/* * Copyright (C) 2018-2019 Alyssa Rosenzweig * Copyright (C) 2019-2020 Collabora, Ltd. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "compiler.h" #include "midgard_ops.h" #include "midgard_quirks.h" #include "util/u_memory.h" #include "util/u_math.h" #include "util/half_float.h" /* Scheduling for Midgard is complicated, to say the least. ALU instructions * must be grouped into VLIW bundles according to following model: * * [VMUL] [SADD] * [VADD] [SMUL] [VLUT] * * A given instruction can execute on some subset of the units (or a few can * execute on all). Instructions can be either vector or scalar; only scalar * instructions can execute on SADD/SMUL units. Units on a given line execute * in parallel. Subsequent lines execute separately and can pass results * directly via pipeline registers r24/r25, bypassing the register file. * * A bundle can optionally have 128-bits of embedded constants, shared across * all of the instructions within a bundle. * * Instructions consuming conditionals (branches and conditional selects) * require their condition to be written into the conditional register (r31) * within the same bundle they are consumed. * * Fragment writeout requires its argument to be written in full within the * same bundle as the branch, with no hanging dependencies. * * Load/store instructions are also in bundles of simply two instructions, and * texture instructions have no bundling. * * ------------------------------------------------------------------------- * */ /* We create the dependency graph with per-byte granularity */ #define BYTE_COUNT 16 static void add_dependency(struct util_dynarray *table, unsigned index, uint16_t mask, midgard_instruction **instructions, unsigned child) { for (unsigned i = 0; i < BYTE_COUNT; ++i) { if (!(mask & (1 << i))) continue; struct util_dynarray *parents = &table[(BYTE_COUNT * index) + i]; util_dynarray_foreach(parents, unsigned, parent) { BITSET_WORD *dependents = instructions[*parent]->dependents; /* Already have the dependency */ if (BITSET_TEST(dependents, child)) continue; BITSET_SET(dependents, child); instructions[child]->nr_dependencies++; } } } static void mark_access(struct util_dynarray *table, unsigned index, uint16_t mask, unsigned parent) { for (unsigned i = 0; i < BYTE_COUNT; ++i) { if (!(mask & (1 << i))) continue; util_dynarray_append(&table[(BYTE_COUNT * index) + i], unsigned, parent); } } static void mir_create_dependency_graph(midgard_instruction **instructions, unsigned count, unsigned node_count) { size_t sz = node_count * BYTE_COUNT; struct util_dynarray *last_read = calloc(sizeof(struct util_dynarray), sz); struct util_dynarray *last_write = calloc(sizeof(struct util_dynarray), sz); for (unsigned i = 0; i < sz; ++i) { util_dynarray_init(&last_read[i], NULL); util_dynarray_init(&last_write[i], NULL); } /* Initialize dependency graph */ for (unsigned i = 0; i < count; ++i) { instructions[i]->dependents = calloc(BITSET_WORDS(count), sizeof(BITSET_WORD)); instructions[i]->nr_dependencies = 0; } unsigned prev_ldst[3] = {~0, ~0, ~0}; /* Populate dependency graph */ for (signed i = count - 1; i >= 0; --i) { if (instructions[i]->compact_branch) continue; unsigned dest = instructions[i]->dest; unsigned mask = mir_bytemask(instructions[i]); mir_foreach_src((*instructions), s) { unsigned src = instructions[i]->src[s]; if (src < node_count) { unsigned readmask = mir_bytemask_of_read_components(instructions[i], src); add_dependency(last_write, src, readmask, instructions, i); } } /* Create a list of dependencies for each type of load/store * instruction to prevent reordering. */ if (instructions[i]->type == TAG_LOAD_STORE_4 && load_store_opcode_props[instructions[i]->op].props & LDST_ADDRESS) { unsigned type = instructions[i]->load_store.arg_reg | instructions[i]->load_store.arg_comp; unsigned idx; switch (type) { case LDST_SHARED: idx = 0; break; case LDST_SCRATCH: idx = 1; break; default: idx = 2; break; } unsigned prev = prev_ldst[idx]; if (prev != ~0) { BITSET_WORD *dependents = instructions[prev]->dependents; /* Already have the dependency */ if (BITSET_TEST(dependents, i)) continue; BITSET_SET(dependents, i); instructions[i]->nr_dependencies++; } prev_ldst[idx] = i; } if (dest < node_count) { add_dependency(last_read, dest, mask, instructions, i); add_dependency(last_write, dest, mask, instructions, i); mark_access(last_write, dest, mask, i); } mir_foreach_src((*instructions), s) { unsigned src = instructions[i]->src[s]; if (src < node_count) { unsigned readmask = mir_bytemask_of_read_components(instructions[i], src); mark_access(last_read, src, readmask, i); } } } /* If there is a branch, all instructions depend on it, as interblock * execution must be purely in-order */ if (instructions[count - 1]->compact_branch) { BITSET_WORD *dependents = instructions[count - 1]->dependents; for (signed i = count - 2; i >= 0; --i) { if (BITSET_TEST(dependents, i)) continue; BITSET_SET(dependents, i); instructions[i]->nr_dependencies++; } } /* Free the intermediate structures */ for (unsigned i = 0; i < sz; ++i) { util_dynarray_fini(&last_read[i]); util_dynarray_fini(&last_write[i]); } free(last_read); free(last_write); } /* Does the mask cover more than a scalar? */ static bool is_single_component_mask(unsigned mask) { int components = 0; for (int c = 0; c < 8; ++c) { if (mask & (1 << c)) components++; } return components == 1; } /* Helpers for scheudling */ static bool mir_is_scalar(midgard_instruction *ains) { /* Do we try to use it as a vector op? */ if (!is_single_component_mask(ains->mask)) return false; /* Otherwise, check mode hazards */ bool could_scalar = true; unsigned szd = nir_alu_type_get_type_size(ains->dest_type); unsigned sz0 = nir_alu_type_get_type_size(ains->src_types[0]); unsigned sz1 = nir_alu_type_get_type_size(ains->src_types[1]); /* Only 16/32-bit can run on a scalar unit */ could_scalar &= (szd == 16) || (szd == 32); if (ains->src[0] != ~0) could_scalar &= (sz0 == 16) || (sz0 == 32); if (ains->src[1] != ~0) could_scalar &= (sz1 == 16) || (sz1 == 32); if (midgard_is_integer_out_op(ains->op) && ains->outmod != midgard_outmod_keeplo) return false; return could_scalar; } /* How many bytes does this ALU instruction add to the bundle? */ static unsigned bytes_for_instruction(midgard_instruction *ains) { if (ains->unit & UNITS_ANY_VECTOR) return sizeof(midgard_reg_info) + sizeof(midgard_vector_alu); else if (ains->unit == ALU_ENAB_BRANCH) return sizeof(midgard_branch_extended); else if (ains->compact_branch) return sizeof(uint16_t); else return sizeof(midgard_reg_info) + sizeof(midgard_scalar_alu); } /* We would like to flatten the linked list of midgard_instructions in a bundle * to an array of pointers on the heap for easy indexing */ static midgard_instruction ** flatten_mir(midgard_block *block, unsigned *len) { *len = list_length(&block->base.instructions); if (!(*len)) return NULL; midgard_instruction **instructions = calloc(sizeof(midgard_instruction *), *len); unsigned i = 0; mir_foreach_instr_in_block(block, ins) instructions[i++] = ins; return instructions; } /* The worklist is the set of instructions that can be scheduled now; that is, * the set of instructions with no remaining dependencies */ static void mir_initialize_worklist(BITSET_WORD *worklist, midgard_instruction **instructions, unsigned count) { for (unsigned i = 0; i < count; ++i) { if (instructions[i]->nr_dependencies == 0) BITSET_SET(worklist, i); } } /* Update the worklist after an instruction terminates. Remove its edges from * the graph and if that causes any node to have no dependencies, add it to the * worklist */ static void mir_update_worklist( BITSET_WORD *worklist, unsigned count, midgard_instruction **instructions, midgard_instruction *done) { /* Sanity check: if no instruction terminated, there is nothing to do. * If the instruction that terminated had dependencies, that makes no * sense and means we messed up the worklist. Finally, as the purpose * of this routine is to update dependents, we abort early if there are * no dependents defined. */ if (!done) return; assert(done->nr_dependencies == 0); if (!done->dependents) return; /* We have an instruction with dependents. Iterate each dependent to * remove one dependency (`done`), adding dependents to the worklist * where possible. */ unsigned i; BITSET_FOREACH_SET(i, done->dependents, count) { assert(instructions[i]->nr_dependencies); if (!(--instructions[i]->nr_dependencies)) BITSET_SET(worklist, i); } free(done->dependents); } /* While scheduling, we need to choose instructions satisfying certain * criteria. As we schedule backwards, we choose the *last* instruction in the * worklist to simulate in-order scheduling. Chosen instructions must satisfy a * given predicate. */ struct midgard_predicate { /* TAG or ~0 for dont-care */ unsigned tag; /* True if we want to pop off the chosen instruction */ bool destructive; /* For ALU, choose only this unit */ unsigned unit; /* State for bundle constants. constants is the actual constants * for the bundle. constant_count is the number of bytes (up to * 16) currently in use for constants. When picking in destructive * mode, the constants array will be updated, and the instruction * will be adjusted to index into the constants array */ midgard_constants *constants; unsigned constant_mask; /* Exclude this destination (if not ~0) */ unsigned exclude; /* Don't schedule instructions consuming conditionals (since we already * scheduled one). Excludes conditional branches and csel */ bool no_cond; /* Require (or reject) a minimal mask and (if nonzero) given * destination. Used for writeout optimizations */ unsigned mask; unsigned no_mask; unsigned dest; /* Whether to not-care/only/never schedule imov/fmov instructions This * allows non-move instructions to get priority on each unit */ unsigned move_mode; /* For load/store: how many pipeline registers are in use? The two * scheduled instructions cannot use more than the 256-bits of pipeline * space available or RA will fail (as it would run out of pipeline * registers and fail to spill without breaking the schedule) */ unsigned pipeline_count; }; static bool mir_adjust_constant(midgard_instruction *ins, unsigned src, unsigned *bundle_constant_mask, unsigned *comp_mapping, uint8_t *bundle_constants, bool upper) { unsigned type_size = nir_alu_type_get_type_size(ins->src_types[src]) / 8; unsigned type_shift = util_logbase2(type_size); unsigned max_comp = mir_components_for_type(ins->src_types[src]); unsigned comp_mask = mir_from_bytemask(mir_round_bytemask_up( mir_bytemask_of_read_components_index(ins, src), type_size * 8), type_size * 8); unsigned type_mask = (1 << type_size) - 1; /* Upper only makes sense for 16-bit */ if (type_size != 16 && upper) return false; /* For 16-bit, we need to stay on either upper or lower halves to avoid * disrupting the swizzle */ unsigned start = upper ? 8 : 0; unsigned length = (type_size == 2) ? 8 : 16; for (unsigned comp = 0; comp < max_comp; comp++) { if (!(comp_mask & (1 << comp))) continue; uint8_t *constantp = ins->constants.u8 + (type_size * comp); unsigned best_reuse_bytes = 0; signed best_place = -1; unsigned i, j; for (i = start; i < (start + length); i += type_size) { unsigned reuse_bytes = 0; for (j = 0; j < type_size; j++) { if (!(*bundle_constant_mask & (1 << (i + j)))) continue; if (constantp[j] != bundle_constants[i + j]) break; if ((i + j) > (start + length)) break; reuse_bytes++; } /* Select the place where existing bytes can be * reused so we leave empty slots to others */ if (j == type_size && (reuse_bytes > best_reuse_bytes || best_place < 0)) { best_reuse_bytes = reuse_bytes; best_place = i; break; } } /* This component couldn't fit in the remaining constant slot, * no need check the remaining components, bail out now */ if (best_place < 0) return false; memcpy(&bundle_constants[i], constantp, type_size); *bundle_constant_mask |= type_mask << best_place; comp_mapping[comp] = best_place >> type_shift; } return true; } /* For an instruction that can fit, adjust it to fit and update the constants * array, in destructive mode. Returns whether the fitting was successful. */ static bool mir_adjust_constants(midgard_instruction *ins, struct midgard_predicate *pred, bool destructive) { /* No constant, nothing to adjust */ if (!ins->has_constants) return true; unsigned r_constant = SSA_FIXED_REGISTER(REGISTER_CONSTANT); unsigned bundle_constant_mask = pred->constant_mask; unsigned comp_mapping[2][16] = { }; uint8_t bundle_constants[16]; memcpy(bundle_constants, pred->constants, 16); /* Let's try to find a place for each active component of the constant * register. */ for (unsigned src = 0; src < 2; ++src) { if (ins->src[src] != SSA_FIXED_REGISTER(REGISTER_CONSTANT)) continue; /* First, try lower half (or whole for !16) */ if (mir_adjust_constant(ins, src, &bundle_constant_mask, comp_mapping[src], bundle_constants, false)) continue; /* Next, try upper half */ if (mir_adjust_constant(ins, src, &bundle_constant_mask, comp_mapping[src], bundle_constants, true)) continue; /* Otherwise bail */ return false; } /* If non-destructive, we're done */ if (!destructive) return true; /* Otherwise update the constant_mask and constant values */ pred->constant_mask = bundle_constant_mask; memcpy(pred->constants, bundle_constants, 16); /* Use comp_mapping as a swizzle */ mir_foreach_src(ins, s) { if (ins->src[s] == r_constant) mir_compose_swizzle(ins->swizzle[s], comp_mapping[s], ins->swizzle[s]); } return true; } /* Conservative estimate of the pipeline registers required for load/store */ static unsigned mir_pipeline_count(midgard_instruction *ins) { unsigned bytecount = 0; mir_foreach_src(ins, i) { /* Skip empty source */ if (ins->src[i] == ~0) continue; if (i == 0) { /* First source is a vector, worst-case the mask */ unsigned bytemask = mir_bytemask_of_read_components_index(ins, i); unsigned max = util_logbase2(bytemask) + 1; bytecount += max; } else { /* Sources 1 on are scalars */ bytecount += 4; } } unsigned dwords = DIV_ROUND_UP(bytecount, 16); assert(dwords <= 2); return dwords; } /* Matches FADD x, x with modifiers compatible. Since x + x = x * 2, for * any x including of the form f(y) for some swizzle/abs/neg function f */ static bool mir_is_add_2(midgard_instruction *ins) { if (ins->op != midgard_alu_op_fadd) return false; if (ins->src[0] != ins->src[1]) return false; if (ins->src_types[0] != ins->src_types[1]) return false; for (unsigned i = 0; i < MIR_VEC_COMPONENTS; ++i) { if (ins->swizzle[0][i] != ins->swizzle[1][i]) return false; } if (ins->src_abs[0] != ins->src_abs[1]) return false; if (ins->src_neg[0] != ins->src_neg[1]) return false; return true; } static void mir_adjust_unit(midgard_instruction *ins, unsigned unit) { /* FADD x, x = FMUL x, #2 */ if (mir_is_add_2(ins) && (unit & (UNITS_MUL | UNIT_VLUT))) { ins->op = midgard_alu_op_fmul; ins->src[1] = ~0; ins->src_abs[1] = false; ins->src_neg[1] = false; ins->has_inline_constant = true; ins->inline_constant = _mesa_float_to_half(2.0); } } static unsigned mir_has_unit(midgard_instruction *ins, unsigned unit) { if (alu_opcode_props[ins->op].props & unit) return true; /* FADD x, x can run on any adder or any multiplier */ if (mir_is_add_2(ins)) return true; return false; } /* Net change in liveness if an instruction were scheduled. Loosely based on * ir3's scheduler. */ static int mir_live_effect(uint16_t *liveness, midgard_instruction *ins, bool destructive) { /* TODO: what if dest is used multiple times? */ int free_live = 0; if (ins->dest < SSA_FIXED_MINIMUM) { unsigned bytemask = mir_bytemask(ins); bytemask = util_next_power_of_two(bytemask + 1) - 1; free_live += util_bitcount(liveness[ins->dest] & bytemask); if (destructive) liveness[ins->dest] &= ~bytemask; } int new_live = 0; mir_foreach_src(ins, s) { unsigned S = ins->src[s]; bool dupe = false; for (unsigned q = 0; q < s; ++q) dupe |= (ins->src[q] == S); if (dupe) continue; if (S < SSA_FIXED_MINIMUM) { unsigned bytemask = mir_bytemask_of_read_components(ins, S); bytemask = util_next_power_of_two(bytemask + 1) - 1; /* Count only the new components */ new_live += util_bitcount(bytemask & ~(liveness[S])); if (destructive) liveness[S] |= bytemask; } } return new_live - free_live; } static midgard_instruction * mir_choose_instruction( midgard_instruction **instructions, uint16_t *liveness, BITSET_WORD *worklist, unsigned count, struct midgard_predicate *predicate) { /* Parse the predicate */ unsigned tag = predicate->tag; unsigned unit = predicate->unit; bool scalar = (unit != ~0) && (unit & UNITS_SCALAR); bool no_cond = predicate->no_cond; unsigned mask = predicate->mask; unsigned dest = predicate->dest; bool needs_dest = mask & 0xF; /* Iterate to find the best instruction satisfying the predicate */ unsigned i; signed best_index = -1; signed best_effect = INT_MAX; bool best_conditional = false; /* Enforce a simple metric limiting distance to keep down register * pressure. TOOD: replace with liveness tracking for much better * results */ unsigned max_active = 0; unsigned max_distance = 36; #ifndef NDEBUG /* Force in-order scheduling */ if (midgard_debug & MIDGARD_DBG_INORDER) max_distance = 1; #endif BITSET_FOREACH_SET(i, worklist, count) { max_active = MAX2(max_active, i); } BITSET_FOREACH_SET(i, worklist, count) { if ((max_active - i) >= max_distance) continue; if (tag != ~0 && instructions[i]->type != tag) continue; bool alu = (instructions[i]->type == TAG_ALU_4); bool ldst = (instructions[i]->type == TAG_LOAD_STORE_4); bool branch = alu && (unit == ALU_ENAB_BR_COMPACT); bool is_move = alu && (instructions[i]->op == midgard_alu_op_imov || instructions[i]->op == midgard_alu_op_fmov); if (predicate->exclude != ~0 && instructions[i]->dest == predicate->exclude) continue; if (alu && !branch && unit != ~0 && !(mir_has_unit(instructions[i], unit))) continue; /* 0: don't care, 1: no moves, 2: only moves */ if (predicate->move_mode && ((predicate->move_mode - 1) != is_move)) continue; if (branch && !instructions[i]->compact_branch) continue; if (alu && scalar && !mir_is_scalar(instructions[i])) continue; if (alu && predicate->constants && !mir_adjust_constants(instructions[i], predicate, false)) continue; if (needs_dest && instructions[i]->dest != dest) continue; if (mask && ((~instructions[i]->mask) & mask)) continue; if (instructions[i]->mask & predicate->no_mask) continue; if (ldst && mir_pipeline_count(instructions[i]) + predicate->pipeline_count > 2) continue; bool conditional = alu && !branch && OP_IS_CSEL(instructions[i]->op); conditional |= (branch && instructions[i]->branch.conditional); if (conditional && no_cond) continue; int effect = mir_live_effect(liveness, instructions[i], false); if (effect > best_effect) continue; if (effect == best_effect && (signed) i < best_index) continue; best_effect = effect; best_index = i; best_conditional = conditional; } /* Did we find anything? */ if (best_index < 0) return NULL; /* If we found something, remove it from the worklist */ assert(best_index < count); midgard_instruction *I = instructions[best_index]; if (predicate->destructive) { BITSET_CLEAR(worklist, best_index); if (I->type == TAG_ALU_4) mir_adjust_constants(instructions[best_index], predicate, true); if (I->type == TAG_LOAD_STORE_4) predicate->pipeline_count += mir_pipeline_count(instructions[best_index]); if (I->type == TAG_ALU_4) mir_adjust_unit(instructions[best_index], unit); /* Once we schedule a conditional, we can't again */ predicate->no_cond |= best_conditional; mir_live_effect(liveness, instructions[best_index], true); } return I; } /* Still, we don't choose instructions in a vacuum. We need a way to choose the * best bundle type (ALU, load/store, texture). Nondestructive. */ static unsigned mir_choose_bundle( midgard_instruction **instructions, uint16_t *liveness, BITSET_WORD *worklist, unsigned count, unsigned num_ldst) { /* At the moment, our algorithm is very simple - use the bundle of the * best instruction, regardless of what else could be scheduled * alongside it. This is not optimal but it works okay for in-order */ struct midgard_predicate predicate = { .tag = ~0, .unit = ~0, .destructive = false, .exclude = ~0 }; midgard_instruction *chosen = mir_choose_instruction(instructions, liveness, worklist, count, &predicate); if (chosen && chosen->type == TAG_LOAD_STORE_4 && !(num_ldst % 2)) { /* Try to schedule load/store ops in pairs */ predicate.exclude = chosen->dest; predicate.tag = TAG_LOAD_STORE_4; chosen = mir_choose_instruction(instructions, liveness, worklist, count, &predicate); if (chosen) return TAG_LOAD_STORE_4; predicate.tag = ~0; chosen = mir_choose_instruction(instructions, liveness, worklist, count, &predicate); assert(chosen == NULL || chosen->type != TAG_LOAD_STORE_4); if (chosen) return chosen->type; else return TAG_LOAD_STORE_4; } if (chosen) return chosen->type; else return ~0; } /* We want to choose an ALU instruction filling a given unit */ static void mir_choose_alu(midgard_instruction **slot, midgard_instruction **instructions, uint16_t *liveness, BITSET_WORD *worklist, unsigned len, struct midgard_predicate *predicate, unsigned unit) { /* Did we already schedule to this slot? */ if ((*slot) != NULL) return; /* Try to schedule something, if not */ predicate->unit = unit; *slot = mir_choose_instruction(instructions, liveness, worklist, len, predicate); /* Store unit upon scheduling */ if (*slot && !((*slot)->compact_branch)) (*slot)->unit = unit; } /* When we are scheduling a branch/csel, we need the consumed condition in the * same block as a pipeline register. There are two options to enable this: * * - Move the conditional into the bundle. Preferred, but only works if the * conditional is used only once and is from this block. * - Copy the conditional. * * We search for the conditional. If it's in this block, single-use, and * without embedded constants, we schedule it immediately. Otherwise, we * schedule a move for it. * * mir_comparison_mobile is a helper to find the moveable condition. */ static unsigned mir_comparison_mobile( compiler_context *ctx, midgard_instruction **instructions, struct midgard_predicate *predicate, unsigned count, unsigned cond) { if (!mir_single_use(ctx, cond)) return ~0; unsigned ret = ~0; for (unsigned i = 0; i < count; ++i) { if (instructions[i]->dest != cond) continue; /* Must fit in an ALU bundle */ if (instructions[i]->type != TAG_ALU_4) return ~0; /* If it would itself require a condition, that's recursive */ if (OP_IS_CSEL(instructions[i]->op)) return ~0; /* We'll need to rewrite to .w but that doesn't work for vector * ops that don't replicate (ball/bany), so bail there */ if (GET_CHANNEL_COUNT(alu_opcode_props[instructions[i]->op].props)) return ~0; /* Ensure it will fit with constants */ if (!mir_adjust_constants(instructions[i], predicate, false)) return ~0; /* Ensure it is written only once */ if (ret != ~0) return ~0; else ret = i; } /* Inject constants now that we are sure we want to */ if (ret != ~0) mir_adjust_constants(instructions[ret], predicate, true); return ret; } /* Using the information about the moveable conditional itself, we either pop * that condition off the worklist for use now, or create a move to * artificially schedule instead as a fallback */ static midgard_instruction * mir_schedule_comparison( compiler_context *ctx, midgard_instruction **instructions, struct midgard_predicate *predicate, BITSET_WORD *worklist, unsigned count, unsigned cond, bool vector, unsigned *swizzle, midgard_instruction *user) { /* TODO: swizzle when scheduling */ unsigned comp_i = (!vector && (swizzle[0] == 0)) ? mir_comparison_mobile(ctx, instructions, predicate, count, cond) : ~0; /* If we can, schedule the condition immediately */ if ((comp_i != ~0) && BITSET_TEST(worklist, comp_i)) { assert(comp_i < count); BITSET_CLEAR(worklist, comp_i); return instructions[comp_i]; } /* Otherwise, we insert a move */ midgard_instruction mov = v_mov(cond, cond); mov.mask = vector ? 0xF : 0x1; memcpy(mov.swizzle[1], swizzle, sizeof(mov.swizzle[1])); return mir_insert_instruction_before(ctx, user, mov); } /* Most generally, we need instructions writing to r31 in the appropriate * components */ static midgard_instruction * mir_schedule_condition(compiler_context *ctx, struct midgard_predicate *predicate, BITSET_WORD *worklist, unsigned count, midgard_instruction **instructions, midgard_instruction *last) { /* For a branch, the condition is the only argument; for csel, third */ bool branch = last->compact_branch; unsigned condition_index = branch ? 0 : 2; /* csel_v is vector; otherwise, conditions are scalar */ bool vector = !branch && OP_IS_CSEL_V(last->op); /* Grab the conditional instruction */ midgard_instruction *cond = mir_schedule_comparison( ctx, instructions, predicate, worklist, count, last->src[condition_index], vector, last->swizzle[condition_index], last); /* We have exclusive reign over this (possibly move) conditional * instruction. We can rewrite into a pipeline conditional register */ predicate->exclude = cond->dest; cond->dest = SSA_FIXED_REGISTER(31); if (!vector) { cond->mask = (1 << COMPONENT_W); mir_foreach_src(cond, s) { if (cond->src[s] == ~0) continue; for (unsigned q = 0; q < 4; ++q) cond->swizzle[s][q + COMPONENT_W] = cond->swizzle[s][q]; } } /* Schedule the unit: csel is always in the latter pipeline, so a csel * condition must be in the former pipeline stage (vmul/sadd), * depending on scalar/vector of the instruction itself. A branch must * be written from the latter pipeline stage and a branch condition is * always scalar, so it is always in smul (exception: ball/bany, which * will be vadd) */ if (branch) cond->unit = UNIT_SMUL; else cond->unit = vector ? UNIT_VMUL : UNIT_SADD; return cond; } /* Schedules a single bundle of the given type */ static midgard_bundle mir_schedule_texture( midgard_instruction **instructions, uint16_t *liveness, BITSET_WORD *worklist, unsigned len, bool is_vertex) { struct midgard_predicate predicate = { .tag = TAG_TEXTURE_4, .destructive = true, .exclude = ~0 }; midgard_instruction *ins = mir_choose_instruction(instructions, liveness, worklist, len, &predicate); mir_update_worklist(worklist, len, instructions, ins); struct midgard_bundle out = { .tag = ins->op == midgard_tex_op_barrier ? TAG_TEXTURE_4_BARRIER : (ins->op == midgard_tex_op_fetch) || is_vertex ? TAG_TEXTURE_4_VTX : TAG_TEXTURE_4, .instruction_count = 1, .instructions = { ins } }; return out; } static midgard_bundle mir_schedule_ldst( midgard_instruction **instructions, uint16_t *liveness, BITSET_WORD *worklist, unsigned len, unsigned *num_ldst) { struct midgard_predicate predicate = { .tag = TAG_LOAD_STORE_4, .destructive = true, .exclude = ~0 }; /* Try to pick two load/store ops. Second not gauranteed to exist */ midgard_instruction *ins = mir_choose_instruction(instructions, liveness, worklist, len, &predicate); midgard_instruction *pair = mir_choose_instruction(instructions, liveness, worklist, len, &predicate); assert(ins != NULL); struct midgard_bundle out = { .tag = TAG_LOAD_STORE_4, .instruction_count = pair ? 2 : 1, .instructions = { ins, pair } }; *num_ldst -= out.instruction_count; /* We have to update the worklist atomically, since the two * instructions run concurrently (TODO: verify it's not pipelined) */ mir_update_worklist(worklist, len, instructions, ins); mir_update_worklist(worklist, len, instructions, pair); return out; } static void mir_schedule_zs_write( compiler_context *ctx, struct midgard_predicate *predicate, midgard_instruction **instructions, uint16_t *liveness, BITSET_WORD *worklist, unsigned len, midgard_instruction *branch, midgard_instruction **smul, midgard_instruction **vadd, midgard_instruction **vlut, bool stencil) { bool success = false; unsigned idx = stencil ? 3 : 2; unsigned src = (branch->src[0] == ~0) ? SSA_FIXED_REGISTER(1) : branch->src[idx]; predicate->dest = src; predicate->mask = 0x1; midgard_instruction **units[] = { smul, vadd, vlut }; unsigned unit_names[] = { UNIT_SMUL, UNIT_VADD, UNIT_VLUT }; for (unsigned i = 0; i < 3; ++i) { if (*(units[i])) continue; predicate->unit = unit_names[i]; midgard_instruction *ins = mir_choose_instruction(instructions, liveness, worklist, len, predicate); if (ins) { ins->unit = unit_names[i]; *(units[i]) = ins; success |= true; break; } } predicate->dest = predicate->mask = 0; if (success) return; midgard_instruction *mov = ralloc(ctx, midgard_instruction); *mov = v_mov(src, make_compiler_temp(ctx)); mov->mask = 0x1; branch->src[idx] = mov->dest; if (stencil) { unsigned swizzle = (branch->src[0] == ~0) ? COMPONENT_Y : COMPONENT_X; for (unsigned c = 0; c < 16; ++c) mov->swizzle[1][c] = swizzle; } for (unsigned i = 0; i < 3; ++i) { if (!(*(units[i]))) { *(units[i]) = mov; mov->unit = unit_names[i]; return; } } unreachable("Could not schedule Z/S move to any unit"); } static midgard_bundle mir_schedule_alu( compiler_context *ctx, midgard_instruction **instructions, uint16_t *liveness, BITSET_WORD *worklist, unsigned len) { struct midgard_bundle bundle = {}; unsigned bytes_emitted = sizeof(bundle.control); struct midgard_predicate predicate = { .tag = TAG_ALU_4, .destructive = true, .exclude = ~0, .constants = &bundle.constants }; midgard_instruction *vmul = NULL; midgard_instruction *vadd = NULL; midgard_instruction *vlut = NULL; midgard_instruction *smul = NULL; midgard_instruction *sadd = NULL; midgard_instruction *branch = NULL; mir_choose_alu(&branch, instructions, liveness, worklist, len, &predicate, ALU_ENAB_BR_COMPACT); mir_update_worklist(worklist, len, instructions, branch); unsigned writeout = branch ? branch->writeout : 0; if (branch && branch->branch.conditional) { midgard_instruction *cond = mir_schedule_condition(ctx, &predicate, worklist, len, instructions, branch); if (cond->unit == UNIT_VADD) vadd = cond; else if (cond->unit == UNIT_SMUL) smul = cond; else unreachable("Bad condition"); } /* If we have a render target reference, schedule a move for it. Since * this will be in sadd, we boost this to prevent scheduling csel into * smul */ if (writeout && (branch->constants.u32[0] || ctx->inputs->is_blend)) { sadd = ralloc(ctx, midgard_instruction); *sadd = v_mov(~0, make_compiler_temp(ctx)); sadd->unit = UNIT_SADD; sadd->mask = 0x1; sadd->has_inline_constant = true; sadd->inline_constant = branch->constants.u32[0]; branch->src[1] = sadd->dest; branch->src_types[1] = sadd->dest_type; } if (writeout) { /* Propagate up */ bundle.last_writeout = branch->last_writeout; /* Mask off any conditionals. * This prevents csel and csel_v being scheduled into smul * since we might not have room for a conditional in vmul/sadd. * This is important because both writeout and csel have same-bundle * requirements on their dependencies. */ predicate.no_cond = true; } /* When MRT is in use, writeout loops require r1.w to be filled with a * return address for the blend shader to jump to. We always emit the * move for blend shaders themselves for ABI reasons. */ if (writeout && (ctx->inputs->is_blend || ctx->writeout_branch[1])) { vadd = ralloc(ctx, midgard_instruction); *vadd = v_mov(~0, make_compiler_temp(ctx)); if (!ctx->inputs->is_blend) { vadd->op = midgard_alu_op_iadd; vadd->src[0] = SSA_FIXED_REGISTER(31); vadd->src_types[0] = nir_type_uint32; for (unsigned c = 0; c < 16; ++c) vadd->swizzle[0][c] = COMPONENT_X; vadd->has_inline_constant = true; vadd->inline_constant = 0; } else { vadd->src[1] = SSA_FIXED_REGISTER(1); vadd->src_types[0] = nir_type_uint32; for (unsigned c = 0; c < 16; ++c) vadd->swizzle[1][c] = COMPONENT_W; } vadd->unit = UNIT_VADD; vadd->mask = 0x1; branch->dest = vadd->dest; branch->dest_type = vadd->dest_type; } if (writeout & PAN_WRITEOUT_Z) mir_schedule_zs_write(ctx, &predicate, instructions, liveness, worklist, len, branch, &smul, &vadd, &vlut, false); if (writeout & PAN_WRITEOUT_S) mir_schedule_zs_write(ctx, &predicate, instructions, liveness, worklist, len, branch, &smul, &vadd, &vlut, true); mir_choose_alu(&smul, instructions, liveness, worklist, len, &predicate, UNIT_SMUL); for (unsigned mode = 1; mode < 3; ++mode) { predicate.move_mode = mode; predicate.no_mask = writeout ? (1 << 3) : 0; mir_choose_alu(&vlut, instructions, liveness, worklist, len, &predicate, UNIT_VLUT); predicate.no_mask = 0; mir_choose_alu(&vadd, instructions, liveness, worklist, len, &predicate, UNIT_VADD); } /* Reset */ predicate.move_mode = 0; mir_update_worklist(worklist, len, instructions, vlut); mir_update_worklist(worklist, len, instructions, vadd); mir_update_worklist(worklist, len, instructions, smul); bool vadd_csel = vadd && OP_IS_CSEL(vadd->op); bool smul_csel = smul && OP_IS_CSEL(smul->op); if (vadd_csel || smul_csel) { midgard_instruction *ins = vadd_csel ? vadd : smul; midgard_instruction *cond = mir_schedule_condition(ctx, &predicate, worklist, len, instructions, ins); if (cond->unit == UNIT_VMUL) vmul = cond; else if (cond->unit == UNIT_SADD) sadd = cond; else unreachable("Bad condition"); } /* Stage 2, let's schedule sadd before vmul for writeout */ mir_choose_alu(&sadd, instructions, liveness, worklist, len, &predicate, UNIT_SADD); /* Check if writeout reads its own register */ if (writeout) { midgard_instruction *stages[] = { sadd, vadd, smul, vlut }; unsigned src = (branch->src[0] == ~0) ? SSA_FIXED_REGISTER(0) : branch->src[0]; unsigned writeout_mask = 0x0; bool bad_writeout = false; for (unsigned i = 0; i < ARRAY_SIZE(stages); ++i) { if (!stages[i]) continue; if (stages[i]->dest != src) continue; writeout_mask |= stages[i]->mask; bad_writeout |= mir_has_arg(stages[i], branch->src[0]); } /* It's possible we'll be able to schedule something into vmul * to fill r0. Let's peak into the future, trying to schedule * vmul specially that way. */ unsigned full_mask = 0xF; if (!bad_writeout && writeout_mask != full_mask) { predicate.unit = UNIT_VMUL; predicate.dest = src; predicate.mask = writeout_mask ^ full_mask; struct midgard_instruction *peaked = mir_choose_instruction(instructions, liveness, worklist, len, &predicate); if (peaked) { vmul = peaked; vmul->unit = UNIT_VMUL; writeout_mask |= predicate.mask; assert(writeout_mask == full_mask); } /* Cleanup */ predicate.dest = predicate.mask = 0; } /* Finally, add a move if necessary */ if (bad_writeout || writeout_mask != full_mask) { unsigned temp = (branch->src[0] == ~0) ? SSA_FIXED_REGISTER(0) : make_compiler_temp(ctx); vmul = ralloc(ctx, midgard_instruction); *vmul = v_mov(src, temp); vmul->unit = UNIT_VMUL; vmul->mask = full_mask ^ writeout_mask; /* Rewrite to use our temp */ for (unsigned i = 0; i < ARRAY_SIZE(stages); ++i) { if (stages[i]) { mir_rewrite_index_dst_single(stages[i], src, temp); mir_rewrite_index_src_single(stages[i], src, temp); } } mir_rewrite_index_src_single(branch, src, temp); } } mir_choose_alu(&vmul, instructions, liveness, worklist, len, &predicate, UNIT_VMUL); mir_update_worklist(worklist, len, instructions, vmul); mir_update_worklist(worklist, len, instructions, sadd); bundle.has_embedded_constants = predicate.constant_mask != 0; unsigned padding = 0; /* Now that we have finished scheduling, build up the bundle */ midgard_instruction *stages[] = { vmul, sadd, vadd, smul, vlut, branch }; for (unsigned i = 0; i < ARRAY_SIZE(stages); ++i) { if (stages[i]) { bundle.control |= stages[i]->unit; bytes_emitted += bytes_for_instruction(stages[i]); bundle.instructions[bundle.instruction_count++] = stages[i]; /* If we branch, we can't spill to TLS since the store * instruction will never get executed. We could try to * break the bundle but this is probably easier for * now. */ if (branch) stages[i]->no_spill |= (1 << REG_CLASS_WORK); } } /* Pad ALU op to nearest word */ if (bytes_emitted & 15) { padding = 16 - (bytes_emitted & 15); bytes_emitted += padding; } /* Constants must always be quadwords */ if (bundle.has_embedded_constants) bytes_emitted += 16; /* Size ALU instruction for tag */ bundle.tag = (TAG_ALU_4) + (bytes_emitted / 16) - 1; bool tilebuf_wait = branch && branch->compact_branch && branch->branch.target_type == TARGET_TILEBUF_WAIT; /* MRT capable GPUs use a special writeout procedure */ if ((writeout || tilebuf_wait) && !(ctx->quirks & MIDGARD_NO_UPPER_ALU)) bundle.tag += 4; bundle.padding = padding; bundle.control |= bundle.tag; return bundle; } /* Schedule a single block by iterating its instruction to create bundles. * While we go, tally about the bundle sizes to compute the block size. */ static void schedule_block(compiler_context *ctx, midgard_block *block) { /* Copy list to dynamic array */ unsigned len = 0; midgard_instruction **instructions = flatten_mir(block, &len); if (!len) return; /* Calculate dependencies and initial worklist */ unsigned node_count = ctx->temp_count + 1; mir_create_dependency_graph(instructions, len, node_count); /* Allocate the worklist */ size_t sz = BITSET_WORDS(len) * sizeof(BITSET_WORD); BITSET_WORD *worklist = calloc(sz, 1); uint16_t *liveness = calloc(node_count, 2); mir_initialize_worklist(worklist, instructions, len); /* Count the number of load/store instructions so we know when it's * worth trying to schedule them in pairs. */ unsigned num_ldst = 0; for (unsigned i = 0; i < len; ++i) { if (instructions[i]->type == TAG_LOAD_STORE_4) ++num_ldst; } struct util_dynarray bundles; util_dynarray_init(&bundles, NULL); block->quadword_count = 0; for (;;) { unsigned tag = mir_choose_bundle(instructions, liveness, worklist, len, num_ldst); midgard_bundle bundle; if (tag == TAG_TEXTURE_4) bundle = mir_schedule_texture(instructions, liveness, worklist, len, ctx->stage != MESA_SHADER_FRAGMENT); else if (tag == TAG_LOAD_STORE_4) bundle = mir_schedule_ldst(instructions, liveness, worklist, len, &num_ldst); else if (tag == TAG_ALU_4) bundle = mir_schedule_alu(ctx, instructions, liveness, worklist, len); else break; for (unsigned i = 0; i < bundle.instruction_count; ++i) bundle.instructions[i]->bundle_id = ctx->quadword_count + block->quadword_count; util_dynarray_append(&bundles, midgard_bundle, bundle); block->quadword_count += midgard_tag_props[bundle.tag].size; } assert(num_ldst == 0); /* We emitted bundles backwards; copy into the block in reverse-order */ util_dynarray_init(&block->bundles, block); util_dynarray_foreach_reverse(&bundles, midgard_bundle, bundle) { util_dynarray_append(&block->bundles, midgard_bundle, *bundle); } util_dynarray_fini(&bundles); block->scheduled = true; ctx->quadword_count += block->quadword_count; /* Reorder instructions to match bundled. First remove existing * instructions and then recreate the list */ mir_foreach_instr_in_block_safe(block, ins) { list_del(&ins->link); } mir_foreach_instr_in_block_scheduled_rev(block, ins) { list_add(&ins->link, &block->base.instructions); } free(instructions); /* Allocated by flatten_mir() */ free(worklist); free(liveness); } /* Insert moves to ensure we can register allocate load/store registers */ static void mir_lower_ldst(compiler_context *ctx) { mir_foreach_instr_global_safe(ctx, I) { if (I->type != TAG_LOAD_STORE_4) continue; mir_foreach_src(I, s) { if (s == 0) continue; if (I->src[s] == ~0) continue; if (I->swizzle[s][0] == 0) continue; unsigned temp = make_compiler_temp(ctx); midgard_instruction mov = v_mov(I->src[s], temp); mov.mask = 0x1; mov.dest_type = I->src_types[s]; for (unsigned c = 0; c < NIR_MAX_VEC_COMPONENTS; ++c) mov.swizzle[1][c] = I->swizzle[s][0]; mir_insert_instruction_before(ctx, I, mov); I->src[s] = mov.dest; I->swizzle[s][0] = 0; } } } /* Insert moves to ensure we can register allocate blend writeout */ static void mir_lower_blend_input(compiler_context *ctx) { mir_foreach_block(ctx, _blk) { midgard_block *blk = (midgard_block *) _blk; if (list_is_empty(&blk->base.instructions)) continue; midgard_instruction *I = mir_last_in_block(blk); if (!I || I->type != TAG_ALU_4 || !I->writeout) continue; mir_foreach_src(I, s) { unsigned src = I->src[s]; if (src >= ctx->temp_count) continue; if (!_blk->live_out[src]) continue; unsigned temp = make_compiler_temp(ctx); midgard_instruction mov = v_mov(src, temp); mov.mask = 0xF; mov.dest_type = nir_type_uint32; mir_insert_instruction_before(ctx, I, mov); I->src[s] = mov.dest; } } } void midgard_schedule_program(compiler_context *ctx) { mir_lower_ldst(ctx); midgard_promote_uniforms(ctx); /* Must be lowered right before scheduling */ mir_squeeze_index(ctx); mir_lower_special_reads(ctx); if (ctx->stage == MESA_SHADER_FRAGMENT) { mir_invalidate_liveness(ctx); mir_compute_liveness(ctx); mir_lower_blend_input(ctx); } mir_squeeze_index(ctx); /* Lowering can introduce some dead moves */ mir_foreach_block(ctx, _block) { midgard_block *block = (midgard_block *) _block; midgard_opt_dead_move_eliminate(ctx, block); schedule_block(ctx, block); } }