/* * Copyright © 2016 Red Hat. * Copyright © 2016 Bas Nieuwenhuizen * * based in part on anv driver which is: * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #ifndef RADV_SHADER_H #define RADV_SHADER_H #include "ac_binary.h" #include "ac_shader_util.h" #include "amd_family.h" #include "radv_constants.h" #include "nir/nir.h" #include "vulkan/runtime/vk_object.h" #include "vulkan/runtime/vk_shader_module.h" #include "vulkan/vulkan.h" #include "aco_shader_info.h" #define RADV_VERT_ATTRIB_MAX MAX2(VERT_ATTRIB_MAX, VERT_ATTRIB_GENERIC0 + MAX_VERTEX_ATTRIBS) struct radv_physical_device; struct radv_device; struct radv_pipeline; struct radv_pipeline_cache; struct radv_pipeline_key; struct radv_shader_args; struct radv_vs_input_state; struct radv_shader_args; enum radv_vs_input_alpha_adjust { ALPHA_ADJUST_NONE = 0, ALPHA_ADJUST_SNORM = 1, ALPHA_ADJUST_SSCALED = 2, ALPHA_ADJUST_SINT = 3, }; struct radv_pipeline_key { uint32_t has_multiview_view_index : 1; uint32_t optimisations_disabled : 1; uint32_t invariant_geom : 1; uint32_t use_ngg : 1; uint32_t adjust_frag_coord_z : 1; uint32_t disable_aniso_single_level : 1; uint32_t disable_sinking_load_input_fs : 1; uint32_t image_2d_view_of_3d : 1; uint32_t primitives_generated_query : 1; struct { uint32_t instance_rate_inputs; uint32_t instance_rate_divisors[MAX_VERTEX_ATTRIBS]; uint8_t vertex_attribute_formats[MAX_VERTEX_ATTRIBS]; uint32_t vertex_attribute_bindings[MAX_VERTEX_ATTRIBS]; uint32_t vertex_attribute_offsets[MAX_VERTEX_ATTRIBS]; uint32_t vertex_attribute_strides[MAX_VERTEX_ATTRIBS]; uint8_t vertex_binding_align[MAX_VBS]; enum radv_vs_input_alpha_adjust vertex_alpha_adjust[MAX_VERTEX_ATTRIBS]; uint32_t vertex_post_shuffle; uint32_t provoking_vtx_last : 1; uint32_t dynamic_input_state : 1; uint8_t topology; } vs; struct { unsigned tess_input_vertices; } tcs; struct { uint32_t col_format; uint32_t is_int8; uint32_t is_int10; uint32_t cb_target_mask; uint8_t log2_ps_iter_samples; uint8_t num_samples; bool mrt0_is_dual_src; bool lower_discard_to_demote; uint8_t enable_mrt_output_nan_fixup; bool force_vrs_enabled; /* Used to export alpha through MRTZ for alpha-to-coverage (GFX11+). */ bool alpha_to_coverage_via_mrtz; bool has_epilog; } ps; struct { /* Non-zero if a required subgroup size is specified via * VK_EXT_subgroup_size_control. */ uint8_t compute_subgroup_size; bool require_full_subgroups; } cs; }; struct radv_nir_compiler_options { struct radv_pipeline_key key; bool robust_buffer_access; bool dump_shader; bool dump_preoptir; bool record_ir; bool record_stats; bool check_ir; bool has_ls_vgpr_init_bug; uint8_t enable_mrt_output_nan_fixup; bool wgp_mode; enum radeon_family family; enum amd_gfx_level gfx_level; uint32_t address32_hi; bool has_3d_cube_border_color_mipmap; struct { void (*func)(void *private_data, enum aco_compiler_debug_level level, const char *message); void *private_data; } debug; }; enum radv_ud_index { AC_UD_SCRATCH_RING_OFFSETS = 0, AC_UD_PUSH_CONSTANTS = 1, AC_UD_INLINE_PUSH_CONSTANTS = 2, AC_UD_INDIRECT_DESCRIPTOR_SETS = 3, AC_UD_VIEW_INDEX = 4, AC_UD_STREAMOUT_BUFFERS = 5, AC_UD_NGG_QUERY_STATE = 6, AC_UD_NGG_CULLING_SETTINGS = 7, AC_UD_NGG_VIEWPORT = 8, AC_UD_FORCE_VRS_RATES = 9, AC_UD_TASK_RING_ENTRY = 10, AC_UD_SHADER_START = 11, AC_UD_VS_VERTEX_BUFFERS = AC_UD_SHADER_START, AC_UD_VS_BASE_VERTEX_START_INSTANCE, AC_UD_VS_PROLOG_INPUTS, AC_UD_VS_MAX_UD, AC_UD_PS_EPILOG_PC, AC_UD_PS_MAX_UD, AC_UD_CS_GRID_SIZE = AC_UD_SHADER_START, AC_UD_CS_SBT_DESCRIPTORS, AC_UD_CS_RAY_LAUNCH_SIZE_ADDR, AC_UD_CS_TASK_RING_OFFSETS, AC_UD_CS_TASK_DRAW_ID, AC_UD_CS_TASK_IB, AC_UD_CS_MAX_UD, AC_UD_GS_MAX_UD, AC_UD_TCS_MAX_UD, AC_UD_TES_MAX_UD, AC_UD_MAX_UD = AC_UD_TCS_MAX_UD, }; struct radv_stream_output { uint8_t location; uint8_t buffer; uint16_t offset; uint8_t component_mask; uint8_t stream; }; struct radv_streamout_info { uint16_t num_outputs; struct radv_stream_output outputs[MAX_SO_OUTPUTS]; uint16_t strides[MAX_SO_BUFFERS]; uint32_t enabled_stream_buffers_mask; }; struct radv_userdata_info { int8_t sgpr_idx; uint8_t num_sgprs; }; struct radv_userdata_locations { struct radv_userdata_info descriptor_sets[MAX_SETS]; struct radv_userdata_info shader_data[AC_UD_MAX_UD]; uint32_t descriptor_sets_enabled; }; struct radv_vs_output_info { uint8_t vs_output_param_offset[VARYING_SLOT_MAX]; uint8_t clip_dist_mask; uint8_t cull_dist_mask; uint8_t param_exports; uint8_t prim_param_exports; bool writes_pointsize; bool writes_layer; bool writes_layer_per_primitive; bool writes_viewport_index; bool writes_viewport_index_per_primitive; bool writes_primitive_shading_rate; bool writes_primitive_shading_rate_per_primitive; bool export_prim_id; bool export_clip_dists; unsigned pos_exports; }; struct radv_es_output_info { uint32_t esgs_itemsize; }; struct gfx9_gs_info { uint32_t vgt_gs_onchip_cntl; uint32_t vgt_gs_max_prims_per_subgroup; uint32_t vgt_esgs_ring_itemsize; uint32_t lds_size; }; struct gfx10_ngg_info { uint16_t ngg_emit_size; /* in dwords */ uint32_t hw_max_esverts; uint32_t max_gsprims; uint32_t max_out_verts; uint32_t prim_amp_factor; uint32_t vgt_esgs_ring_itemsize; uint32_t esgs_ring_size; bool max_vert_out_per_gs_instance; bool enable_vertex_grouping; }; struct radv_shader_info { uint64_t inline_push_constant_mask; bool can_inline_all_push_constants; bool loads_push_constants; bool loads_dynamic_offsets; uint32_t desc_set_used_mask; bool uses_view_index; bool uses_invocation_id; bool uses_prim_id; uint8_t wave_size; uint8_t ballot_bit_size; struct radv_userdata_locations user_sgprs_locs; bool is_ngg; bool is_ngg_passthrough; bool has_ngg_culling; bool has_ngg_early_prim_export; uint32_t num_lds_blocks_when_not_culling; uint32_t num_tess_patches; unsigned workgroup_size; bool force_vrs_per_vertex; struct { uint8_t input_usage_mask[RADV_VERT_ATTRIB_MAX]; uint8_t output_usage_mask[VARYING_SLOT_VAR31 + 1]; bool needs_draw_id; bool needs_instance_id; struct radv_vs_output_info outinfo; struct radv_es_output_info es_info; bool as_es; bool as_ls; bool tcs_in_out_eq; uint64_t tcs_temp_only_input_mask; uint8_t num_linked_outputs; bool needs_base_instance; bool use_per_attribute_vb_descs; uint32_t vb_desc_usage_mask; bool has_prolog; bool dynamic_inputs; } vs; struct { uint8_t output_usage_mask[VARYING_SLOT_VAR31 + 1]; uint8_t num_stream_output_components[4]; uint8_t output_streams[VARYING_SLOT_VAR31 + 1]; uint8_t max_stream; unsigned gsvs_vertex_size; unsigned max_gsvs_emit_size; unsigned vertices_in; unsigned vertices_out; unsigned output_prim; unsigned invocations; unsigned es_type; /* GFX9: VS or TES */ uint8_t num_linked_inputs; } gs; struct { uint8_t output_usage_mask[VARYING_SLOT_VAR31 + 1]; struct radv_vs_output_info outinfo; struct radv_es_output_info es_info; bool as_es; enum tess_primitive_mode _primitive_mode; enum gl_tess_spacing spacing; bool ccw; bool point_mode; uint8_t num_linked_inputs; uint8_t num_linked_patch_inputs; uint8_t num_linked_outputs; } tes; struct { bool uses_sample_shading; bool needs_sample_positions; bool writes_memory; bool writes_z; bool writes_stencil; bool writes_sample_mask; bool has_pcoord; bool prim_id_input; bool layer_input; bool viewport_index_input; uint8_t num_input_clips_culls; uint32_t input_mask; uint32_t input_per_primitive_mask; uint32_t flat_shaded_mask; uint32_t explicit_shaded_mask; uint32_t float16_shaded_mask; uint32_t num_interp; uint32_t num_prim_interp; bool can_discard; bool early_fragment_test; bool post_depth_coverage; bool reads_sample_mask_in; bool reads_front_face; bool reads_sample_id; bool reads_frag_shading_rate; bool reads_barycentric_model; bool reads_persp_sample; bool reads_persp_center; bool reads_persp_centroid; bool reads_linear_sample; bool reads_linear_center; bool reads_linear_centroid; uint8_t reads_frag_coord_mask; uint8_t reads_sample_pos_mask; uint8_t depth_layout; bool allow_flat_shading; bool has_epilog; unsigned spi_ps_input; } ps; struct { bool uses_grid_size; bool uses_block_id[3]; bool uses_thread_id[3]; bool uses_local_invocation_idx; unsigned block_size[3]; uint8_t subgroup_size; bool uses_sbt; bool uses_ray_launch_size; bool uses_task_rings; } cs; struct { uint64_t tes_inputs_read; uint64_t tes_patch_inputs_read; unsigned tcs_vertices_out; uint32_t num_lds_blocks; uint8_t num_linked_inputs; uint8_t num_linked_outputs; uint8_t num_linked_patch_outputs; bool tes_reads_tess_factors : 1; } tcs; struct { struct radv_vs_output_info outinfo; enum shader_prim output_prim; bool needs_ms_scratch_ring; } ms; struct radv_streamout_info so; struct gfx9_gs_info gs_ring_info; struct gfx10_ngg_info ngg_info; }; struct radv_vs_input_state { uint32_t attribute_mask; uint32_t misaligned_mask; uint32_t possibly_misaligned_mask; uint32_t instance_rate_inputs; uint32_t nontrivial_divisors; uint32_t zero_divisors; uint32_t post_shuffle; /* Having two separate fields instead of a single uint64_t makes it easier to remove attributes * using bitwise arithmetic. */ uint32_t alpha_adjust_lo; uint32_t alpha_adjust_hi; uint8_t bindings[MAX_VERTEX_ATTRIBS]; uint32_t divisors[MAX_VERTEX_ATTRIBS]; uint32_t offsets[MAX_VERTEX_ATTRIBS]; uint8_t formats[MAX_VERTEX_ATTRIBS]; uint8_t format_align_req_minus_1[MAX_VERTEX_ATTRIBS]; uint8_t format_sizes[MAX_VERTEX_ATTRIBS]; }; struct radv_vs_prolog_key { const struct radv_vs_input_state *state; unsigned num_attributes; uint32_t misaligned_mask; bool as_ls; bool is_ngg; bool wave32; gl_shader_stage next_stage; }; struct radv_ps_epilog_key { uint32_t spi_shader_col_format; /* Bitmasks, each bit represents one of the 8 MRTs. */ uint8_t color_is_int8; uint8_t color_is_int10; uint8_t enable_mrt_output_nan_fixup; bool wave32; }; enum radv_shader_binary_type { RADV_BINARY_TYPE_LEGACY, RADV_BINARY_TYPE_RTLD }; struct radv_shader_binary { enum radv_shader_binary_type type; gl_shader_stage stage; bool is_gs_copy_shader; struct ac_shader_config config; struct radv_shader_info info; /* Self-referential size so we avoid consistency issues. */ uint32_t total_size; }; struct radv_shader_binary_legacy { struct radv_shader_binary base; unsigned code_size; unsigned exec_size; unsigned ir_size; unsigned disasm_size; unsigned stats_size; /* data has size of stats_size + code_size + ir_size + disasm_size + 2, * where the +2 is for 0 of the ir strings. */ uint8_t data[0]; }; struct radv_shader_binary_rtld { struct radv_shader_binary base; unsigned elf_size; unsigned llvm_ir_size; uint8_t data[0]; }; struct radv_shader_part_binary { uint8_t num_sgprs; uint8_t num_vgprs; uint8_t num_preserved_sgprs; unsigned code_size; unsigned disasm_size; uint8_t data[0]; }; struct radv_shader_arena { struct list_head list; struct list_head entries; struct radeon_winsys_bo *bo; char *ptr; }; union radv_shader_arena_block { struct list_head pool; struct { /* List of blocks in the arena, sorted by address. */ struct list_head list; /* For holes, a list_head for the free-list. For allocations, freelist.prev=NULL and * freelist.next is a pointer associated with the allocation. */ struct list_head freelist; struct radv_shader_arena *arena; uint32_t offset; uint32_t size; }; }; struct radv_shader { uint32_t ref_count; uint64_t va; struct ac_shader_config config; uint8_t *code_ptr; uint32_t code_size; uint32_t exec_size; struct radv_shader_info info; /* debug only */ char *spirv; uint32_t spirv_size; char *nir_string; char *disasm_string; char *ir_string; uint32_t *statistics; }; struct radv_trap_handler_shader { struct radeon_winsys_bo *bo; union radv_shader_arena_block *alloc; }; struct radv_shader_part { struct radeon_winsys_bo *bo; union radv_shader_arena_block *alloc; uint32_t rsrc1; uint8_t num_preserved_sgprs; bool nontrivial_divisors; /* debug only */ char *disasm_string; }; struct radv_pipeline_layout; void radv_optimize_nir(struct nir_shader *shader, bool optimize_conservatively, bool allow_copies); void radv_optimize_nir_algebraic(nir_shader *shader, bool opt_offsets); bool radv_nir_lower_ycbcr_textures(nir_shader *shader, const struct radv_pipeline_layout *layout); bool radv_nir_lower_ray_queries(nir_shader *shader, struct radv_device *device); void radv_nir_apply_pipeline_layout(nir_shader *shader, struct radv_device *device, const struct radv_pipeline_layout *layout, const struct radv_shader_info *info, const struct radv_shader_args *args); struct radv_pipeline_stage; nir_shader *radv_shader_spirv_to_nir(struct radv_device *device, const struct radv_pipeline_stage *stage, const struct radv_pipeline_key *key); void radv_nir_lower_abi(nir_shader *shader, enum amd_gfx_level gfx_level, const struct radv_shader_info *info, const struct radv_shader_args *args, const struct radv_pipeline_key *pl_key, bool use_llvm); void radv_init_shader_arenas(struct radv_device *device); void radv_destroy_shader_arenas(struct radv_device *device); struct radv_pipeline_shader_stack_size; VkResult radv_create_shaders(struct radv_pipeline *pipeline, struct radv_pipeline_layout *pipeline_layout, struct radv_device *device, struct radv_pipeline_cache *cache, const struct radv_pipeline_key *key, const VkPipelineShaderStageCreateInfo *pStages, uint32_t stageCount, const VkPipelineCreateFlags flags, const uint8_t *custom_hash, const VkPipelineCreationFeedbackCreateInfo *creation_feedback, struct radv_pipeline_shader_stack_size **stack_sizes, uint32_t *num_stack_sizes, gl_shader_stage *last_vgt_api_stage); struct radv_shader_args; struct radv_shader *radv_shader_create(struct radv_device *device, const struct radv_shader_binary *binary, bool keep_shader_info, bool from_cache, const struct radv_shader_args *args); struct radv_shader *radv_shader_nir_to_asm( struct radv_device *device, struct radv_pipeline_stage *stage, struct nir_shader *const *shaders, int shader_count, const struct radv_pipeline_key *key, bool keep_shader_info, bool keep_statistic_info, struct radv_shader_binary **binary_out); bool radv_shader_binary_upload(struct radv_device *device, const struct radv_shader_binary *binary, struct radv_shader *shader, void *dest_ptr); union radv_shader_arena_block *radv_alloc_shader_memory(struct radv_device *device, uint32_t size, void *ptr); void radv_free_shader_memory(struct radv_device *device, union radv_shader_arena_block *alloc); struct radv_shader * radv_create_gs_copy_shader(struct radv_device *device, struct nir_shader *nir, struct radv_shader_info *info, const struct radv_shader_args *args, struct radv_shader_binary **binary_out, bool keep_shader_info, bool keep_statistic_info, bool disable_optimizations); struct radv_trap_handler_shader *radv_create_trap_handler_shader(struct radv_device *device); uint64_t radv_trap_handler_shader_get_va(const struct radv_trap_handler_shader *trap); void radv_trap_handler_shader_destroy(struct radv_device *device, struct radv_trap_handler_shader *trap); struct radv_shader_part *radv_create_vs_prolog(struct radv_device *device, const struct radv_vs_prolog_key *key); struct radv_shader_part *radv_create_ps_epilog(struct radv_device *device, const struct radv_ps_epilog_key *key); void radv_shader_destroy(struct radv_device *device, struct radv_shader *shader); void radv_shader_part_destroy(struct radv_device *device, struct radv_shader_part *shader_part); uint64_t radv_shader_get_va(const struct radv_shader *shader); struct radv_shader *radv_find_shader(struct radv_device *device, uint64_t pc); unsigned radv_get_max_waves(const struct radv_device *device, struct radv_shader *shader, gl_shader_stage stage); const char *radv_get_shader_name(const struct radv_shader_info *info, gl_shader_stage stage); unsigned radv_compute_spi_ps_input(const struct radv_pipeline_key *pipeline_key, const struct radv_shader_info *info); bool radv_can_dump_shader(struct radv_device *device, nir_shader *nir, bool meta_shader); bool radv_can_dump_shader_stats(struct radv_device *device, nir_shader *nir); VkResult radv_dump_shader_stats(struct radv_device *device, struct radv_pipeline *pipeline, gl_shader_stage stage, FILE *output); static inline unsigned calculate_tess_lds_size(enum amd_gfx_level gfx_level, unsigned tcs_num_input_vertices, unsigned tcs_num_output_vertices, unsigned tcs_num_inputs, unsigned tcs_num_patches, unsigned tcs_num_outputs, unsigned tcs_num_patch_outputs) { unsigned input_vertex_size = tcs_num_inputs * 16; unsigned output_vertex_size = tcs_num_outputs * 16; unsigned input_patch_size = tcs_num_input_vertices * input_vertex_size; unsigned pervertex_output_patch_size = tcs_num_output_vertices * output_vertex_size; unsigned output_patch_size = pervertex_output_patch_size + tcs_num_patch_outputs * 16; unsigned output_patch0_offset = input_patch_size * tcs_num_patches; unsigned lds_size = output_patch0_offset + output_patch_size * tcs_num_patches; if (gfx_level >= GFX7) { assert(lds_size <= 65536); lds_size = align(lds_size, 512) / 512; } else { assert(lds_size <= 32768); lds_size = align(lds_size, 256) / 256; } return lds_size; } static inline unsigned get_tcs_num_patches(unsigned tcs_num_input_vertices, unsigned tcs_num_output_vertices, unsigned tcs_num_inputs, unsigned tcs_num_outputs, unsigned tcs_num_patch_outputs, unsigned tess_offchip_block_dw_size, enum amd_gfx_level gfx_level, enum radeon_family family) { uint32_t input_vertex_size = tcs_num_inputs * 16; uint32_t input_patch_size = tcs_num_input_vertices * input_vertex_size; uint32_t output_vertex_size = tcs_num_outputs * 16; uint32_t pervertex_output_patch_size = tcs_num_output_vertices * output_vertex_size; uint32_t output_patch_size = pervertex_output_patch_size + tcs_num_patch_outputs * 16; /* Ensure that we only need one wave per SIMD so we don't need to check * resource usage. Also ensures that the number of tcs in and out * vertices per threadgroup are at most 256. */ unsigned num_patches = 64 / MAX2(tcs_num_input_vertices, tcs_num_output_vertices) * 4; /* Make sure that the data fits in LDS. This assumes the shaders only * use LDS for the inputs and outputs. */ unsigned hardware_lds_size = 32768; /* Looks like STONEY hangs if we use more than 32 KiB LDS in a single * threadgroup, even though there is more than 32 KiB LDS. * * Test: dEQP-VK.tessellation.shader_input_output.barrier */ if (gfx_level >= GFX7 && family != CHIP_STONEY) hardware_lds_size = 65536; if (input_patch_size + output_patch_size) num_patches = MIN2(num_patches, hardware_lds_size / (input_patch_size + output_patch_size)); /* Make sure the output data fits in the offchip buffer */ if (output_patch_size) num_patches = MIN2(num_patches, (tess_offchip_block_dw_size * 4) / output_patch_size); /* Not necessary for correctness, but improves performance. The * specific value is taken from the proprietary driver. */ num_patches = MIN2(num_patches, 40); /* GFX6 bug workaround - limit LS-HS threadgroups to only one wave. */ if (gfx_level == GFX6) { unsigned one_wave = 64 / MAX2(tcs_num_input_vertices, tcs_num_output_vertices); num_patches = MIN2(num_patches, one_wave); } return num_patches; } void radv_lower_io(struct radv_device *device, nir_shader *nir, bool is_mesh_shading); bool radv_lower_io_to_mem(struct radv_device *device, struct radv_pipeline_stage *stage, const struct radv_pipeline_key *pl_key); void radv_lower_ngg(struct radv_device *device, struct radv_pipeline_stage *ngg_stage, const struct radv_pipeline_key *pl_key); bool radv_consider_culling(const struct radv_physical_device *pdevice, struct nir_shader *nir, uint64_t ps_inputs_read, unsigned num_vertices_per_primitive, const struct radv_shader_info *info); void radv_get_nir_options(struct radv_physical_device *device); bool radv_force_primitive_shading_rate(nir_shader *nir, struct radv_device *device); bool radv_lower_fs_intrinsics(nir_shader *nir, const struct radv_pipeline_stage *fs_stage, const struct radv_pipeline_key *key); #endif