pDescriptorCounts + i; else variable_count = &zero; } assert(!(layout->flags & VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR)); result = tu_descriptor_set_create(device, pool, layout, variable_count, &set); if (result != VK_SUCCESS) break; pDescriptorSets[i] = tu_descriptor_set_to_handle(set); } if (result != VK_SUCCESS) { tu_FreeDescriptorSets(_device, pAllocateInfo->descriptorPool, i, pDescriptorSets); for (i = 0; i < pAllocateInfo->descriptorSetCount; i++) { pDescriptorSets[i] = VK_NULL_HANDLE; } } return result; } VKAPI_ATTR VkResult VKAPI_CALL tu_FreeDescriptorSets(VkDevice _device, VkDescriptorPool descriptorPool, uint32_t count, const VkDescriptorSet *pDescriptorSets) { TU_FROM_HANDLE(tu_device, device, _device); TU_FROM_HANDLE(tu_descriptor_pool, pool, descriptorPool); for (uint32_t i = 0; i < count; i++) { TU_FROM_HANDLE(tu_descriptor_set, set, pDescriptorSets[i]); if (set) { tu_descriptor_set_layout_unref(device, set->layout); list_del(&set->pool_link); } if (set && !pool->host_memory_base) tu_descriptor_set_destroy(device, pool, set, true); } return VK_SUCCESS; } static void write_texel_buffer_descriptor(uint32_t *dst, const VkBufferView buffer_view) { if (buffer_view == VK_NULL_HANDLE) { memset(dst, 0, A6XX_TEX_CONST_DWORDS * sizeof(uint32_t)); } else { TU_FROM_HANDLE(tu_buffer_view, view, buffer_view); memcpy(dst, view->descriptor, sizeof(view->descriptor)); } } static uint32_t get_range(struct tu_buffer *buf, VkDeviceSize offset, VkDeviceSize range) { if (range == VK_WHOLE_SIZE) { return buf->size - offset; } else { return range; } } static void write_buffer_descriptor(const struct tu_device *device, uint32_t *dst, const VkDescriptorBufferInfo *buffer_info) { bool storage_16bit = device->physical_device->info->a6xx.storage_16bit; /* newer a6xx allows using 16-bit descriptor for both 16-bit and 32-bit * access, but we need to keep a 32-bit descriptor for readonly access via * isam. */ unsigned descriptors = storage_16bit ? 2 : 1; if (buffer_info->buffer == VK_NULL_HANDLE) { memset(dst, 0, descriptors * A6XX_TEX_CONST_DWORDS * sizeof(uint32_t)); return; } TU_FROM_HANDLE(tu_buffer, buffer, buffer_info->buffer); assert((buffer_info->offset & 63) == 0); /* minStorageBufferOffsetAlignment */ uint64_t va = buffer->iova + buffer_info->offset; uint32_t range = get_range(buffer, buffer_info->offset, buffer_info->range); for (unsigned i = 0; i < descriptors; i++) { if (storage_16bit && i == 0) { dst[0] = A6XX_TEX_CONST_0_TILE_MODE(TILE6_LINEAR) | A6XX_TEX_CONST_0_FMT(FMT6_16_UINT); dst[1] = DIV_ROUND_UP(range, 2); } else { dst[0] = A6XX_TEX_CONST_0_TILE_MODE(TILE6_LINEAR) | A6XX_TEX_CONST_0_FMT(FMT6_32_UINT); dst[1] = DIV_ROUND_UP(range, 4); } dst[2] = A6XX_TEX_CONST_2_BUFFER | A6XX_TEX_CONST_2_TYPE(A6XX_TEX_BUFFER); dst[3] = 0; dst[4] = A6XX_TEX_CONST_4_BASE_LO(va); dst[5] = A6XX_TEX_CONST_5_BASE_HI(va >> 32); for (int j = 6; j < A6XX_TEX_CONST_DWORDS; j++) dst[j] = 0; dst += A6XX_TEX_CONST_DWORDS; } } static void write_ubo_descriptor(uint32_t *dst, const VkDescriptorBufferInfo *buffer_info) { if (buffer_info->buffer == VK_NULL_HANDLE) { dst[0] = dst[1] = 0; return; } TU_FROM_HANDLE(tu_buffer, buffer, buffer_info->buffer); uint32_t range = get_range(buffer, buffer_info->offset, buffer_info->range); /* The HW range is in vec4 units */ range = ALIGN_POT(range, 16) / 16; uint64_t va = buffer->iova + buffer_info->offset; dst[0] = A6XX_UBO_0_BASE_LO(va); dst[1] = A6XX_UBO_1_BASE_HI(va >> 32) | A6XX_UBO_1_SIZE(range); } static void write_image_descriptor(uint32_t *dst, VkDescriptorType descriptor_type, const VkDescriptorImageInfo *image_info) { if (image_info->imageView == VK_NULL_HANDLE) { memset(dst, 0, A6XX_TEX_CONST_DWORDS * sizeof(uint32_t)); return; } TU_FROM_HANDLE(tu_image_view, iview, image_info->imageView); if (descriptor_type == VK_DESCRIPTOR_TYPE_STORAGE_IMAGE) { memcpy(dst, iview->view.storage_descriptor, sizeof(iview->view.storage_descriptor)); } else { memcpy(dst, iview->view.descriptor, sizeof(iview->view.descriptor)); } } static void write_combined_image_sampler_descriptor(uint32_t *dst, VkDescriptorType descriptor_type, const VkDescriptorImageInfo *image_info, bool has_sampler) { write_image_descriptor(dst, descriptor_type, image_info); /* copy over sampler state */ if (has_sampler) { TU_FROM_HANDLE(tu_sampler, sampler, image_info->sampler); memcpy(dst + A6XX_TEX_CONST_DWORDS, sampler->descriptor, sizeof(sampler->descriptor)); } } static void write_sampler_descriptor(uint32_t *dst, const VkDescriptorImageInfo *image_info) { TU_FROM_HANDLE(tu_sampler, sampler, image_info->sampler); memcpy(dst, sampler->descriptor, sizeof(sampler->descriptor)); } /* note: this is used with immutable samplers in push descriptors */ static void write_sampler_push(uint32_t *dst, const struct tu_sampler *sampler) { memcpy(dst, sampler->descriptor, sizeof(sampler->descriptor)); } void tu_update_descriptor_sets(const struct tu_device *device, VkDescriptorSet dstSetOverride, uint32_t descriptorWriteCount, const VkWriteDescriptorSet *pDescriptorWrites, uint32_t descriptorCopyCount, const VkCopyDescriptorSet *pDescriptorCopies) { uint32_t i, j; for (i = 0; i < descriptorWriteCount; i++) { const VkWriteDescriptorSet *writeset = &pDescriptorWrites[i]; TU_FROM_HANDLE(tu_descriptor_set, set, dstSetOverride ?: writeset->dstSet); const struct tu_descriptor_set_binding_layout *binding_layout = set->layout->binding + writeset->dstBinding; uint32_t *ptr = set->mapped_ptr; if (writeset->descriptorType == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC || writeset->descriptorType == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) { ptr = set->dynamic_descriptors; ptr += binding_layout->dynamic_offset_offset / 4; } else { ptr = set->mapped_ptr; ptr += binding_layout->offset / 4; } /* for immutable samplers with push descriptors: */ const bool copy_immutable_samplers = dstSetOverride && binding_layout->immutable_samplers_offset; const struct tu_sampler *samplers = tu_immutable_samplers(set->layout, binding_layout); ptr += (binding_layout->size / 4) * writeset->dstArrayElement; for (j = 0; j < writeset->descriptorCount; ++j) { switch(writeset->descriptorType) { case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC: case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER: write_ubo_descriptor(ptr, writeset->pBufferInfo + j); break; case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER: write_buffer_descriptor(device, ptr, writeset->pBufferInfo + j); break; case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER: case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER: write_texel_buffer_descriptor(ptr, writeset->pTexelBufferView[j]); break; case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: write_image_descriptor(ptr, writeset->descriptorType, writeset->pImageInfo + j); break; case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER: write_combined_image_sampler_descriptor(ptr, writeset->descriptorType, writeset->pImageInfo + j, !binding_layout->immutable_samplers_offset); if (copy_immutable_samplers) write_sampler_push(ptr + A6XX_TEX_CONST_DWORDS, &samplers[writeset->dstArrayElement + j]); break; case VK_DESCRIPTOR_TYPE_SAMPLER: if (!binding_layout->immutable_samplers_offset) write_sampler_descriptor(ptr, writeset->pImageInfo + j); else if (copy_immutable_samplers) write_sampler_push(ptr, &samplers[writeset->dstArrayElement + j]); break; case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT: /* nothing in descriptor set - framebuffer state is used instead */ break; default: unreachable("unimplemented descriptor type"); break; } ptr += binding_layout->size / 4; } } for (i = 0; i < descriptorCopyCount; i++) { const VkCopyDescriptorSet *copyset = &pDescriptorCopies[i]; TU_FROM_HANDLE(tu_descriptor_set, src_set, copyset->srcSet); TU_FROM_HANDLE(tu_descriptor_set, dst_set, copyset->dstSet); const struct tu_descriptor_set_binding_layout *src_binding_layout = src_set->layout->binding + copyset->srcBinding; const struct tu_descriptor_set_binding_layout *dst_binding_layout = dst_set->layout->binding + copyset->dstBinding; uint32_t *src_ptr = src_set->mapped_ptr; uint32_t *dst_ptr = dst_set->mapped_ptr; if (src_binding_layout->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC || src_binding_layout->type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) { src_ptr = src_set->dynamic_descriptors; dst_ptr = dst_set->dynamic_descriptors; src_ptr += src_binding_layout->dynamic_offset_offset / 4; dst_ptr += dst_binding_layout->dynamic_offset_offset / 4; } else { src_ptr = src_set->mapped_ptr; dst_ptr = dst_set->mapped_ptr; src_ptr += src_binding_layout->offset / 4; dst_ptr += dst_binding_layout->offset / 4; } src_ptr += src_binding_layout->size * copyset->srcArrayElement / 4; dst_ptr += dst_binding_layout->size * copyset->dstArrayElement / 4; /* In case of copies between mutable descriptor types * and non-mutable descriptor types. */ uint32_t copy_size = MIN2(src_binding_layout->size, dst_binding_layout->size); for (j = 0; j < copyset->descriptorCount; ++j) { memcpy(dst_ptr, src_ptr, copy_size); src_ptr += src_binding_layout->size / 4; dst_ptr += dst_binding_layout->size / 4; } } } VKAPI_ATTR void VKAPI_CALL tu_UpdateDescriptorSets(VkDevice _device, uint32_t descriptorWriteCount, const VkWriteDescriptorSet *pDescriptorWrites, uint32_t descriptorCopyCount, const VkCopyDescriptorSet *pDescriptorCopies) { TU_FROM_HANDLE(tu_device, device, _device); tu_update_descriptor_sets(device, VK_NULL_HANDLE, descriptorWriteCount, pDescriptorWrites, descriptorCopyCount, pDescriptorCopies); } VKAPI_ATTR VkResult VKAPI_CALL tu_CreateDescriptorUpdateTemplate( VkDevice _device, const VkDescriptorUpdateTemplateCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkDescriptorUpdateTemplate *pDescriptorUpdateTemplate) { TU_FROM_HANDLE(tu_device, device, _device); TU_FROM_HANDLE(tu_descriptor_set_layout, set_layout, pCreateInfo->descriptorSetLayout); const uint32_t entry_count = pCreateInfo->descriptorUpdateEntryCount; const size_t size = sizeof(struct tu_descriptor_update_template) + sizeof(struct tu_descriptor_update_template_entry) * entry_count; struct tu_descriptor_update_template *templ; templ = vk_object_alloc(&device->vk, pAllocator, size, VK_OBJECT_TYPE_DESCRIPTOR_UPDATE_TEMPLATE); if (!templ) return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY); templ->entry_count = entry_count; if (pCreateInfo->templateType == VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_PUSH_DESCRIPTORS_KHR) { TU_FROM_HANDLE(tu_pipeline_layout, pipeline_layout, pCreateInfo->pipelineLayout); /* descriptorSetLayout should be ignored for push descriptors * and instead it refers to pipelineLayout and set. */ assert(pCreateInfo->set < MAX_SETS); set_layout = pipeline_layout->set[pCreateInfo->set].layout; templ->bind_point = pCreateInfo->pipelineBindPoint; } for (uint32_t i = 0; i < entry_count; i++) { const VkDescriptorUpdateTemplateEntry *entry = &pCreateInfo->pDescriptorUpdateEntries[i]; const struct tu_descriptor_set_binding_layout *binding_layout = set_layout->binding + entry->dstBinding; uint32_t dst_offset, dst_stride; const struct tu_sampler *immutable_samplers = NULL; /* dst_offset is an offset into dynamic_descriptors when the descriptor * is dynamic, and an offset into mapped_ptr otherwise. */ switch (entry->descriptorType) { case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC: case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: dst_offset = binding_layout->dynamic_offset_offset / 4; break; case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER: case VK_DESCRIPTOR_TYPE_SAMPLER: if (pCreateInfo->templateType == VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_PUSH_DESCRIPTORS_KHR && binding_layout->immutable_samplers_offset) { immutable_samplers = tu_immutable_samplers(set_layout, binding_layout) + entry->dstArrayElement; } FALLTHROUGH; default: dst_offset = binding_layout->offset / 4; } dst_offset += (binding_layout->size * entry->dstArrayElement) / 4; dst_stride = binding_layout->size / 4; templ->entry[i] = (struct tu_descriptor_update_template_entry) { .descriptor_type = entry->descriptorType, .descriptor_count = entry->descriptorCount, .src_offset = entry->offset, .src_stride = entry->stride, .dst_offset = dst_offset, .dst_stride = dst_stride, .has_sampler = !binding_layout->immutable_samplers_offset, .immutable_samplers = immutable_samplers, }; } *pDescriptorUpdateTemplate = tu_descriptor_update_template_to_handle(templ); return VK_SUCCESS; } VKAPI_ATTR void VKAPI_CALL tu_DestroyDescriptorUpdateTemplate( VkDevice _device, VkDescriptorUpdateTemplate descriptorUpdateTemplate, const VkAllocationCallbacks *pAllocator) { TU_FROM_HANDLE(tu_device, device, _device); TU_FROM_HANDLE(tu_descriptor_update_template, templ, descriptorUpdateTemplate); if (!templ) return; vk_object_free(&device->vk, pAllocator, templ); } void tu_update_descriptor_set_with_template( const struct tu_device *device, struct tu_descriptor_set *set, VkDescriptorUpdateTemplate descriptorUpdateTemplate, const void *pData) { TU_FROM_HANDLE(tu_descriptor_update_template, templ, descriptorUpdateTemplate); for (uint32_t i = 0; i < templ->entry_count; i++) { uint32_t *ptr = set->mapped_ptr; const void *src = ((const char *) pData) + templ->entry[i].src_offset; const struct tu_sampler *samplers = templ->entry[i].immutable_samplers; ptr += templ->entry[i].dst_offset; unsigned dst_offset = templ->entry[i].dst_offset; for (unsigned j = 0; j < templ->entry[i].descriptor_count; ++j) { switch(templ->entry[i].descriptor_type) { case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC: { assert(!(set->layout->flags & VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR)); write_ubo_descriptor(set->dynamic_descriptors + dst_offset, src); break; } case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER: write_ubo_descriptor(ptr, src); break; case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: { assert(!(set->layout->flags & VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR)); write_buffer_descriptor(device, set->dynamic_descriptors + dst_offset, src); break; } case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER: write_buffer_descriptor(device, ptr, src); break; case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER: case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER: write_texel_buffer_descriptor(ptr, *(VkBufferView *) src); break; case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: { write_image_descriptor(ptr, templ->entry[i].descriptor_type, src); break; } case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER: write_combined_image_sampler_descriptor(ptr, templ->entry[i].descriptor_type, src, templ->entry[i].has_sampler); if (samplers) write_sampler_push(ptr + A6XX_TEX_CONST_DWORDS, &samplers[j]); break; case VK_DESCRIPTOR_TYPE_SAMPLER: if (templ->entry[i].has_sampler) write_sampler_descriptor(ptr, src); else if (samplers) write_sampler_push(ptr, &samplers[j]); break; case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT: /* nothing in descriptor set - framebuffer state is used instead */ break; default: unreachable("unimplemented descriptor type"); break; } src = (char *) src + templ->entry[i].src_stride; ptr += templ->entry[i].dst_stride; dst_offset += templ->entry[i].dst_stride; } } } VKAPI_ATTR void VKAPI_CALL tu_UpdateDescriptorSetWithTemplate( VkDevice _device, VkDescriptorSet descriptorSet, VkDescriptorUpdateTemplate descriptorUpdateTemplate, const void *pData) { TU_FROM_HANDLE(tu_device, device, _device); TU_FROM_HANDLE(tu_descriptor_set, set, descriptorSet); tu_update_descriptor_set_with_template(device, set, descriptorUpdateTemplate, pData); } VKAPI_ATTR VkResult VKAPI_CALL tu_CreateSamplerYcbcrConversion( VkDevice _device, const VkSamplerYcbcrConversionCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkSamplerYcbcrConversion *pYcbcrConversion) { TU_FROM_HANDLE(tu_device, device, _device); struct tu_sampler_ycbcr_conversion *conversion; conversion = vk_object_alloc(&device->vk, pAllocator, sizeof(*conversion), VK_OBJECT_TYPE_SAMPLER_YCBCR_CONVERSION); if (!conversion) return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY); conversion->format = pCreateInfo->format; conversion->ycbcr_model = pCreateInfo->ycbcrModel; conversion->ycbcr_range = pCreateInfo->ycbcrRange; conversion->components = pCreateInfo->components; conversion->chroma_offsets[0] = pCreateInfo->xChromaOffset; conversion->chroma_offsets[1] = pCreateInfo->yChromaOffset; conversion->chroma_filter = pCreateInfo->chromaFilter; *pYcbcrConversion = tu_sampler_ycbcr_conversion_to_handle(conversion); return VK_SUCCESS; } VKAPI_ATTR void VKAPI_CALL tu_DestroySamplerYcbcrConversion(VkDevice _device, VkSamplerYcbcrConversion ycbcrConversion, const VkAllocationCallbacks *pAllocator) { TU_FROM_HANDLE(tu_device, device, _device); TU_FROM_HANDLE(tu_sampler_ycbcr_conversion, ycbcr_conversion, ycbcrConversion); if (!ycbcr_conversion) return; vk_object_free(&device->vk, pAllocator, ycbcr_conversion); }