/* * Copyright © 2011 Marek Olšák * Copyright © 2015 Advanced Micro Devices, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS, AUTHORS * AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. */ #include "amdgpu_cs.h" #include "util/hash_table.h" #include "util/os_time.h" #include "util/u_hash_table.h" #include "frontend/drm_driver.h" #include "drm-uapi/amdgpu_drm.h" #include #include #include #ifndef AMDGPU_VA_RANGE_HIGH #define AMDGPU_VA_RANGE_HIGH 0x2 #endif /* Set to 1 for verbose output showing committed sparse buffer ranges. */ #define DEBUG_SPARSE_COMMITS 0 struct amdgpu_sparse_backing_chunk { uint32_t begin, end; }; static bool amdgpu_bo_wait(struct pb_buffer *_buf, uint64_t timeout, enum radeon_bo_usage usage) { struct amdgpu_winsys_bo *bo = amdgpu_winsys_bo(_buf); struct amdgpu_winsys *ws = bo->ws; int64_t abs_timeout; if (timeout == 0) { if (p_atomic_read(&bo->num_active_ioctls)) return false; } else { abs_timeout = os_time_get_absolute_timeout(timeout); /* Wait if any ioctl is being submitted with this buffer. */ if (!os_wait_until_zero_abs_timeout(&bo->num_active_ioctls, abs_timeout)) return false; } if (bo->is_shared) { /* We can't use user fences for shared buffers, because user fences * are local to this process only. If we want to wait for all buffer * uses in all processes, we have to use amdgpu_bo_wait_for_idle. */ bool buffer_busy = true; int r; r = amdgpu_bo_wait_for_idle(bo->bo, timeout, &buffer_busy); if (r) fprintf(stderr, "%s: amdgpu_bo_wait_for_idle failed %i\n", __func__, r); return !buffer_busy; } if (timeout == 0) { unsigned idle_fences; bool buffer_idle; simple_mtx_lock(&ws->bo_fence_lock); for (idle_fences = 0; idle_fences < bo->num_fences; ++idle_fences) { if (!amdgpu_fence_wait(bo->fences[idle_fences], 0, false)) break; } /* Release the idle fences to avoid checking them again later. */ for (unsigned i = 0; i < idle_fences; ++i) amdgpu_fence_reference(&bo->fences[i], NULL); memmove(&bo->fences[0], &bo->fences[idle_fences], (bo->num_fences - idle_fences) * sizeof(*bo->fences)); bo->num_fences -= idle_fences; buffer_idle = !bo->num_fences; simple_mtx_unlock(&ws->bo_fence_lock); return buffer_idle; } else { bool buffer_idle = true; simple_mtx_lock(&ws->bo_fence_lock); while (bo->num_fences && buffer_idle) { struct pipe_fence_handle *fence = NULL; bool fence_idle = false; amdgpu_fence_reference(&fence, bo->fences[0]); /* Wait for the fence. */ simple_mtx_unlock(&ws->bo_fence_lock); if (amdgpu_fence_wait(fence, abs_timeout, true)) fence_idle = true; else buffer_idle = false; simple_mtx_lock(&ws->bo_fence_lock); /* Release an idle fence to avoid checking it again later, keeping in * mind that the fence array may have been modified by other threads. */ if (fence_idle && bo->num_fences && bo->fences[0] == fence) { amdgpu_fence_reference(&bo->fences[0], NULL); memmove(&bo->fences[0], &bo->fences[1], (bo->num_fences - 1) * sizeof(*bo->fences)); bo->num_fences--; } amdgpu_fence_reference(&fence, NULL); } simple_mtx_unlock(&ws->bo_fence_lock); return buffer_idle; } } static enum radeon_bo_domain amdgpu_bo_get_initial_domain( struct pb_buffer *buf) { return ((struct amdgpu_winsys_bo*)buf)->base.placement; } static enum radeon_bo_flag amdgpu_bo_get_flags( struct pb_buffer *buf) { return ((struct amdgpu_winsys_bo*)buf)->base.usage; } static void amdgpu_bo_remove_fences(struct amdgpu_winsys_bo *bo) { for (unsigned i = 0; i < bo->num_fences; ++i) amdgpu_fence_reference(&bo->fences[i], NULL); FREE(bo->fences); bo->num_fences = 0; bo->max_fences = 0; } void amdgpu_bo_destroy(struct pb_buffer *_buf) { struct amdgpu_winsys_bo *bo = amdgpu_winsys_bo(_buf); struct amdgpu_screen_winsys *sws_iter; struct amdgpu_winsys *ws = bo->ws; assert(bo->bo && "must not be called for slab entries"); if (!bo->is_user_ptr && bo->cpu_ptr) { bo->cpu_ptr = NULL; amdgpu_bo_unmap(&bo->base); } assert(bo->is_user_ptr || bo->u.real.map_count == 0); if (ws->debug_all_bos) { simple_mtx_lock(&ws->global_bo_list_lock); list_del(&bo->u.real.global_list_item); ws->num_buffers--; simple_mtx_unlock(&ws->global_bo_list_lock); } /* Close all KMS handles retrieved for other DRM file descriptions */ simple_mtx_lock(&ws->sws_list_lock); for (sws_iter = ws->sws_list; sws_iter; sws_iter = sws_iter->next) { struct hash_entry *entry; if (!sws_iter->kms_handles) continue; entry = _mesa_hash_table_search(sws_iter->kms_handles, bo); if (entry) { struct drm_gem_close args = { .handle = (uintptr_t)entry->data }; drmIoctl(sws_iter->fd, DRM_IOCTL_GEM_CLOSE, &args); _mesa_hash_table_remove(sws_iter->kms_handles, entry); } } simple_mtx_unlock(&ws->sws_list_lock); simple_mtx_lock(&ws->bo_export_table_lock); _mesa_hash_table_remove_key(ws->bo_export_table, bo->bo); simple_mtx_unlock(&ws->bo_export_table_lock); if (bo->base.placement & RADEON_DOMAIN_VRAM_GTT) { amdgpu_bo_va_op(bo->bo, 0, bo->base.size, bo->va, 0, AMDGPU_VA_OP_UNMAP); amdgpu_va_range_free(bo->u.real.va_handle); } amdgpu_bo_free(bo->bo); amdgpu_bo_remove_fences(bo); if (bo->base.placement & RADEON_DOMAIN_VRAM) ws->allocated_vram -= align64(bo->base.size, ws->info.gart_page_size); else if (bo->base.placement & RADEON_DOMAIN_GTT) ws->allocated_gtt -= align64(bo->base.size, ws->info.gart_page_size); simple_mtx_destroy(&bo->lock); FREE(bo); } static void amdgpu_bo_destroy_or_cache(struct pb_buffer *_buf) { struct amdgpu_winsys_bo *bo = amdgpu_winsys_bo(_buf); assert(bo->bo); /* slab buffers have a separate vtbl */ if (bo->u.real.use_reusable_pool) pb_cache_add_buffer(&bo->u.real.cache_entry); else amdgpu_bo_destroy(_buf); } static void amdgpu_clean_up_buffer_managers(struct amdgpu_winsys *ws) { for (unsigned i = 0; i < NUM_SLAB_ALLOCATORS; i++) { pb_slabs_reclaim(&ws->bo_slabs[i]); if (ws->info.has_tmz_support) pb_slabs_reclaim(&ws->bo_slabs_encrypted[i]); } pb_cache_release_all_buffers(&ws->bo_cache); } static bool amdgpu_bo_do_map(struct amdgpu_winsys_bo *bo, void **cpu) { assert(!(bo->base.usage & RADEON_FLAG_SPARSE) && bo->bo && !bo->is_user_ptr); int r = amdgpu_bo_cpu_map(bo->bo, cpu); if (r) { /* Clean up buffer managers and try again. */ amdgpu_clean_up_buffer_managers(bo->ws); r = amdgpu_bo_cpu_map(bo->bo, cpu); if (r) return false; } if (p_atomic_inc_return(&bo->u.real.map_count) == 1) { if (bo->base.placement & RADEON_DOMAIN_VRAM) bo->ws->mapped_vram += bo->base.size; else if (bo->base.placement & RADEON_DOMAIN_GTT) bo->ws->mapped_gtt += bo->base.size; bo->ws->num_mapped_buffers++; } return true; } void *amdgpu_bo_map(struct pb_buffer *buf, struct radeon_cmdbuf *rcs, enum pipe_map_flags usage) { struct amdgpu_winsys_bo *bo = (struct amdgpu_winsys_bo*)buf; struct amdgpu_winsys_bo *real; struct amdgpu_cs *cs = (struct amdgpu_cs*)rcs; assert(!(bo->base.usage & RADEON_FLAG_SPARSE)); /* If it's not unsynchronized bo_map, flush CS if needed and then wait. */ if (!(usage & PIPE_MAP_UNSYNCHRONIZED)) { /* DONTBLOCK doesn't make sense with UNSYNCHRONIZED. */ if (usage & PIPE_MAP_DONTBLOCK) { if (!(usage & PIPE_MAP_WRITE)) { /* Mapping for read. * * Since we are mapping for read, we don't need to wait * if the GPU is using the buffer for read too * (neither one is changing it). * * Only check whether the buffer is being used for write. */ if (cs && amdgpu_bo_is_referenced_by_cs_with_usage(cs, bo, RADEON_USAGE_WRITE)) { cs->flush_cs(cs->flush_data, RADEON_FLUSH_ASYNC_START_NEXT_GFX_IB_NOW, NULL); return NULL; } if (!amdgpu_bo_wait((struct pb_buffer*)bo, 0, RADEON_USAGE_WRITE)) { return NULL; } } else { if (cs && amdgpu_bo_is_referenced_by_cs(cs, bo)) { cs->flush_cs(cs->flush_data, RADEON_FLUSH_ASYNC_START_NEXT_GFX_IB_NOW, NULL); return NULL; } if (!amdgpu_bo_wait((struct pb_buffer*)bo, 0, RADEON_USAGE_READWRITE)) { return NULL; } } } else { uint64_t time = os_time_get_nano(); if (!(usage & PIPE_MAP_WRITE)) { /* Mapping for read. * * Since we are mapping for read, we don't need to wait * if the GPU is using the buffer for read too * (neither one is changing it). * * Only check whether the buffer is being used for write. */ if (cs) { if (amdgpu_bo_is_referenced_by_cs_with_usage(cs, bo, RADEON_USAGE_WRITE)) { cs->flush_cs(cs->flush_data, RADEON_FLUSH_START_NEXT_GFX_IB_NOW, NULL); } else { /* Try to avoid busy-waiting in amdgpu_bo_wait. */ if (p_atomic_read(&bo->num_active_ioctls)) amdgpu_cs_sync_flush(rcs); } } amdgpu_bo_wait((struct pb_buffer*)bo, PIPE_TIMEOUT_INFINITE, RADEON_USAGE_WRITE); } else { /* Mapping for write. */ if (cs) { if (amdgpu_bo_is_referenced_by_cs(cs, bo)) { cs->flush_cs(cs->flush_data, RADEON_FLUSH_START_NEXT_GFX_IB_NOW, NULL); } else { /* Try to avoid busy-waiting in amdgpu_bo_wait. */ if (p_atomic_read(&bo->num_active_ioctls)) amdgpu_cs_sync_flush(rcs); } } amdgpu_bo_wait((struct pb_buffer*)bo, PIPE_TIMEOUT_INFINITE, RADEON_USAGE_READWRITE); } bo->ws->buffer_wait_time += os_time_get_nano() - time; } } /* Buffer synchronization has been checked, now actually map the buffer. */ void *cpu = NULL; uint64_t offset = 0; if (bo->bo) { real = bo; } else { real = bo->u.slab.real; offset = bo->va - real->va; } if (usage & RADEON_MAP_TEMPORARY) { if (real->is_user_ptr) { cpu = real->cpu_ptr; } else { if (!amdgpu_bo_do_map(real, &cpu)) return NULL; } } else { cpu = p_atomic_read(&real->cpu_ptr); if (!cpu) { simple_mtx_lock(&real->lock); /* Must re-check due to the possibility of a race. Re-check need not * be atomic thanks to the lock. */ cpu = real->cpu_ptr; if (!cpu) { if (!amdgpu_bo_do_map(real, &cpu)) { simple_mtx_unlock(&real->lock); return NULL; } p_atomic_set(&real->cpu_ptr, cpu); } simple_mtx_unlock(&real->lock); } } return (uint8_t*)cpu + offset; } void amdgpu_bo_unmap(struct pb_buffer *buf) { struct amdgpu_winsys_bo *bo = (struct amdgpu_winsys_bo*)buf; struct amdgpu_winsys_bo *real; assert(!(bo->base.usage & RADEON_FLAG_SPARSE)); if (bo->is_user_ptr) return; real = bo->bo ? bo : bo->u.slab.real; assert(real->u.real.map_count != 0 && "too many unmaps"); if (p_atomic_dec_zero(&real->u.real.map_count)) { assert(!real->cpu_ptr && "too many unmaps or forgot RADEON_MAP_TEMPORARY flag"); if (real->base.placement & RADEON_DOMAIN_VRAM) real->ws->mapped_vram -= real->base.size; else if (real->base.placement & RADEON_DOMAIN_GTT) real->ws->mapped_gtt -= real->base.size; real->ws->num_mapped_buffers--; } amdgpu_bo_cpu_unmap(real->bo); } static const struct pb_vtbl amdgpu_winsys_bo_vtbl = { amdgpu_bo_destroy_or_cache /* other functions are never called */ }; static void amdgpu_add_buffer_to_global_list(struct amdgpu_winsys_bo *bo) { struct amdgpu_winsys *ws = bo->ws; assert(bo->bo); if (ws->debug_all_bos) { simple_mtx_lock(&ws->global_bo_list_lock); list_addtail(&bo->u.real.global_list_item, &ws->global_bo_list); ws->num_buffers++; simple_mtx_unlock(&ws->global_bo_list_lock); } } static unsigned amdgpu_get_optimal_alignment(struct amdgpu_winsys *ws, uint64_t size, unsigned alignment) { /* Increase the alignment for faster address translation and better memory * access pattern. */ if (size >= ws->info.pte_fragment_size) { alignment = MAX2(alignment, ws->info.pte_fragment_size); } else if (size) { unsigned msb = util_last_bit(size); alignment = MAX2(alignment, 1u << (msb - 1)); } return alignment; } static struct amdgpu_winsys_bo *amdgpu_create_bo(struct amdgpu_winsys *ws, uint64_t size, unsigned alignment, enum radeon_bo_domain initial_domain, unsigned flags, int heap) { struct amdgpu_bo_alloc_request request = {0}; amdgpu_bo_handle buf_handle; uint64_t va = 0; struct amdgpu_winsys_bo *bo; amdgpu_va_handle va_handle = NULL; int r; /* VRAM or GTT must be specified, but not both at the same time. */ assert(util_bitcount(initial_domain & (RADEON_DOMAIN_VRAM_GTT | RADEON_DOMAIN_GDS | RADEON_DOMAIN_OA)) == 1); alignment = amdgpu_get_optimal_alignment(ws, size, alignment); bo = CALLOC_STRUCT(amdgpu_winsys_bo); if (!bo) { return NULL; } if (heap >= 0) { pb_cache_init_entry(&ws->bo_cache, &bo->u.real.cache_entry, &bo->base, heap); } request.alloc_size = size; request.phys_alignment = alignment; if (initial_domain & RADEON_DOMAIN_VRAM) { request.preferred_heap |= AMDGPU_GEM_DOMAIN_VRAM; /* Since VRAM and GTT have almost the same performance on APUs, we could * just set GTT. However, in order to decrease GTT(RAM) usage, which is * shared with the OS, allow VRAM placements too. The idea is not to use * VRAM usefully, but to use it so that it's not unused and wasted. */ if (!ws->info.has_dedicated_vram) request.preferred_heap |= AMDGPU_GEM_DOMAIN_GTT; } if (initial_domain & RADEON_DOMAIN_GTT) request.preferred_heap |= AMDGPU_GEM_DOMAIN_GTT; if (initial_domain & RADEON_DOMAIN_GDS) request.preferred_heap |= AMDGPU_GEM_DOMAIN_GDS; if (initial_domain & RADEON_DOMAIN_OA) request.preferred_heap |= AMDGPU_GEM_DOMAIN_OA; if (flags & RADEON_FLAG_NO_CPU_ACCESS) request.flags |= AMDGPU_GEM_CREATE_NO_CPU_ACCESS; if (flags & RADEON_FLAG_GTT_WC) request.flags |= AMDGPU_GEM_CREATE_CPU_GTT_USWC; if (ws->zero_all_vram_allocs && (request.preferred_heap & AMDGPU_GEM_DOMAIN_VRAM)) request.flags |= AMDGPU_GEM_CREATE_VRAM_CLEARED; if ((flags & RADEON_FLAG_ENCRYPTED) && ws->info.has_tmz_support) { request.flags |= AMDGPU_GEM_CREATE_ENCRYPTED; if (!(flags & RADEON_FLAG_DRIVER_INTERNAL)) { struct amdgpu_screen_winsys *sws_iter; simple_mtx_lock(&ws->sws_list_lock); for (sws_iter = ws->sws_list; sws_iter; sws_iter = sws_iter->next) { *((bool*) &sws_iter->base.uses_secure_bos) = true; } simple_mtx_unlock(&ws->sws_list_lock); } } r = amdgpu_bo_alloc(ws->dev, &request, &buf_handle); if (r) { fprintf(stderr, "amdgpu: Failed to allocate a buffer:\n"); fprintf(stderr, "amdgpu: size : %"PRIu64" bytes\n", size); fprintf(stderr, "amdgpu: alignment : %u bytes\n", alignment); fprintf(stderr, "amdgpu: domains : %u\n", initial_domain); fprintf(stderr, "amdgpu: flags : %" PRIx64 "\n", request.flags); goto error_bo_alloc; } if (initial_domain & RADEON_DOMAIN_VRAM_GTT) { unsigned va_gap_size = ws->check_vm ? MAX2(4 * alignment, 64 * 1024) : 0; r = amdgpu_va_range_alloc(ws->dev, amdgpu_gpu_va_range_general, size + va_gap_size, alignment, 0, &va, &va_handle, (flags & RADEON_FLAG_32BIT ? AMDGPU_VA_RANGE_32_BIT : 0) | AMDGPU_VA_RANGE_HIGH); if (r) goto error_va_alloc; unsigned vm_flags = AMDGPU_VM_PAGE_READABLE | AMDGPU_VM_PAGE_EXECUTABLE; if (!(flags & RADEON_FLAG_READ_ONLY)) vm_flags |= AMDGPU_VM_PAGE_WRITEABLE; if (flags & RADEON_FLAG_UNCACHED) vm_flags |= AMDGPU_VM_MTYPE_UC; r = amdgpu_bo_va_op_raw(ws->dev, buf_handle, 0, size, va, vm_flags, AMDGPU_VA_OP_MAP); if (r) goto error_va_map; } simple_mtx_init(&bo->lock, mtx_plain); pipe_reference_init(&bo->base.reference, 1); bo->base.alignment = alignment; bo->base.size = size; bo->base.vtbl = &amdgpu_winsys_bo_vtbl; bo->ws = ws; bo->bo = buf_handle; bo->va = va; bo->u.real.va_handle = va_handle; bo->base.placement = initial_domain; bo->base.usage = flags; bo->unique_id = __sync_fetch_and_add(&ws->next_bo_unique_id, 1); if (initial_domain & RADEON_DOMAIN_VRAM) ws->allocated_vram += align64(size, ws->info.gart_page_size); else if (initial_domain & RADEON_DOMAIN_GTT) ws->allocated_gtt += align64(size, ws->info.gart_page_size); amdgpu_bo_export(bo->bo, amdgpu_bo_handle_type_kms, &bo->u.real.kms_handle); amdgpu_add_buffer_to_global_list(bo); return bo; error_va_map: amdgpu_va_range_free(va_handle); error_va_alloc: amdgpu_bo_free(buf_handle); error_bo_alloc: FREE(bo); return NULL; } bool amdgpu_bo_can_reclaim(struct pb_buffer *_buf) { struct amdgpu_winsys_bo *bo = amdgpu_winsys_bo(_buf); if (amdgpu_bo_is_referenced_by_any_cs(bo)) { return false; } return amdgpu_bo_wait(_buf, 0, RADEON_USAGE_READWRITE); } bool amdgpu_bo_can_reclaim_slab(void *priv, struct pb_slab_entry *entry) { struct amdgpu_winsys_bo *bo = NULL; /* fix container_of */ bo = container_of(entry, bo, u.slab.entry); return amdgpu_bo_can_reclaim(&bo->base); } static struct pb_slabs *get_slabs(struct amdgpu_winsys *ws, uint64_t size, enum radeon_bo_flag flags) { struct pb_slabs *bo_slabs = ((flags & RADEON_FLAG_ENCRYPTED) && ws->info.has_tmz_support) ? ws->bo_slabs_encrypted : ws->bo_slabs; /* Find the correct slab allocator for the given size. */ for (unsigned i = 0; i < NUM_SLAB_ALLOCATORS; i++) { struct pb_slabs *slabs = &bo_slabs[i]; if (size <= 1 << (slabs->min_order + slabs->num_orders - 1)) return slabs; } assert(0); return NULL; } static void amdgpu_bo_slab_destroy(struct pb_buffer *_buf) { struct amdgpu_winsys_bo *bo = amdgpu_winsys_bo(_buf); assert(!bo->bo); if (bo->base.usage & RADEON_FLAG_ENCRYPTED) pb_slab_free(get_slabs(bo->ws, bo->base.size, RADEON_FLAG_ENCRYPTED), &bo->u.slab.entry); else pb_slab_free(get_slabs(bo->ws, bo->base.size, 0), &bo->u.slab.entry); } static const struct pb_vtbl amdgpu_winsys_bo_slab_vtbl = { amdgpu_bo_slab_destroy /* other functions are never called */ }; static struct pb_slab *amdgpu_bo_slab_alloc(void *priv, unsigned heap, unsigned entry_size, unsigned group_index, bool encrypted) { struct amdgpu_winsys *ws = priv; struct amdgpu_slab *slab = CALLOC_STRUCT(amdgpu_slab); enum radeon_bo_domain domains = radeon_domain_from_heap(heap); enum radeon_bo_flag flags = radeon_flags_from_heap(heap); uint32_t base_id; unsigned slab_size = 0; if (!slab) return NULL; if (encrypted) flags |= RADEON_FLAG_ENCRYPTED; struct pb_slabs *slabs = ((flags & RADEON_FLAG_ENCRYPTED) && ws->info.has_tmz_support) ? ws->bo_slabs_encrypted : ws->bo_slabs; /* Determine the slab buffer size. */ for (unsigned i = 0; i < NUM_SLAB_ALLOCATORS; i++) { unsigned max_entry_size = 1 << (slabs[i].min_order + slabs[i].num_orders - 1); if (entry_size <= max_entry_size) { /* The slab size is twice the size of the largest possible entry. */ slab_size = max_entry_size * 2; /* The largest slab should have the same size as the PTE fragment * size to get faster address translation. */ if (i == NUM_SLAB_ALLOCATORS - 1 && slab_size < ws->info.pte_fragment_size) slab_size = ws->info.pte_fragment_size; break; } } assert(slab_size != 0); slab->buffer = amdgpu_winsys_bo(amdgpu_bo_create(ws, slab_size, slab_size, domains, flags)); if (!slab->buffer) goto fail; slab->base.num_entries = slab->buffer->base.size / entry_size; slab->base.num_free = slab->base.num_entries; slab->entries = CALLOC(slab->base.num_entries, sizeof(*slab->entries)); if (!slab->entries) goto fail_buffer; list_inithead(&slab->base.free); base_id = __sync_fetch_and_add(&ws->next_bo_unique_id, slab->base.num_entries); for (unsigned i = 0; i < slab->base.num_entries; ++i) { struct amdgpu_winsys_bo *bo = &slab->entries[i]; simple_mtx_init(&bo->lock, mtx_plain); bo->base.alignment = entry_size; bo->base.size = entry_size; bo->base.vtbl = &amdgpu_winsys_bo_slab_vtbl; bo->ws = ws; bo->va = slab->buffer->va + i * entry_size; bo->base.placement = domains; bo->unique_id = base_id + i; bo->u.slab.entry.slab = &slab->base; bo->u.slab.entry.group_index = group_index; if (slab->buffer->bo) { /* The slab is not suballocated. */ bo->u.slab.real = slab->buffer; } else { /* The slab is allocated out of a bigger slab. */ bo->u.slab.real = slab->buffer->u.slab.real; assert(bo->u.slab.real->bo); } list_addtail(&bo->u.slab.entry.head, &slab->base.free); } return &slab->base; fail_buffer: amdgpu_winsys_bo_reference(&slab->buffer, NULL); fail: FREE(slab); return NULL; } struct pb_slab *amdgpu_bo_slab_alloc_encrypted(void *priv, unsigned heap, unsigned entry_size, unsigned group_index) { return amdgpu_bo_slab_alloc(priv, heap, entry_size, group_index, true); } struct pb_slab *amdgpu_bo_slab_alloc_normal(void *priv, unsigned heap, unsigned entry_size, unsigned group_index) { return amdgpu_bo_slab_alloc(priv, heap, entry_size, group_index, false); } void amdgpu_bo_slab_free(void *priv, struct pb_slab *pslab) { struct amdgpu_slab *slab = amdgpu_slab(pslab); for (unsigned i = 0; i < slab->base.num_entries; ++i) { amdgpu_bo_remove_fences(&slab->entries[i]); simple_mtx_destroy(&slab->entries[i].lock); } FREE(slab->entries); amdgpu_winsys_bo_reference(&slab->buffer, NULL); FREE(slab); } #if DEBUG_SPARSE_COMMITS static void sparse_dump(struct amdgpu_winsys_bo *bo, const char *func) { fprintf(stderr, "%s: %p (size=%"PRIu64", num_va_pages=%u) @ %s\n" "Commitments:\n", __func__, bo, bo->base.size, bo->u.sparse.num_va_pages, func); struct amdgpu_sparse_backing *span_backing = NULL; uint32_t span_first_backing_page = 0; uint32_t span_first_va_page = 0; uint32_t va_page = 0; for (;;) { struct amdgpu_sparse_backing *backing = 0; uint32_t backing_page = 0; if (va_page < bo->u.sparse.num_va_pages) { backing = bo->u.sparse.commitments[va_page].backing; backing_page = bo->u.sparse.commitments[va_page].page; } if (span_backing && (backing != span_backing || backing_page != span_first_backing_page + (va_page - span_first_va_page))) { fprintf(stderr, " %u..%u: backing=%p:%u..%u\n", span_first_va_page, va_page - 1, span_backing, span_first_backing_page, span_first_backing_page + (va_page - span_first_va_page) - 1); span_backing = NULL; } if (va_page >= bo->u.sparse.num_va_pages) break; if (backing && !span_backing) { span_backing = backing; span_first_backing_page = backing_page; span_first_va_page = va_page; } va_page++; } fprintf(stderr, "Backing:\n"); list_for_each_entry(struct amdgpu_sparse_backing, backing, &bo->u.sparse.backing, list) { fprintf(stderr, " %p (size=%"PRIu64")\n", backing, backing->bo->base.size); for (unsigned i = 0; i < backing->num_chunks; ++i) fprintf(stderr, " %u..%u\n", backing->chunks[i].begin, backing->chunks[i].end); } } #endif /* * Attempt to allocate the given number of backing pages. Fewer pages may be * allocated (depending on the fragmentation of existing backing buffers), * which will be reflected by a change to *pnum_pages. */ static struct amdgpu_sparse_backing * sparse_backing_alloc(struct amdgpu_winsys_bo *bo, uint32_t *pstart_page, uint32_t *pnum_pages) { struct amdgpu_sparse_backing *best_backing; unsigned best_idx; uint32_t best_num_pages; best_backing = NULL; best_idx = 0; best_num_pages = 0; /* This is a very simple and inefficient best-fit algorithm. */ list_for_each_entry(struct amdgpu_sparse_backing, backing, &bo->u.sparse.backing, list) { for (unsigned idx = 0; idx < backing->num_chunks; ++idx) { uint32_t cur_num_pages = backing->chunks[idx].end - backing->chunks[idx].begin; if ((best_num_pages < *pnum_pages && cur_num_pages > best_num_pages) || (best_num_pages > *pnum_pages && cur_num_pages < best_num_pages)) { best_backing = backing; best_idx = idx; best_num_pages = cur_num_pages; } } } /* Allocate a new backing buffer if necessary. */ if (!best_backing) { struct pb_buffer *buf; uint64_t size; uint32_t pages; best_backing = CALLOC_STRUCT(amdgpu_sparse_backing); if (!best_backing) return NULL; best_backing->max_chunks = 4; best_backing->chunks = CALLOC(best_backing->max_chunks, sizeof(*best_backing->chunks)); if (!best_backing->chunks) { FREE(best_backing); return NULL; } assert(bo->u.sparse.num_backing_pages < DIV_ROUND_UP(bo->base.size, RADEON_SPARSE_PAGE_SIZE)); size = MIN3(bo->base.size / 16, 8 * 1024 * 1024, bo->base.size - (uint64_t)bo->u.sparse.num_backing_pages * RADEON_SPARSE_PAGE_SIZE); size = MAX2(size, RADEON_SPARSE_PAGE_SIZE); buf = amdgpu_bo_create(bo->ws, size, RADEON_SPARSE_PAGE_SIZE, bo->base.placement, (bo->base.usage & ~RADEON_FLAG_SPARSE) | RADEON_FLAG_NO_SUBALLOC); if (!buf) { FREE(best_backing->chunks); FREE(best_backing); return NULL; } /* We might have gotten a bigger buffer than requested via caching. */ pages = buf->size / RADEON_SPARSE_PAGE_SIZE; best_backing->bo = amdgpu_winsys_bo(buf); best_backing->num_chunks = 1; best_backing->chunks[0].begin = 0; best_backing->chunks[0].end = pages; list_add(&best_backing->list, &bo->u.sparse.backing); bo->u.sparse.num_backing_pages += pages; best_idx = 0; best_num_pages = pages; } *pnum_pages = MIN2(*pnum_pages, best_num_pages); *pstart_page = best_backing->chunks[best_idx].begin; best_backing->chunks[best_idx].begin += *pnum_pages; if (best_backing->chunks[best_idx].begin >= best_backing->chunks[best_idx].end) { memmove(&best_backing->chunks[best_idx], &best_backing->chunks[best_idx + 1], sizeof(*best_backing->chunks) * (best_backing->num_chunks - best_idx - 1)); best_backing->num_chunks--; } return best_backing; } static void sparse_free_backing_buffer(struct amdgpu_winsys_bo *bo, struct amdgpu_sparse_backing *backing) { struct amdgpu_winsys *ws = backing->bo->ws; bo->u.sparse.num_backing_pages -= backing->bo->base.size / RADEON_SPARSE_PAGE_SIZE; simple_mtx_lock(&ws->bo_fence_lock); amdgpu_add_fences(backing->bo, bo->num_fences, bo->fences); simple_mtx_unlock(&ws->bo_fence_lock); list_del(&backing->list); amdgpu_winsys_bo_reference(&backing->bo, NULL); FREE(backing->chunks); FREE(backing); } /* * Return a range of pages from the given backing buffer back into the * free structure. */ static bool sparse_backing_free(struct amdgpu_winsys_bo *bo, struct amdgpu_sparse_backing *backing, uint32_t start_page, uint32_t num_pages) { uint32_t end_page = start_page + num_pages; unsigned low = 0; unsigned high = backing->num_chunks; /* Find the first chunk with begin >= start_page. */ while (low < high) { unsigned mid = low + (high - low) / 2; if (backing->chunks[mid].begin >= start_page) high = mid; else low = mid + 1; } assert(low >= backing->num_chunks || end_page <= backing->chunks[low].begin); assert(low == 0 || backing->chunks[low - 1].end <= start_page); if (low > 0 && backing->chunks[low - 1].end == start_page) { backing->chunks[low - 1].end = end_page; if (low < backing->num_chunks && end_page == backing->chunks[low].begin) { backing->chunks[low - 1].end = backing->chunks[low].end; memmove(&backing->chunks[low], &backing->chunks[low + 1], sizeof(*backing->chunks) * (backing->num_chunks - low - 1)); backing->num_chunks--; } } else if (low < backing->num_chunks && end_page == backing->chunks[low].begin) { backing->chunks[low].begin = start_page; } else { if (backing->num_chunks >= backing->max_chunks) { unsigned new_max_chunks = 2 * backing->max_chunks; struct amdgpu_sparse_backing_chunk *new_chunks = REALLOC(backing->chunks, sizeof(*backing->chunks) * backing->max_chunks, sizeof(*backing->chunks) * new_max_chunks); if (!new_chunks) return false; backing->max_chunks = new_max_chunks; backing->chunks = new_chunks; } memmove(&backing->chunks[low + 1], &backing->chunks[low], sizeof(*backing->chunks) * (backing->num_chunks - low)); backing->chunks[low].begin = start_page; backing->chunks[low].end = end_page; backing->num_chunks++; } if (backing->num_chunks == 1 && backing->chunks[0].begin == 0 && backing->chunks[0].end == backing->bo->base.size / RADEON_SPARSE_PAGE_SIZE) sparse_free_backing_buffer(bo, backing); return true; } static void amdgpu_bo_sparse_destroy(struct pb_buffer *_buf) { struct amdgpu_winsys_bo *bo = amdgpu_winsys_bo(_buf); int r; assert(!bo->bo && bo->base.usage & RADEON_FLAG_SPARSE); r = amdgpu_bo_va_op_raw(bo->ws->dev, NULL, 0, (uint64_t)bo->u.sparse.num_va_pages * RADEON_SPARSE_PAGE_SIZE, bo->va, 0, AMDGPU_VA_OP_CLEAR); if (r) { fprintf(stderr, "amdgpu: clearing PRT VA region on destroy failed (%d)\n", r); } while (!list_is_empty(&bo->u.sparse.backing)) { struct amdgpu_sparse_backing *dummy = NULL; sparse_free_backing_buffer(bo, container_of(bo->u.sparse.backing.next, dummy, list)); } amdgpu_va_range_free(bo->u.sparse.va_handle); FREE(bo->u.sparse.commitments); simple_mtx_destroy(&bo->lock); FREE(bo); } static const struct pb_vtbl amdgpu_winsys_bo_sparse_vtbl = { amdgpu_bo_sparse_destroy /* other functions are never called */ }; static struct pb_buffer * amdgpu_bo_sparse_create(struct amdgpu_winsys *ws, uint64_t size, enum radeon_bo_domain domain, enum radeon_bo_flag flags) { struct amdgpu_winsys_bo *bo; uint64_t map_size; uint64_t va_gap_size; int r; /* We use 32-bit page numbers; refuse to attempt allocating sparse buffers * that exceed this limit. This is not really a restriction: we don't have * that much virtual address space anyway. */ if (size > (uint64_t)INT32_MAX * RADEON_SPARSE_PAGE_SIZE) return NULL; bo = CALLOC_STRUCT(amdgpu_winsys_bo); if (!bo) return NULL; simple_mtx_init(&bo->lock, mtx_plain); pipe_reference_init(&bo->base.reference, 1); bo->base.alignment = RADEON_SPARSE_PAGE_SIZE; bo->base.size = size; bo->base.vtbl = &amdgpu_winsys_bo_sparse_vtbl; bo->ws = ws; bo->base.placement = domain; bo->unique_id = __sync_fetch_and_add(&ws->next_bo_unique_id, 1); bo->base.usage = flags; bo->u.sparse.num_va_pages = DIV_ROUND_UP(size, RADEON_SPARSE_PAGE_SIZE); bo->u.sparse.commitments = CALLOC(bo->u.sparse.num_va_pages, sizeof(*bo->u.sparse.commitments)); if (!bo->u.sparse.commitments) goto error_alloc_commitments; list_inithead(&bo->u.sparse.backing); /* For simplicity, we always map a multiple of the page size. */ map_size = align64(size, RADEON_SPARSE_PAGE_SIZE); va_gap_size = ws->check_vm ? 4 * RADEON_SPARSE_PAGE_SIZE : 0; r = amdgpu_va_range_alloc(ws->dev, amdgpu_gpu_va_range_general, map_size + va_gap_size, RADEON_SPARSE_PAGE_SIZE, 0, &bo->va, &bo->u.sparse.va_handle, AMDGPU_VA_RANGE_HIGH); if (r) goto error_va_alloc; r = amdgpu_bo_va_op_raw(bo->ws->dev, NULL, 0, size, bo->va, AMDGPU_VM_PAGE_PRT, AMDGPU_VA_OP_MAP); if (r) goto error_va_map; return &bo->base; error_va_map: amdgpu_va_range_free(bo->u.sparse.va_handle); error_va_alloc: FREE(bo->u.sparse.commitments); error_alloc_commitments: simple_mtx_destroy(&bo->lock); FREE(bo); return NULL; } static bool amdgpu_bo_sparse_commit(struct pb_buffer *buf, uint64_t offset, uint64_t size, bool commit) { struct amdgpu_winsys_bo *bo = amdgpu_winsys_bo(buf); struct amdgpu_sparse_commitment *comm; uint32_t va_page, end_va_page; bool ok = true; int r; assert(bo->base.usage & RADEON_FLAG_SPARSE); assert(offset % RADEON_SPARSE_PAGE_SIZE == 0); assert(offset <= bo->base.size); assert(size <= bo->base.size - offset); assert(size % RADEON_SPARSE_PAGE_SIZE == 0 || offset + size == bo->base.size); comm = bo->u.sparse.commitments; va_page = offset / RADEON_SPARSE_PAGE_SIZE; end_va_page = va_page + DIV_ROUND_UP(size, RADEON_SPARSE_PAGE_SIZE); simple_mtx_lock(&bo->lock); #if DEBUG_SPARSE_COMMITS sparse_dump(bo, __func__); #endif if (commit) { while (va_page < end_va_page) { uint32_t span_va_page; /* Skip pages that are already committed. */ if (comm[va_page].backing) { va_page++; continue; } /* Determine length of uncommitted span. */ span_va_page = va_page; while (va_page < end_va_page && !comm[va_page].backing) va_page++; /* Fill the uncommitted span with chunks of backing memory. */ while (span_va_page < va_page) { struct amdgpu_sparse_backing *backing; uint32_t backing_start, backing_size; backing_size = va_page - span_va_page; backing = sparse_backing_alloc(bo, &backing_start, &backing_size); if (!backing) { ok = false; goto out; } r = amdgpu_bo_va_op_raw(bo->ws->dev, backing->bo->bo, (uint64_t)backing_start * RADEON_SPARSE_PAGE_SIZE, (uint64_t)backing_size * RADEON_SPARSE_PAGE_SIZE, bo->va + (uint64_t)span_va_page * RADEON_SPARSE_PAGE_SIZE, AMDGPU_VM_PAGE_READABLE | AMDGPU_VM_PAGE_WRITEABLE | AMDGPU_VM_PAGE_EXECUTABLE, AMDGPU_VA_OP_REPLACE); if (r) { ok = sparse_backing_free(bo, backing, backing_start, backing_size); assert(ok && "sufficient memory should already be allocated"); ok = false; goto out; } while (backing_size) { comm[span_va_page].backing = backing; comm[span_va_page].page = backing_start; span_va_page++; backing_start++; backing_size--; } } } } else { r = amdgpu_bo_va_op_raw(bo->ws->dev, NULL, 0, (uint64_t)(end_va_page - va_page) * RADEON_SPARSE_PAGE_SIZE, bo->va + (uint64_t)va_page * RADEON_SPARSE_PAGE_SIZE, AMDGPU_VM_PAGE_PRT, AMDGPU_VA_OP_REPLACE); if (r) { ok = false; goto out; } while (va_page < end_va_page) { struct amdgpu_sparse_backing *backing; uint32_t backing_start; uint32_t span_pages; /* Skip pages that are already uncommitted. */ if (!comm[va_page].backing) { va_page++; continue; } /* Group contiguous spans of pages. */ backing = comm[va_page].backing; backing_start = comm[va_page].page; comm[va_page].backing = NULL; span_pages = 1; va_page++; while (va_page < end_va_page && comm[va_page].backing == backing && comm[va_page].page == backing_start + span_pages) { comm[va_page].backing = NULL; va_page++; span_pages++; } if (!sparse_backing_free(bo, backing, backing_start, span_pages)) { /* Couldn't allocate tracking data structures, so we have to leak */ fprintf(stderr, "amdgpu: leaking PRT backing memory\n"); ok = false; } } } out: simple_mtx_unlock(&bo->lock); return ok; } static void amdgpu_buffer_get_metadata(struct pb_buffer *_buf, struct radeon_bo_metadata *md, struct radeon_surf *surf) { struct amdgpu_winsys_bo *bo = amdgpu_winsys_bo(_buf); struct amdgpu_bo_info info = {0}; int r; assert(bo->bo && "must not be called for slab entries"); r = amdgpu_bo_query_info(bo->bo, &info); if (r) return; ac_surface_set_bo_metadata(&bo->ws->info, surf, info.metadata.tiling_info, &md->mode); md->size_metadata = info.metadata.size_metadata; memcpy(md->metadata, info.metadata.umd_metadata, sizeof(md->metadata)); } static void amdgpu_buffer_set_metadata(struct pb_buffer *_buf, struct radeon_bo_metadata *md, struct radeon_surf *surf) { struct amdgpu_winsys_bo *bo = amdgpu_winsys_bo(_buf); struct amdgpu_bo_metadata metadata = {0}; assert(bo->bo && "must not be called for slab entries"); ac_surface_get_bo_metadata(&bo->ws->info, surf, &metadata.tiling_info); metadata.size_metadata = md->size_metadata; memcpy(metadata.umd_metadata, md->metadata, sizeof(md->metadata)); amdgpu_bo_set_metadata(bo->bo, &metadata); } struct pb_buffer * amdgpu_bo_create(struct amdgpu_winsys *ws, uint64_t size, unsigned alignment, enum radeon_bo_domain domain, enum radeon_bo_flag flags) { struct amdgpu_winsys_bo *bo; int heap = -1; if (domain & (RADEON_DOMAIN_GDS | RADEON_DOMAIN_OA)) flags |= RADEON_FLAG_NO_CPU_ACCESS | RADEON_FLAG_NO_SUBALLOC; /* VRAM implies WC. This is not optional. */ assert(!(domain & RADEON_DOMAIN_VRAM) || flags & RADEON_FLAG_GTT_WC); /* NO_CPU_ACCESS is not valid with GTT. */ assert(!(domain & RADEON_DOMAIN_GTT) || !(flags & RADEON_FLAG_NO_CPU_ACCESS)); /* Sparse buffers must have NO_CPU_ACCESS set. */ assert(!(flags & RADEON_FLAG_SPARSE) || flags & RADEON_FLAG_NO_CPU_ACCESS); struct pb_slabs *slabs = ((flags & RADEON_FLAG_ENCRYPTED) && ws->info.has_tmz_support) ? ws->bo_slabs_encrypted : ws->bo_slabs; struct pb_slabs *last_slab = &slabs[NUM_SLAB_ALLOCATORS - 1]; unsigned max_slab_entry_size = 1 << (last_slab->min_order + last_slab->num_orders - 1); /* Sub-allocate small buffers from slabs. */ if (!(flags & (RADEON_FLAG_NO_SUBALLOC | RADEON_FLAG_SPARSE)) && size <= max_slab_entry_size && /* The alignment must be at most the size of the smallest slab entry or * the next power of two. */ alignment <= MAX2(1 << slabs[0].min_order, util_next_power_of_two(size))) { struct pb_slab_entry *entry; int heap = radeon_get_heap_index(domain, flags); if (heap < 0 || heap >= RADEON_MAX_SLAB_HEAPS) goto no_slab; struct pb_slabs *slabs = get_slabs(ws, size, flags); entry = pb_slab_alloc(slabs, size, heap); if (!entry) { /* Clean up buffer managers and try again. */ amdgpu_clean_up_buffer_managers(ws); entry = pb_slab_alloc(slabs, size, heap); } if (!entry) return NULL; bo = NULL; bo = container_of(entry, bo, u.slab.entry); pipe_reference_init(&bo->base.reference, 1); return &bo->base; } no_slab: if (flags & RADEON_FLAG_SPARSE) { assert(RADEON_SPARSE_PAGE_SIZE % alignment == 0); return amdgpu_bo_sparse_create(ws, size, domain, flags); } /* This flag is irrelevant for the cache. */ flags &= ~RADEON_FLAG_NO_SUBALLOC; /* Align size to page size. This is the minimum alignment for normal * BOs. Aligning this here helps the cached bufmgr. Especially small BOs, * like constant/uniform buffers, can benefit from better and more reuse. */ if (domain & RADEON_DOMAIN_VRAM_GTT) { size = align64(size, ws->info.gart_page_size); alignment = align(alignment, ws->info.gart_page_size); } bool use_reusable_pool = flags & RADEON_FLAG_NO_INTERPROCESS_SHARING; if (use_reusable_pool) { heap = radeon_get_heap_index(domain, flags & ~RADEON_FLAG_ENCRYPTED); assert(heap >= 0 && heap < RADEON_MAX_CACHED_HEAPS); /* Get a buffer from the cache. */ bo = (struct amdgpu_winsys_bo*) pb_cache_reclaim_buffer(&ws->bo_cache, size, alignment, 0, heap); if (bo) return &bo->base; } /* Create a new one. */ bo = amdgpu_create_bo(ws, size, alignment, domain, flags, heap); if (!bo) { /* Clean up buffer managers and try again. */ amdgpu_clean_up_buffer_managers(ws); bo = amdgpu_create_bo(ws, size, alignment, domain, flags, heap); if (!bo) return NULL; } bo->u.real.use_reusable_pool = use_reusable_pool; return &bo->base; } static struct pb_buffer * amdgpu_buffer_create(struct radeon_winsys *ws, uint64_t size, unsigned alignment, enum radeon_bo_domain domain, enum radeon_bo_flag flags) { struct pb_buffer * res = amdgpu_bo_create(amdgpu_winsys(ws), size, alignment, domain, flags); return res; } static struct pb_buffer *amdgpu_bo_from_handle(struct radeon_winsys *rws, struct winsys_handle *whandle, unsigned vm_alignment) { struct amdgpu_winsys *ws = amdgpu_winsys(rws); struct amdgpu_winsys_bo *bo = NULL; enum amdgpu_bo_handle_type type; struct amdgpu_bo_import_result result = {0}; uint64_t va; amdgpu_va_handle va_handle = NULL; struct amdgpu_bo_info info = {0}; enum radeon_bo_domain initial = 0; enum radeon_bo_flag flags = 0; int r; switch (whandle->type) { case WINSYS_HANDLE_TYPE_SHARED: type = amdgpu_bo_handle_type_gem_flink_name; break; case WINSYS_HANDLE_TYPE_FD: type = amdgpu_bo_handle_type_dma_buf_fd; break; default: return NULL; } r = amdgpu_bo_import(ws->dev, type, whandle->handle, &result); if (r) return NULL; simple_mtx_lock(&ws->bo_export_table_lock); bo = util_hash_table_get(ws->bo_export_table, result.buf_handle); /* If the amdgpu_winsys_bo instance already exists, bump the reference * counter and return it. */ if (bo) { p_atomic_inc(&bo->base.reference.count); simple_mtx_unlock(&ws->bo_export_table_lock); /* Release the buffer handle, because we don't need it anymore. * This function is returning an existing buffer, which has its own * handle. */ amdgpu_bo_free(result.buf_handle); return &bo->base; } /* Get initial domains. */ r = amdgpu_bo_query_info(result.buf_handle, &info); if (r) goto error; r = amdgpu_va_range_alloc(ws->dev, amdgpu_gpu_va_range_general, result.alloc_size, amdgpu_get_optimal_alignment(ws, result.alloc_size, vm_alignment), 0, &va, &va_handle, AMDGPU_VA_RANGE_HIGH); if (r) goto error; bo = CALLOC_STRUCT(amdgpu_winsys_bo); if (!bo) goto error; r = amdgpu_bo_va_op(result.buf_handle, 0, result.alloc_size, va, 0, AMDGPU_VA_OP_MAP); if (r) goto error; if (info.preferred_heap & AMDGPU_GEM_DOMAIN_VRAM) initial |= RADEON_DOMAIN_VRAM; if (info.preferred_heap & AMDGPU_GEM_DOMAIN_GTT) initial |= RADEON_DOMAIN_GTT; if (info.alloc_flags & AMDGPU_GEM_CREATE_NO_CPU_ACCESS) flags |= RADEON_FLAG_NO_CPU_ACCESS; if (info.alloc_flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC) flags |= RADEON_FLAG_GTT_WC; if (info.alloc_flags & AMDGPU_GEM_CREATE_ENCRYPTED) { /* Imports are always possible even if the importer isn't using TMZ. * For instance libweston needs to import the buffer to be able to determine * if it can be used for scanout. */ flags |= RADEON_FLAG_ENCRYPTED; } /* Initialize the structure. */ simple_mtx_init(&bo->lock, mtx_plain); pipe_reference_init(&bo->base.reference, 1); bo->base.alignment = info.phys_alignment; bo->bo = result.buf_handle; bo->base.size = result.alloc_size; bo->base.vtbl = &amdgpu_winsys_bo_vtbl; bo->ws = ws; bo->va = va; bo->u.real.va_handle = va_handle; bo->base.placement = initial; bo->base.usage = flags; bo->unique_id = __sync_fetch_and_add(&ws->next_bo_unique_id, 1); bo->is_shared = true; if (bo->base.placement & RADEON_DOMAIN_VRAM) ws->allocated_vram += align64(bo->base.size, ws->info.gart_page_size); else if (bo->base.placement & RADEON_DOMAIN_GTT) ws->allocated_gtt += align64(bo->base.size, ws->info.gart_page_size); amdgpu_bo_export(bo->bo, amdgpu_bo_handle_type_kms, &bo->u.real.kms_handle); amdgpu_add_buffer_to_global_list(bo); _mesa_hash_table_insert(ws->bo_export_table, bo->bo, bo); simple_mtx_unlock(&ws->bo_export_table_lock); return &bo->base; error: simple_mtx_unlock(&ws->bo_export_table_lock); if (bo) FREE(bo); if (va_handle) amdgpu_va_range_free(va_handle); amdgpu_bo_free(result.buf_handle); return NULL; } static bool amdgpu_bo_get_handle(struct radeon_winsys *rws, struct pb_buffer *buffer, struct winsys_handle *whandle) { struct amdgpu_screen_winsys *sws = amdgpu_screen_winsys(rws); struct amdgpu_winsys_bo *bo = amdgpu_winsys_bo(buffer); struct amdgpu_winsys *ws = bo->ws; enum amdgpu_bo_handle_type type; struct hash_entry *entry; int r; /* Don't allow exports of slab entries and sparse buffers. */ if (!bo->bo) return false; bo->u.real.use_reusable_pool = false; switch (whandle->type) { case WINSYS_HANDLE_TYPE_SHARED: type = amdgpu_bo_handle_type_gem_flink_name; break; case WINSYS_HANDLE_TYPE_KMS: if (sws->fd == ws->fd) { whandle->handle = bo->u.real.kms_handle; if (bo->is_shared) return true; goto hash_table_set; } simple_mtx_lock(&ws->sws_list_lock); entry = _mesa_hash_table_search(sws->kms_handles, bo); simple_mtx_unlock(&ws->sws_list_lock); if (entry) { whandle->handle = (uintptr_t)entry->data; return true; } /* Fall through */ case WINSYS_HANDLE_TYPE_FD: type = amdgpu_bo_handle_type_dma_buf_fd; break; default: return false; } r = amdgpu_bo_export(bo->bo, type, &whandle->handle); if (r) return false; if (whandle->type == WINSYS_HANDLE_TYPE_KMS) { int dma_fd = whandle->handle; r = drmPrimeFDToHandle(sws->fd, dma_fd, &whandle->handle); close(dma_fd); if (r) return false; simple_mtx_lock(&ws->sws_list_lock); _mesa_hash_table_insert_pre_hashed(sws->kms_handles, bo->u.real.kms_handle, bo, (void*)(uintptr_t)whandle->handle); simple_mtx_unlock(&ws->sws_list_lock); } hash_table_set: simple_mtx_lock(&ws->bo_export_table_lock); _mesa_hash_table_insert(ws->bo_export_table, bo->bo, bo); simple_mtx_unlock(&ws->bo_export_table_lock); bo->is_shared = true; return true; } static struct pb_buffer *amdgpu_bo_from_ptr(struct radeon_winsys *rws, void *pointer, uint64_t size) { struct amdgpu_winsys *ws = amdgpu_winsys(rws); amdgpu_bo_handle buf_handle; struct amdgpu_winsys_bo *bo; uint64_t va; amdgpu_va_handle va_handle; /* Avoid failure when the size is not page aligned */ uint64_t aligned_size = align64(size, ws->info.gart_page_size); bo = CALLOC_STRUCT(amdgpu_winsys_bo); if (!bo) return NULL; if (amdgpu_create_bo_from_user_mem(ws->dev, pointer, aligned_size, &buf_handle)) goto error; if (amdgpu_va_range_alloc(ws->dev, amdgpu_gpu_va_range_general, aligned_size, amdgpu_get_optimal_alignment(ws, aligned_size, ws->info.gart_page_size), 0, &va, &va_handle, AMDGPU_VA_RANGE_HIGH)) goto error_va_alloc; if (amdgpu_bo_va_op(buf_handle, 0, aligned_size, va, 0, AMDGPU_VA_OP_MAP)) goto error_va_map; /* Initialize it. */ bo->is_user_ptr = true; pipe_reference_init(&bo->base.reference, 1); simple_mtx_init(&bo->lock, mtx_plain); bo->bo = buf_handle; bo->base.alignment = 0; bo->base.size = size; bo->base.vtbl = &amdgpu_winsys_bo_vtbl; bo->ws = ws; bo->cpu_ptr = pointer; bo->va = va; bo->u.real.va_handle = va_handle; bo->base.placement = RADEON_DOMAIN_GTT; bo->unique_id = __sync_fetch_and_add(&ws->next_bo_unique_id, 1); ws->allocated_gtt += aligned_size; amdgpu_add_buffer_to_global_list(bo); amdgpu_bo_export(bo->bo, amdgpu_bo_handle_type_kms, &bo->u.real.kms_handle); return (struct pb_buffer*)bo; error_va_map: amdgpu_va_range_free(va_handle); error_va_alloc: amdgpu_bo_free(buf_handle); error: FREE(bo); return NULL; } static bool amdgpu_bo_is_user_ptr(struct pb_buffer *buf) { return ((struct amdgpu_winsys_bo*)buf)->is_user_ptr; } static bool amdgpu_bo_is_suballocated(struct pb_buffer *buf) { struct amdgpu_winsys_bo *bo = (struct amdgpu_winsys_bo*)buf; return !bo->bo && !(bo->base.usage & RADEON_FLAG_SPARSE); } static uint64_t amdgpu_bo_get_va(struct pb_buffer *buf) { return ((struct amdgpu_winsys_bo*)buf)->va; } void amdgpu_bo_init_functions(struct amdgpu_screen_winsys *ws) { ws->base.buffer_set_metadata = amdgpu_buffer_set_metadata; ws->base.buffer_get_metadata = amdgpu_buffer_get_metadata; ws->base.buffer_map = amdgpu_bo_map; ws->base.buffer_unmap = amdgpu_bo_unmap; ws->base.buffer_wait = amdgpu_bo_wait; ws->base.buffer_create = amdgpu_buffer_create; ws->base.buffer_from_handle = amdgpu_bo_from_handle; ws->base.buffer_from_ptr = amdgpu_bo_from_ptr; ws->base.buffer_is_user_ptr = amdgpu_bo_is_user_ptr; ws->base.buffer_is_suballocated = amdgpu_bo_is_suballocated; ws->base.buffer_get_handle = amdgpu_bo_get_handle; ws->base.buffer_commit = amdgpu_bo_sparse_commit; ws->base.buffer_get_virtual_address = amdgpu_bo_get_va; ws->base.buffer_get_initial_domain = amdgpu_bo_get_initial_domain; ws->base.buffer_get_flags = amdgpu_bo_get_flags; }