/* * Copyright 2012 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "ac_shader_util.h" #include "ac_gpu_info.h" #include "sid.h" #include "u_math.h" #include #include #include unsigned ac_get_spi_shader_z_format(bool writes_z, bool writes_stencil, bool writes_samplemask, bool writes_mrt0_alpha) { /* If writes_mrt0_alpha is true, one other flag must be true too. */ assert(!writes_mrt0_alpha || writes_z || writes_stencil || writes_samplemask); if (writes_z || writes_mrt0_alpha) { /* Z needs 32 bits. */ if (writes_samplemask || writes_mrt0_alpha) return V_028710_SPI_SHADER_32_ABGR; else if (writes_stencil) return V_028710_SPI_SHADER_32_GR; else return V_028710_SPI_SHADER_32_R; } else if (writes_stencil || writes_samplemask) { /* Both stencil and sample mask need only 16 bits. */ return V_028710_SPI_SHADER_UINT16_ABGR; } else { return V_028710_SPI_SHADER_ZERO; } } unsigned ac_get_cb_shader_mask(unsigned spi_shader_col_format) { unsigned i, cb_shader_mask = 0; for (i = 0; i < 8; i++) { switch ((spi_shader_col_format >> (i * 4)) & 0xf) { case V_028714_SPI_SHADER_ZERO: break; case V_028714_SPI_SHADER_32_R: cb_shader_mask |= 0x1 << (i * 4); break; case V_028714_SPI_SHADER_32_GR: cb_shader_mask |= 0x3 << (i * 4); break; case V_028714_SPI_SHADER_32_AR: cb_shader_mask |= 0x9u << (i * 4); break; case V_028714_SPI_SHADER_FP16_ABGR: case V_028714_SPI_SHADER_UNORM16_ABGR: case V_028714_SPI_SHADER_SNORM16_ABGR: case V_028714_SPI_SHADER_UINT16_ABGR: case V_028714_SPI_SHADER_SINT16_ABGR: case V_028714_SPI_SHADER_32_ABGR: cb_shader_mask |= 0xfu << (i * 4); break; default: assert(0); } } return cb_shader_mask; } /** * Calculate the appropriate setting of VGT_GS_MODE when \p shader is a * geometry shader. */ uint32_t ac_vgt_gs_mode(unsigned gs_max_vert_out, enum amd_gfx_level gfx_level) { unsigned cut_mode; assert (gfx_level < GFX11); if (gs_max_vert_out <= 128) { cut_mode = V_028A40_GS_CUT_128; } else if (gs_max_vert_out <= 256) { cut_mode = V_028A40_GS_CUT_256; } else if (gs_max_vert_out <= 512) { cut_mode = V_028A40_GS_CUT_512; } else { assert(gs_max_vert_out <= 1024); cut_mode = V_028A40_GS_CUT_1024; } return S_028A40_MODE(V_028A40_GS_SCENARIO_G) | S_028A40_CUT_MODE(cut_mode) | S_028A40_ES_WRITE_OPTIMIZE(gfx_level <= GFX8) | S_028A40_GS_WRITE_OPTIMIZE(1) | S_028A40_ONCHIP(gfx_level >= GFX9 ? 1 : 0); } /// Translate a (dfmt, nfmt) pair into a chip-appropriate combined format /// value for LLVM8+ tbuffer intrinsics. unsigned ac_get_tbuffer_format(enum amd_gfx_level gfx_level, unsigned dfmt, unsigned nfmt) { // Some games try to access vertex buffers without a valid format. // This is a game bug, but we should still handle it gracefully. if (dfmt == V_008F0C_GFX10_FORMAT_INVALID) return V_008F0C_GFX10_FORMAT_INVALID; if (gfx_level >= GFX11) { switch (dfmt) { default: unreachable("bad dfmt"); case V_008F0C_BUF_DATA_FORMAT_INVALID: return V_008F0C_GFX11_FORMAT_INVALID; case V_008F0C_BUF_DATA_FORMAT_8: switch (nfmt) { case V_008F0C_BUF_NUM_FORMAT_UNORM: return V_008F0C_GFX11_FORMAT_8_UNORM; case V_008F0C_BUF_NUM_FORMAT_SNORM: return V_008F0C_GFX11_FORMAT_8_SNORM; case V_008F0C_BUF_NUM_FORMAT_USCALED: return V_008F0C_GFX11_FORMAT_8_USCALED; case V_008F0C_BUF_NUM_FORMAT_SSCALED: return V_008F0C_GFX11_FORMAT_8_SSCALED; default: unreachable("bad nfmt"); case V_008F0C_BUF_NUM_FORMAT_UINT: return V_008F0C_GFX11_FORMAT_8_UINT; case V_008F0C_BUF_NUM_FORMAT_SINT: return V_008F0C_GFX11_FORMAT_8_SINT; } case V_008F0C_BUF_DATA_FORMAT_8_8: switch (nfmt) { case V_008F0C_BUF_NUM_FORMAT_UNORM: return V_008F0C_GFX11_FORMAT_8_8_UNORM; case V_008F0C_BUF_NUM_FORMAT_SNORM: return V_008F0C_GFX11_FORMAT_8_8_SNORM; case V_008F0C_BUF_NUM_FORMAT_USCALED: return V_008F0C_GFX11_FORMAT_8_8_USCALED; case V_008F0C_BUF_NUM_FORMAT_SSCALED: return V_008F0C_GFX11_FORMAT_8_8_SSCALED; default: unreachable("bad nfmt"); case V_008F0C_BUF_NUM_FORMAT_UINT: return V_008F0C_GFX11_FORMAT_8_8_UINT; case V_008F0C_BUF_NUM_FORMAT_SINT: return V_008F0C_GFX11_FORMAT_8_8_SINT; } case V_008F0C_BUF_DATA_FORMAT_8_8_8_8: switch (nfmt) { case V_008F0C_BUF_NUM_FORMAT_UNORM: return V_008F0C_GFX11_FORMAT_8_8_8_8_UNORM; case V_008F0C_BUF_NUM_FORMAT_SNORM: return V_008F0C_GFX11_FORMAT_8_8_8_8_SNORM; case V_008F0C_BUF_NUM_FORMAT_USCALED: return V_008F0C_GFX11_FORMAT_8_8_8_8_USCALED; case V_008F0C_BUF_NUM_FORMAT_SSCALED: return V_008F0C_GFX11_FORMAT_8_8_8_8_SSCALED; default: unreachable("bad nfmt"); case V_008F0C_BUF_NUM_FORMAT_UINT: return V_008F0C_GFX11_FORMAT_8_8_8_8_UINT; case V_008F0C_BUF_NUM_FORMAT_SINT: return V_008F0C_GFX11_FORMAT_8_8_8_8_SINT; } case V_008F0C_BUF_DATA_FORMAT_16: switch (nfmt) { case V_008F0C_BUF_NUM_FORMAT_UNORM: return V_008F0C_GFX11_FORMAT_16_UNORM; case V_008F0C_BUF_NUM_FORMAT_SNORM: return V_008F0C_GFX11_FORMAT_16_SNORM; case V_008F0C_BUF_NUM_FORMAT_USCALED: return V_008F0C_GFX11_FORMAT_16_USCALED; case V_008F0C_BUF_NUM_FORMAT_SSCALED: return V_008F0C_GFX11_FORMAT_16_SSCALED; default: unreachable("bad nfmt"); case V_008F0C_BUF_NUM_FORMAT_UINT: return V_008F0C_GFX11_FORMAT_16_UINT; case V_008F0C_BUF_NUM_FORMAT_SINT: return V_008F0C_GFX11_FORMAT_16_SINT; case V_008F0C_BUF_NUM_FORMAT_FLOAT: return V_008F0C_GFX11_FORMAT_16_FLOAT; } case V_008F0C_BUF_DATA_FORMAT_16_16: switch (nfmt) { case V_008F0C_BUF_NUM_FORMAT_UNORM: return V_008F0C_GFX11_FORMAT_16_16_UNORM; case V_008F0C_BUF_NUM_FORMAT_SNORM: return V_008F0C_GFX11_FORMAT_16_16_SNORM; case V_008F0C_BUF_NUM_FORMAT_USCALED: return V_008F0C_GFX11_FORMAT_16_16_USCALED; case V_008F0C_BUF_NUM_FORMAT_SSCALED: return V_008F0C_GFX11_FORMAT_16_16_SSCALED; default: unreachable("bad nfmt"); case V_008F0C_BUF_NUM_FORMAT_UINT: return V_008F0C_GFX11_FORMAT_16_16_UINT; case V_008F0C_BUF_NUM_FORMAT_SINT: return V_008F0C_GFX11_FORMAT_16_16_SINT; case V_008F0C_BUF_NUM_FORMAT_FLOAT: return V_008F0C_GFX11_FORMAT_16_16_FLOAT; } case V_008F0C_BUF_DATA_FORMAT_16_16_16_16: switch (nfmt) { case V_008F0C_BUF_NUM_FORMAT_UNORM: return V_008F0C_GFX11_FORMAT_16_16_16_16_UNORM; case V_008F0C_BUF_NUM_FORMAT_SNORM: return V_008F0C_GFX11_FORMAT_16_16_16_16_SNORM; case V_008F0C_BUF_NUM_FORMAT_USCALED: return V_008F0C_GFX11_FORMAT_16_16_16_16_USCALED; case V_008F0C_BUF_NUM_FORMAT_SSCALED: return V_008F0C_GFX11_FORMAT_16_16_16_16_SSCALED; default: unreachable("bad nfmt"); case V_008F0C_BUF_NUM_FORMAT_UINT: return V_008F0C_GFX11_FORMAT_16_16_16_16_UINT; case V_008F0C_BUF_NUM_FORMAT_SINT: return V_008F0C_GFX11_FORMAT_16_16_16_16_SINT; case V_008F0C_BUF_NUM_FORMAT_FLOAT: return V_008F0C_GFX11_FORMAT_16_16_16_16_FLOAT; } case V_008F0C_BUF_DATA_FORMAT_32: switch (nfmt) { default: unreachable("bad nfmt"); case V_008F0C_BUF_NUM_FORMAT_UINT: return V_008F0C_GFX11_FORMAT_32_UINT; case V_008F0C_BUF_NUM_FORMAT_SINT: return V_008F0C_GFX11_FORMAT_32_SINT; case V_008F0C_BUF_NUM_FORMAT_FLOAT: return V_008F0C_GFX11_FORMAT_32_FLOAT; } case V_008F0C_BUF_DATA_FORMAT_32_32: switch (nfmt) { default: unreachable("bad nfmt"); case V_008F0C_BUF_NUM_FORMAT_UINT: return V_008F0C_GFX11_FORMAT_32_32_UINT; case V_008F0C_BUF_NUM_FORMAT_SINT: return V_008F0C_GFX11_FORMAT_32_32_SINT; case V_008F0C_BUF_NUM_FORMAT_FLOAT: return V_008F0C_GFX11_FORMAT_32_32_FLOAT; } case V_008F0C_BUF_DATA_FORMAT_32_32_32: switch (nfmt) { default: unreachable("bad nfmt"); case V_008F0C_BUF_NUM_FORMAT_UINT: return V_008F0C_GFX11_FORMAT_32_32_32_UINT; case V_008F0C_BUF_NUM_FORMAT_SINT: return V_008F0C_GFX11_FORMAT_32_32_32_SINT; case V_008F0C_BUF_NUM_FORMAT_FLOAT: return V_008F0C_GFX11_FORMAT_32_32_32_FLOAT; } case V_008F0C_BUF_DATA_FORMAT_32_32_32_32: switch (nfmt) { default: unreachable("bad nfmt"); case V_008F0C_BUF_NUM_FORMAT_UINT: return V_008F0C_GFX11_FORMAT_32_32_32_32_UINT; case V_008F0C_BUF_NUM_FORMAT_SINT: return V_008F0C_GFX11_FORMAT_32_32_32_32_SINT; case V_008F0C_BUF_NUM_FORMAT_FLOAT: return V_008F0C_GFX11_FORMAT_32_32_32_32_FLOAT; } case V_008F0C_BUF_DATA_FORMAT_2_10_10_10: switch (nfmt) { case V_008F0C_BUF_NUM_FORMAT_UNORM: return V_008F0C_GFX11_FORMAT_2_10_10_10_UNORM; case V_008F0C_BUF_NUM_FORMAT_SNORM: return V_008F0C_GFX11_FORMAT_2_10_10_10_SNORM; case V_008F0C_BUF_NUM_FORMAT_USCALED: return V_008F0C_GFX11_FORMAT_2_10_10_10_USCALED; case V_008F0C_BUF_NUM_FORMAT_SSCALED: return V_008F0C_GFX11_FORMAT_2_10_10_10_SSCALED; default: unreachable("bad nfmt"); case V_008F0C_BUF_NUM_FORMAT_UINT: return V_008F0C_GFX11_FORMAT_2_10_10_10_UINT; case V_008F0C_BUF_NUM_FORMAT_SINT: return V_008F0C_GFX11_FORMAT_2_10_10_10_SINT; } case V_008F0C_BUF_DATA_FORMAT_10_11_11: switch (nfmt) { default: unreachable("bad nfmt"); case V_008F0C_BUF_NUM_FORMAT_FLOAT: return V_008F0C_GFX11_FORMAT_10_11_11_FLOAT; } } } else if (gfx_level >= GFX10) { unsigned format; switch (dfmt) { default: unreachable("bad dfmt"); case V_008F0C_BUF_DATA_FORMAT_INVALID: format = V_008F0C_GFX10_FORMAT_INVALID; break; case V_008F0C_BUF_DATA_FORMAT_8: format = V_008F0C_GFX10_FORMAT_8_UINT; break; case V_008F0C_BUF_DATA_FORMAT_8_8: format = V_008F0C_GFX10_FORMAT_8_8_UINT; break; case V_008F0C_BUF_DATA_FORMAT_8_8_8_8: format = V_008F0C_GFX10_FORMAT_8_8_8_8_UINT; break; case V_008F0C_BUF_DATA_FORMAT_16: format = V_008F0C_GFX10_FORMAT_16_UINT; break; case V_008F0C_BUF_DATA_FORMAT_16_16: format = V_008F0C_GFX10_FORMAT_16_16_UINT; break; case V_008F0C_BUF_DATA_FORMAT_16_16_16_16: format = V_008F0C_GFX10_FORMAT_16_16_16_16_UINT; break; case V_008F0C_BUF_DATA_FORMAT_32: format = V_008F0C_GFX10_FORMAT_32_UINT; break; case V_008F0C_BUF_DATA_FORMAT_32_32: format = V_008F0C_GFX10_FORMAT_32_32_UINT; break; case V_008F0C_BUF_DATA_FORMAT_32_32_32: format = V_008F0C_GFX10_FORMAT_32_32_32_UINT; break; case V_008F0C_BUF_DATA_FORMAT_32_32_32_32: format = V_008F0C_GFX10_FORMAT_32_32_32_32_UINT; break; case V_008F0C_BUF_DATA_FORMAT_2_10_10_10: format = V_008F0C_GFX10_FORMAT_2_10_10_10_UINT; break; case V_008F0C_BUF_DATA_FORMAT_10_11_11: format = V_008F0C_GFX10_FORMAT_10_11_11_UINT; break; } // Use the regularity properties of the combined format enum. // // Note: float is incompatible with 8-bit data formats, // [us]{norm,scaled} are incomparible with 32-bit data formats. // [us]scaled are not writable. switch (nfmt) { case V_008F0C_BUF_NUM_FORMAT_UNORM: format -= 4; break; case V_008F0C_BUF_NUM_FORMAT_SNORM: format -= 3; break; case V_008F0C_BUF_NUM_FORMAT_USCALED: format -= 2; break; case V_008F0C_BUF_NUM_FORMAT_SSCALED: format -= 1; break; default: unreachable("bad nfmt"); case V_008F0C_BUF_NUM_FORMAT_UINT: break; case V_008F0C_BUF_NUM_FORMAT_SINT: format += 1; break; case V_008F0C_BUF_NUM_FORMAT_FLOAT: format += 2; break; } return format; } else { return dfmt | (nfmt << 4); } } static const struct ac_data_format_info data_format_table[] = { [V_008F0C_BUF_DATA_FORMAT_INVALID] = {0, 4, 0, V_008F0C_BUF_DATA_FORMAT_INVALID}, [V_008F0C_BUF_DATA_FORMAT_8] = {1, 1, 1, V_008F0C_BUF_DATA_FORMAT_8}, [V_008F0C_BUF_DATA_FORMAT_16] = {2, 1, 2, V_008F0C_BUF_DATA_FORMAT_16}, [V_008F0C_BUF_DATA_FORMAT_8_8] = {2, 2, 1, V_008F0C_BUF_DATA_FORMAT_8}, [V_008F0C_BUF_DATA_FORMAT_32] = {4, 1, 4, V_008F0C_BUF_DATA_FORMAT_32}, [V_008F0C_BUF_DATA_FORMAT_16_16] = {4, 2, 2, V_008F0C_BUF_DATA_FORMAT_16}, [V_008F0C_BUF_DATA_FORMAT_10_11_11] = {4, 3, 0, V_008F0C_BUF_DATA_FORMAT_10_11_11}, [V_008F0C_BUF_DATA_FORMAT_11_11_10] = {4, 3, 0, V_008F0C_BUF_DATA_FORMAT_11_11_10}, [V_008F0C_BUF_DATA_FORMAT_10_10_10_2] = {4, 4, 0, V_008F0C_BUF_DATA_FORMAT_10_10_10_2}, [V_008F0C_BUF_DATA_FORMAT_2_10_10_10] = {4, 4, 0, V_008F0C_BUF_DATA_FORMAT_2_10_10_10}, [V_008F0C_BUF_DATA_FORMAT_8_8_8_8] = {4, 4, 1, V_008F0C_BUF_DATA_FORMAT_8}, [V_008F0C_BUF_DATA_FORMAT_32_32] = {8, 2, 4, V_008F0C_BUF_DATA_FORMAT_32}, [V_008F0C_BUF_DATA_FORMAT_16_16_16_16] = {8, 4, 2, V_008F0C_BUF_DATA_FORMAT_16}, [V_008F0C_BUF_DATA_FORMAT_32_32_32] = {12, 3, 4, V_008F0C_BUF_DATA_FORMAT_32}, [V_008F0C_BUF_DATA_FORMAT_32_32_32_32] = {16, 4, 4, V_008F0C_BUF_DATA_FORMAT_32}, }; const struct ac_data_format_info *ac_get_data_format_info(unsigned dfmt) { assert(dfmt < ARRAY_SIZE(data_format_table)); return &data_format_table[dfmt]; } enum ac_image_dim ac_get_sampler_dim(enum amd_gfx_level gfx_level, enum glsl_sampler_dim dim, bool is_array) { switch (dim) { case GLSL_SAMPLER_DIM_1D: if (gfx_level == GFX9) return is_array ? ac_image_2darray : ac_image_2d; return is_array ? ac_image_1darray : ac_image_1d; case GLSL_SAMPLER_DIM_2D: case GLSL_SAMPLER_DIM_RECT: case GLSL_SAMPLER_DIM_EXTERNAL: return is_array ? ac_image_2darray : ac_image_2d; case GLSL_SAMPLER_DIM_3D: return ac_image_3d; case GLSL_SAMPLER_DIM_CUBE: return ac_image_cube; case GLSL_SAMPLER_DIM_MS: return is_array ? ac_image_2darraymsaa : ac_image_2dmsaa; case GLSL_SAMPLER_DIM_SUBPASS: return ac_image_2darray; case GLSL_SAMPLER_DIM_SUBPASS_MS: return ac_image_2darraymsaa; default: unreachable("bad sampler dim"); } } enum ac_image_dim ac_get_image_dim(enum amd_gfx_level gfx_level, enum glsl_sampler_dim sdim, bool is_array) { enum ac_image_dim dim = ac_get_sampler_dim(gfx_level, sdim, is_array); /* Match the resource type set in the descriptor. */ if (dim == ac_image_cube || (gfx_level <= GFX8 && dim == ac_image_3d)) dim = ac_image_2darray; else if (sdim == GLSL_SAMPLER_DIM_2D && !is_array && gfx_level == GFX9) { /* When a single layer of a 3D texture is bound, the shader * will refer to a 2D target, but the descriptor has a 3D type. * Since the HW ignores BASE_ARRAY in this case, we need to * send 3 coordinates. This doesn't hurt when the underlying * texture is non-3D. */ dim = ac_image_3d; } return dim; } unsigned ac_get_fs_input_vgpr_cnt(const struct ac_shader_config *config, signed char *face_vgpr_index_ptr, signed char *ancillary_vgpr_index_ptr, signed char *sample_coverage_vgpr_index_ptr) { unsigned num_input_vgprs = 0; signed char face_vgpr_index = -1; signed char ancillary_vgpr_index = -1; signed char sample_coverage_vgpr_index = -1; if (G_0286CC_PERSP_SAMPLE_ENA(config->spi_ps_input_addr)) num_input_vgprs += 2; if (G_0286CC_PERSP_CENTER_ENA(config->spi_ps_input_addr)) num_input_vgprs += 2; if (G_0286CC_PERSP_CENTROID_ENA(config->spi_ps_input_addr)) num_input_vgprs += 2; if (G_0286CC_PERSP_PULL_MODEL_ENA(config->spi_ps_input_addr)) num_input_vgprs += 3; if (G_0286CC_LINEAR_SAMPLE_ENA(config->spi_ps_input_addr)) num_input_vgprs += 2; if (G_0286CC_LINEAR_CENTER_ENA(config->spi_ps_input_addr)) num_input_vgprs += 2; if (G_0286CC_LINEAR_CENTROID_ENA(config->spi_ps_input_addr)) num_input_vgprs += 2; if (G_0286CC_LINE_STIPPLE_TEX_ENA(config->spi_ps_input_addr)) num_input_vgprs += 1; if (G_0286CC_POS_X_FLOAT_ENA(config->spi_ps_input_addr)) num_input_vgprs += 1; if (G_0286CC_POS_Y_FLOAT_ENA(config->spi_ps_input_addr)) num_input_vgprs += 1; if (G_0286CC_POS_Z_FLOAT_ENA(config->spi_ps_input_addr)) num_input_vgprs += 1; if (G_0286CC_POS_W_FLOAT_ENA(config->spi_ps_input_addr)) num_input_vgprs += 1; if (G_0286CC_FRONT_FACE_ENA(config->spi_ps_input_addr)) { face_vgpr_index = num_input_vgprs; num_input_vgprs += 1; } if (G_0286CC_ANCILLARY_ENA(config->spi_ps_input_addr)) { ancillary_vgpr_index = num_input_vgprs; num_input_vgprs += 1; } if (G_0286CC_SAMPLE_COVERAGE_ENA(config->spi_ps_input_addr)) { sample_coverage_vgpr_index = num_input_vgprs; num_input_vgprs += 1; } if (G_0286CC_POS_FIXED_PT_ENA(config->spi_ps_input_addr)) num_input_vgprs += 1; if (face_vgpr_index_ptr) *face_vgpr_index_ptr = face_vgpr_index; if (ancillary_vgpr_index_ptr) *ancillary_vgpr_index_ptr = ancillary_vgpr_index; if (sample_coverage_vgpr_index_ptr) *sample_coverage_vgpr_index_ptr = sample_coverage_vgpr_index; return num_input_vgprs; } void ac_choose_spi_color_formats(unsigned format, unsigned swap, unsigned ntype, bool is_depth, bool use_rbplus, struct ac_spi_color_formats *formats) { /* Alpha is needed for alpha-to-coverage. * Blending may be with or without alpha. */ unsigned normal = 0; /* most optimal, may not support blending or export alpha */ unsigned alpha = 0; /* exports alpha, but may not support blending */ unsigned blend = 0; /* supports blending, but may not export alpha */ unsigned blend_alpha = 0; /* least optimal, supports blending and exports alpha */ /* Choose the SPI color formats. These are required values for RB+. * Other chips have multiple choices, though they are not necessarily better. */ switch (format) { case V_028C70_COLOR_5_6_5: case V_028C70_COLOR_1_5_5_5: case V_028C70_COLOR_5_5_5_1: case V_028C70_COLOR_4_4_4_4: case V_028C70_COLOR_10_11_11: case V_028C70_COLOR_11_11_10: case V_028C70_COLOR_5_9_9_9: case V_028C70_COLOR_8: case V_028C70_COLOR_8_8: case V_028C70_COLOR_8_8_8_8: case V_028C70_COLOR_10_10_10_2: case V_028C70_COLOR_2_10_10_10: if (ntype == V_028C70_NUMBER_UINT) alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_UINT16_ABGR; else if (ntype == V_028C70_NUMBER_SINT) alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_SINT16_ABGR; else alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_FP16_ABGR; if (!use_rbplus && format == V_028C70_COLOR_8 && ntype != V_028C70_NUMBER_SRGB && swap == V_028C70_SWAP_STD) /* R */ { /* When RB+ is enabled, R8_UNORM should use FP16_ABGR for 2x * exporting performance. Otherwise, use 32_R to remove useless * instructions needed for 16-bit compressed exports. */ blend = normal = V_028714_SPI_SHADER_32_R; } break; case V_028C70_COLOR_16: case V_028C70_COLOR_16_16: case V_028C70_COLOR_16_16_16_16: if (ntype == V_028C70_NUMBER_UNORM || ntype == V_028C70_NUMBER_SNORM) { /* UNORM16 and SNORM16 don't support blending */ if (ntype == V_028C70_NUMBER_UNORM) normal = alpha = V_028714_SPI_SHADER_UNORM16_ABGR; else normal = alpha = V_028714_SPI_SHADER_SNORM16_ABGR; /* Use 32 bits per channel for blending. */ if (format == V_028C70_COLOR_16) { if (swap == V_028C70_SWAP_STD) { /* R */ blend = V_028714_SPI_SHADER_32_R; blend_alpha = V_028714_SPI_SHADER_32_AR; } else if (swap == V_028C70_SWAP_ALT_REV) /* A */ blend = blend_alpha = V_028714_SPI_SHADER_32_AR; else assert(0); } else if (format == V_028C70_COLOR_16_16) { if (swap == V_028C70_SWAP_STD || swap == V_028C70_SWAP_STD_REV) { /* RG or GR */ blend = V_028714_SPI_SHADER_32_GR; blend_alpha = V_028714_SPI_SHADER_32_ABGR; } else if (swap == V_028C70_SWAP_ALT) /* RA */ blend = blend_alpha = V_028714_SPI_SHADER_32_AR; else assert(0); } else /* 16_16_16_16 */ blend = blend_alpha = V_028714_SPI_SHADER_32_ABGR; } else if (ntype == V_028C70_NUMBER_UINT) alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_UINT16_ABGR; else if (ntype == V_028C70_NUMBER_SINT) alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_SINT16_ABGR; else if (ntype == V_028C70_NUMBER_FLOAT) alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_FP16_ABGR; else assert(0); break; case V_028C70_COLOR_32: if (swap == V_028C70_SWAP_STD) { /* R */ blend = normal = V_028714_SPI_SHADER_32_R; alpha = blend_alpha = V_028714_SPI_SHADER_32_AR; } else if (swap == V_028C70_SWAP_ALT_REV) /* A */ alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_32_AR; else assert(0); break; case V_028C70_COLOR_32_32: if (swap == V_028C70_SWAP_STD || swap == V_028C70_SWAP_STD_REV) { /* RG or GR */ blend = normal = V_028714_SPI_SHADER_32_GR; alpha = blend_alpha = V_028714_SPI_SHADER_32_ABGR; } else if (swap == V_028C70_SWAP_ALT) /* RA */ alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_32_AR; else assert(0); break; case V_028C70_COLOR_32_32_32_32: case V_028C70_COLOR_8_24: case V_028C70_COLOR_24_8: case V_028C70_COLOR_X24_8_32_FLOAT: alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_32_ABGR; break; default: assert(0); return; } /* The DB->CB copy needs 32_ABGR. */ if (is_depth) alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_32_ABGR; formats->normal = normal; formats->alpha = alpha; formats->blend = blend; formats->blend_alpha = blend_alpha; } void ac_compute_late_alloc(const struct radeon_info *info, bool ngg, bool ngg_culling, bool uses_scratch, unsigned *late_alloc_wave64, unsigned *cu_mask) { *late_alloc_wave64 = 0; /* The limit is per SA. */ *cu_mask = 0xffff; /* CU masking can decrease performance and cause a hang with <= 2 CUs per SA. */ if (info->min_good_cu_per_sa <= 2) return; /* If scratch is used with late alloc, the GPU could deadlock if PS uses scratch too. A more * complicated computation is needed to enable late alloc with scratch (see PAL). */ if (uses_scratch) return; /* Late alloc is not used for NGG on Navi14 due to a hw bug. */ if (ngg && info->family == CHIP_NAVI14) return; if (info->gfx_level >= GFX10) { /* For Wave32, the hw will launch twice the number of late alloc waves, so 1 == 2x wave32. * These limits are estimated because they are all safe but they vary in performance. */ if (ngg_culling) *late_alloc_wave64 = info->min_good_cu_per_sa * 10; else *late_alloc_wave64 = info->min_good_cu_per_sa * 4; /* Limit LATE_ALLOC_GS to prevent a hang (hw bug) on gfx10. */ if (info->gfx_level == GFX10 && ngg) *late_alloc_wave64 = MIN2(*late_alloc_wave64, 64); /* Gfx10: CU2 & CU3 must be disabled to prevent a hw deadlock. * Others: CU1 must be disabled to prevent a hw deadlock. * * The deadlock is caused by late alloc, which usually increases performance. */ *cu_mask &= info->gfx_level == GFX10 ? ~BITFIELD_RANGE(2, 2) : ~BITFIELD_RANGE(1, 1); } else { if (info->min_good_cu_per_sa <= 4) { /* Too few available compute units per SA. Disallowing VS to run on one CU could hurt us * more than late VS allocation would help. * * 2 is the highest safe number that allows us to keep all CUs enabled. */ *late_alloc_wave64 = 2; } else { /* This is a good initial value, allowing 1 late_alloc wave per SIMD on num_cu - 2. */ *late_alloc_wave64 = (info->min_good_cu_per_sa - 2) * 4; } /* VS can't execute on one CU if the limit is > 2. */ if (*late_alloc_wave64 > 2) *cu_mask = 0xfffe; /* 1 CU disabled */ } /* Max number that fits into the register field. */ if (ngg) /* GS */ *late_alloc_wave64 = MIN2(*late_alloc_wave64, G_00B204_SPI_SHADER_LATE_ALLOC_GS_GFX10(~0u)); else /* VS */ *late_alloc_wave64 = MIN2(*late_alloc_wave64, G_00B11C_LIMIT(~0u)); } unsigned ac_compute_cs_workgroup_size(uint16_t sizes[3], bool variable, unsigned max) { if (variable) return max; return sizes[0] * sizes[1] * sizes[2]; } unsigned ac_compute_lshs_workgroup_size(enum amd_gfx_level gfx_level, gl_shader_stage stage, unsigned tess_num_patches, unsigned tess_patch_in_vtx, unsigned tess_patch_out_vtx) { /* When tessellation is used, API VS runs on HW LS, API TCS runs on HW HS. * These two HW stages are merged on GFX9+. */ bool merged_shaders = gfx_level >= GFX9; unsigned ls_workgroup_size = tess_num_patches * tess_patch_in_vtx; unsigned hs_workgroup_size = tess_num_patches * tess_patch_out_vtx; if (merged_shaders) return MAX2(ls_workgroup_size, hs_workgroup_size); else if (stage == MESA_SHADER_VERTEX) return ls_workgroup_size; else if (stage == MESA_SHADER_TESS_CTRL) return hs_workgroup_size; else unreachable("invalid LSHS shader stage"); } unsigned ac_compute_esgs_workgroup_size(enum amd_gfx_level gfx_level, unsigned wave_size, unsigned es_verts, unsigned gs_inst_prims) { /* ESGS may operate in workgroups if on-chip GS (LDS rings) are enabled. * * GFX6: Not possible in the HW. * GFX7-8 (unmerged): possible in the HW, but not implemented in Mesa. * GFX9+ (merged): implemented in Mesa. */ if (gfx_level <= GFX8) return wave_size; unsigned workgroup_size = MAX2(es_verts, gs_inst_prims); return CLAMP(workgroup_size, 1, 256); } unsigned ac_compute_ngg_workgroup_size(unsigned es_verts, unsigned gs_inst_prims, unsigned max_vtx_out, unsigned prim_amp_factor) { /* NGG always operates in workgroups. * * For API VS/TES/GS: * - 1 invocation per input vertex * - 1 invocation per input primitive * * The same invocation can process both an input vertex and primitive, * however 1 invocation can only output up to 1 vertex and 1 primitive. */ unsigned max_vtx_in = es_verts < 256 ? es_verts : 3 * gs_inst_prims; unsigned max_prim_in = gs_inst_prims; unsigned max_prim_out = gs_inst_prims * prim_amp_factor; unsigned workgroup_size = MAX4(max_vtx_in, max_vtx_out, max_prim_in, max_prim_out); return CLAMP(workgroup_size, 1, 256); } void ac_set_reg_cu_en(void *cs, unsigned reg_offset, uint32_t value, uint32_t clear_mask, unsigned value_shift, const struct radeon_info *info, void set_sh_reg(void*, unsigned, uint32_t)) { /* Register field position and mask. */ uint32_t cu_en_mask = ~clear_mask; unsigned cu_en_shift = ffs(cu_en_mask) - 1; /* The value being set. */ uint32_t cu_en = (value & cu_en_mask) >> cu_en_shift; /* AND the field by spi_cu_en. */ uint32_t spi_cu_en = info->spi_cu_en >> value_shift; uint32_t new_value = (value & ~cu_en_mask) | (((cu_en & spi_cu_en) << cu_en_shift) & cu_en_mask); set_sh_reg(cs, reg_offset, new_value); } /* Return the register value and tune bytes_per_wave to increase scratch performance. */ void ac_get_scratch_tmpring_size(const struct radeon_info *info, bool compute, unsigned bytes_per_wave, unsigned *max_seen_bytes_per_wave, uint32_t *tmpring_size) { /* SPI_TMPRING_SIZE and COMPUTE_TMPRING_SIZE are essentially scratch buffer descriptors. * WAVES means NUM_RECORDS. WAVESIZE is the size of each element, meaning STRIDE. * Thus, WAVESIZE must be constant while the scratch buffer is being used by the GPU. * * If you want to increase WAVESIZE without waiting for idle, you need to allocate a new * scratch buffer and use it instead. This will result in multiple scratch buffers being * used at the same time, each with a different WAVESIZE. * * If you want to decrease WAVESIZE, you don't have to. There is no advantage in decreasing * WAVESIZE after it's been increased. * * Shaders with SCRATCH_EN=0 don't allocate scratch space. */ const unsigned size_shift = info->gfx_level >= GFX11 ? 8 : 10; const unsigned min_size_per_wave = BITFIELD_BIT(size_shift); /* The LLVM shader backend should be reporting aligned scratch_sizes. */ assert((bytes_per_wave & BITFIELD_MASK(size_shift)) == 0 && "scratch size per wave should be aligned"); /* Add 1 scratch item to make the number of items odd. This should improve scratch * performance by more randomly distributing scratch waves among memory channels. */ if (bytes_per_wave) bytes_per_wave |= min_size_per_wave; *max_seen_bytes_per_wave = MAX2(*max_seen_bytes_per_wave, bytes_per_wave); unsigned max_scratch_waves = info->max_scratch_waves; if (info->gfx_level >= GFX11 && !compute) max_scratch_waves /= info->num_se; /* WAVES is per SE for SPI_TMPRING_SIZE. */ /* TODO: We could decrease WAVES to make the whole buffer fit into the infinity cache. */ *tmpring_size = S_0286E8_WAVES(max_scratch_waves) | S_0286E8_WAVESIZE(*max_seen_bytes_per_wave >> size_shift); }