/* * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Jason Ekstrand (jason@jlekstrand.net) * */ #include "spirv_to_nir_private.h" #include "nir_vla.h" #include "nir_control_flow.h" static struct vtn_ssa_value * vtn_const_ssa_value(struct vtn_builder *b, nir_constant *constant, const struct glsl_type *type) { struct hash_entry *entry = _mesa_hash_table_search(b->const_table, constant); if (entry) return entry->data; struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value); val->type = type; switch (glsl_get_base_type(type)) { case GLSL_TYPE_INT: case GLSL_TYPE_UINT: case GLSL_TYPE_BOOL: case GLSL_TYPE_FLOAT: case GLSL_TYPE_DOUBLE: if (glsl_type_is_vector_or_scalar(type)) { unsigned num_components = glsl_get_vector_elements(val->type); nir_load_const_instr *load = nir_load_const_instr_create(b->shader, num_components); for (unsigned i = 0; i < num_components; i++) load->value.u[i] = constant->value.u[i]; nir_instr_insert_before_cf_list(&b->impl->body, &load->instr); val->def = &load->def; } else { assert(glsl_type_is_matrix(type)); unsigned rows = glsl_get_vector_elements(val->type); unsigned columns = glsl_get_matrix_columns(val->type); val->elems = ralloc_array(b, struct vtn_ssa_value *, columns); for (unsigned i = 0; i < columns; i++) { struct vtn_ssa_value *col_val = rzalloc(b, struct vtn_ssa_value); col_val->type = glsl_get_column_type(val->type); nir_load_const_instr *load = nir_load_const_instr_create(b->shader, rows); for (unsigned j = 0; j < rows; j++) load->value.u[j] = constant->value.u[rows * i + j]; nir_instr_insert_before_cf_list(&b->impl->body, &load->instr); col_val->def = &load->def; val->elems[i] = col_val; } } break; case GLSL_TYPE_ARRAY: { unsigned elems = glsl_get_length(val->type); val->elems = ralloc_array(b, struct vtn_ssa_value *, elems); const struct glsl_type *elem_type = glsl_get_array_element(val->type); for (unsigned i = 0; i < elems; i++) val->elems[i] = vtn_const_ssa_value(b, constant->elements[i], elem_type); break; } case GLSL_TYPE_STRUCT: { unsigned elems = glsl_get_length(val->type); val->elems = ralloc_array(b, struct vtn_ssa_value *, elems); for (unsigned i = 0; i < elems; i++) { const struct glsl_type *elem_type = glsl_get_struct_field(val->type, i); val->elems[i] = vtn_const_ssa_value(b, constant->elements[i], elem_type); } break; } default: unreachable("bad constant type"); } return val; } struct vtn_ssa_value * vtn_ssa_value(struct vtn_builder *b, uint32_t value_id) { struct vtn_value *val = vtn_untyped_value(b, value_id); switch (val->value_type) { case vtn_value_type_constant: return vtn_const_ssa_value(b, val->constant, val->const_type); case vtn_value_type_ssa: return val->ssa; default: unreachable("Invalid type for an SSA value"); } } static char * vtn_string_literal(struct vtn_builder *b, const uint32_t *words, unsigned word_count) { return ralloc_strndup(b, (char *)words, word_count * sizeof(*words)); } static const uint32_t * vtn_foreach_instruction(struct vtn_builder *b, const uint32_t *start, const uint32_t *end, vtn_instruction_handler handler) { const uint32_t *w = start; while (w < end) { SpvOp opcode = w[0] & SpvOpCodeMask; unsigned count = w[0] >> SpvWordCountShift; assert(count >= 1 && w + count <= end); if (opcode == SpvOpNop) { w++; continue; } if (!handler(b, opcode, w, count)) return w; w += count; } assert(w == end); return w; } static void vtn_handle_extension(struct vtn_builder *b, SpvOp opcode, const uint32_t *w, unsigned count) { switch (opcode) { case SpvOpExtInstImport: { struct vtn_value *val = vtn_push_value(b, w[1], vtn_value_type_extension); if (strcmp((const char *)&w[2], "GLSL.std.450") == 0) { val->ext_handler = vtn_handle_glsl450_instruction; } else { assert(!"Unsupported extension"); } break; } case SpvOpExtInst: { struct vtn_value *val = vtn_value(b, w[3], vtn_value_type_extension); bool handled = val->ext_handler(b, w[4], w, count); (void)handled; assert(handled); break; } default: unreachable("Unhandled opcode"); } } static void _foreach_decoration_helper(struct vtn_builder *b, struct vtn_value *base_value, int parent_member, struct vtn_value *value, vtn_decoration_foreach_cb cb, void *data) { for (struct vtn_decoration *dec = value->decoration; dec; dec = dec->next) { int member; if (dec->member < 0) { member = parent_member; } else { assert(parent_member == -1); member = dec->member; } if (dec->group) { assert(dec->group->value_type == vtn_value_type_decoration_group); _foreach_decoration_helper(b, base_value, member, dec->group, cb, data); } else { cb(b, base_value, member, dec, data); } } } /** Iterates (recursively if needed) over all of the decorations on a value * * This function iterates over all of the decorations applied to a given * value. If it encounters a decoration group, it recurses into the group * and iterates over all of those decorations as well. */ void vtn_foreach_decoration(struct vtn_builder *b, struct vtn_value *value, vtn_decoration_foreach_cb cb, void *data) { _foreach_decoration_helper(b, value, -1, value, cb, data); } static void vtn_handle_decoration(struct vtn_builder *b, SpvOp opcode, const uint32_t *w, unsigned count) { const uint32_t *w_end = w + count; const uint32_t target = w[1]; w += 2; int member = -1; switch (opcode) { case SpvOpDecorationGroup: vtn_push_value(b, target, vtn_value_type_undef); break; case SpvOpMemberDecorate: member = *(w++); /* fallthrough */ case SpvOpDecorate: { struct vtn_value *val = &b->values[target]; struct vtn_decoration *dec = rzalloc(b, struct vtn_decoration); dec->member = member; dec->decoration = *(w++); dec->literals = w; /* Link into the list */ dec->next = val->decoration; val->decoration = dec; break; } case SpvOpGroupMemberDecorate: member = *(w++); /* fallthrough */ case SpvOpGroupDecorate: { struct vtn_value *group = &b->values[target]; assert(group->value_type == vtn_value_type_decoration_group); for (; w < w_end; w++) { struct vtn_value *val = &b->values[*w]; struct vtn_decoration *dec = rzalloc(b, struct vtn_decoration); dec->member = member; dec->group = group; /* Link into the list */ dec->next = val->decoration; val->decoration = dec; } break; } default: unreachable("Unhandled opcode"); } } struct member_decoration_ctx { struct glsl_struct_field *fields; struct vtn_type *type; }; /* does a shallow copy of a vtn_type */ static struct vtn_type * vtn_type_copy(struct vtn_builder *b, struct vtn_type *src) { struct vtn_type *dest = ralloc(b, struct vtn_type); dest->type = src->type; dest->is_builtin = src->is_builtin; if (src->is_builtin) dest->builtin = src->builtin; if (!glsl_type_is_vector_or_scalar(src->type)) { switch (glsl_get_base_type(src->type)) { case GLSL_TYPE_ARRAY: dest->array_element = src->array_element; dest->stride = src->stride; break; case GLSL_TYPE_INT: case GLSL_TYPE_UINT: case GLSL_TYPE_BOOL: case GLSL_TYPE_FLOAT: case GLSL_TYPE_DOUBLE: /* matrices */ dest->row_major = src->row_major; dest->stride = src->stride; break; case GLSL_TYPE_STRUCT: { unsigned elems = glsl_get_length(src->type); dest->members = ralloc_array(b, struct vtn_type *, elems); memcpy(dest->members, src->members, elems * sizeof(struct vtn_type *)); dest->offsets = ralloc_array(b, unsigned, elems); memcpy(dest->offsets, src->offsets, elems * sizeof(unsigned)); break; } default: unreachable("unhandled type"); } } return dest; } static void struct_member_decoration_cb(struct vtn_builder *b, struct vtn_value *val, int member, const struct vtn_decoration *dec, void *void_ctx) { struct member_decoration_ctx *ctx = void_ctx; if (member < 0) return; switch (dec->decoration) { case SpvDecorationRelaxedPrecision: break; /* FIXME: Do nothing with this for now. */ case SpvDecorationNoPerspective: ctx->fields[member].interpolation = INTERP_QUALIFIER_NOPERSPECTIVE; break; case SpvDecorationFlat: ctx->fields[member].interpolation = INTERP_QUALIFIER_FLAT; break; case SpvDecorationCentroid: ctx->fields[member].centroid = true; break; case SpvDecorationSample: ctx->fields[member].sample = true; break; case SpvDecorationLocation: ctx->fields[member].location = dec->literals[0]; break; case SpvDecorationBuiltIn: ctx->type->members[member] = vtn_type_copy(b, ctx->type->members[member]); ctx->type->members[member]->is_builtin = true; ctx->type->members[member]->builtin = dec->literals[0]; ctx->type->builtin_block = true; break; case SpvDecorationOffset: ctx->type->offsets[member] = dec->literals[0]; break; case SpvDecorationMatrixStride: ctx->type->members[member]->stride = dec->literals[0]; break; case SpvDecorationColMajor: break; /* Nothing to do here. Column-major is the default. */ default: unreachable("Unhandled member decoration"); } } static void type_decoration_cb(struct vtn_builder *b, struct vtn_value *val, int member, const struct vtn_decoration *dec, void *ctx) { struct vtn_type *type = val->type; if (member != -1) return; switch (dec->decoration) { case SpvDecorationArrayStride: type->stride = dec->literals[0]; break; case SpvDecorationBlock: type->block = true; break; case SpvDecorationBufferBlock: type->buffer_block = true; break; case SpvDecorationGLSLShared: case SpvDecorationGLSLPacked: /* Ignore these, since we get explicit offsets anyways */ break; case SpvDecorationStream: assert(dec->literals[0] == 0); break; default: unreachable("Unhandled type decoration"); } } static unsigned translate_image_format(SpvImageFormat format) { switch (format) { case SpvImageFormatUnknown: return 0; /* GL_NONE */ case SpvImageFormatRgba32f: return 0x8814; /* GL_RGBA32F */ case SpvImageFormatRgba16f: return 0x881A; /* GL_RGBA16F */ case SpvImageFormatR32f: return 0x822E; /* GL_R32F */ case SpvImageFormatRgba8: return 0x8058; /* GL_RGBA8 */ case SpvImageFormatRgba8Snorm: return 0x8F97; /* GL_RGBA8_SNORM */ case SpvImageFormatRg32f: return 0x8230; /* GL_RG32F */ case SpvImageFormatRg16f: return 0x822F; /* GL_RG16F */ case SpvImageFormatR11fG11fB10f: return 0x8C3A; /* GL_R11F_G11F_B10F */ case SpvImageFormatR16f: return 0x822D; /* GL_R16F */ case SpvImageFormatRgba16: return 0x805B; /* GL_RGBA16 */ case SpvImageFormatRgb10A2: return 0x8059; /* GL_RGB10_A2 */ case SpvImageFormatRg16: return 0x822C; /* GL_RG16 */ case SpvImageFormatRg8: return 0x822B; /* GL_RG8 */ case SpvImageFormatR16: return 0x822A; /* GL_R16 */ case SpvImageFormatR8: return 0x8229; /* GL_R8 */ case SpvImageFormatRgba16Snorm: return 0x8F9B; /* GL_RGBA16_SNORM */ case SpvImageFormatRg16Snorm: return 0x8F99; /* GL_RG16_SNORM */ case SpvImageFormatRg8Snorm: return 0x8F95; /* GL_RG8_SNORM */ case SpvImageFormatR16Snorm: return 0x8F98; /* GL_R16_SNORM */ case SpvImageFormatR8Snorm: return 0x8F94; /* GL_R8_SNORM */ case SpvImageFormatRgba32i: return 0x8D82; /* GL_RGBA32I */ case SpvImageFormatRgba16i: return 0x8D88; /* GL_RGBA16I */ case SpvImageFormatRgba8i: return 0x8D8E; /* GL_RGBA8I */ case SpvImageFormatR32i: return 0x8235; /* GL_R32I */ case SpvImageFormatRg32i: return 0x823B; /* GL_RG32I */ case SpvImageFormatRg16i: return 0x8239; /* GL_RG16I */ case SpvImageFormatRg8i: return 0x8237; /* GL_RG8I */ case SpvImageFormatR16i: return 0x8233; /* GL_R16I */ case SpvImageFormatR8i: return 0x8231; /* GL_R8I */ case SpvImageFormatRgba32ui: return 0x8D70; /* GL_RGBA32UI */ case SpvImageFormatRgba16ui: return 0x8D76; /* GL_RGBA16UI */ case SpvImageFormatRgba8ui: return 0x8D7C; /* GL_RGBA8UI */ case SpvImageFormatR32ui: return 0x8236; /* GL_R32UI */ case SpvImageFormatRgb10a2ui: return 0x906F; /* GL_RGB10_A2UI */ case SpvImageFormatRg32ui: return 0x823C; /* GL_RG32UI */ case SpvImageFormatRg16ui: return 0x823A; /* GL_RG16UI */ case SpvImageFormatRg8ui: return 0x8238; /* GL_RG8UI */ case SpvImageFormatR16ui: return 0x823A; /* GL_RG16UI */ case SpvImageFormatR8ui: return 0x8232; /* GL_R8UI */ default: assert(!"Invalid image format"); return 0; } } static void vtn_handle_type(struct vtn_builder *b, SpvOp opcode, const uint32_t *w, unsigned count) { struct vtn_value *val = vtn_push_value(b, w[1], vtn_value_type_type); val->type = rzalloc(b, struct vtn_type); val->type->is_builtin = false; switch (opcode) { case SpvOpTypeVoid: val->type->type = glsl_void_type(); break; case SpvOpTypeBool: val->type->type = glsl_bool_type(); break; case SpvOpTypeInt: val->type->type = glsl_int_type(); break; case SpvOpTypeFloat: val->type->type = glsl_float_type(); break; case SpvOpTypeVector: { const struct glsl_type *base = vtn_value(b, w[2], vtn_value_type_type)->type->type; unsigned elems = w[3]; assert(glsl_type_is_scalar(base)); val->type->type = glsl_vector_type(glsl_get_base_type(base), elems); break; } case SpvOpTypeMatrix: { struct vtn_type *base = vtn_value(b, w[2], vtn_value_type_type)->type; unsigned columns = w[3]; assert(glsl_type_is_vector(base->type)); val->type->type = glsl_matrix_type(glsl_get_base_type(base->type), glsl_get_vector_elements(base->type), columns); val->type->array_element = base; val->type->row_major = false; val->type->stride = 0; break; } case SpvOpTypeRuntimeArray: case SpvOpTypeArray: { struct vtn_type *array_element = vtn_value(b, w[2], vtn_value_type_type)->type; unsigned length; if (opcode == SpvOpTypeRuntimeArray) { /* A length of 0 is used to denote unsized arrays */ length = 0; } else { length = vtn_value(b, w[3], vtn_value_type_constant)->constant->value.u[0]; } val->type->type = glsl_array_type(array_element->type, length); val->type->array_element = array_element; val->type->stride = 0; break; } case SpvOpTypeStruct: { unsigned num_fields = count - 2; val->type->members = ralloc_array(b, struct vtn_type *, num_fields); val->type->offsets = ralloc_array(b, unsigned, num_fields); NIR_VLA(struct glsl_struct_field, fields, count); for (unsigned i = 0; i < num_fields; i++) { /* TODO: Handle decorators */ val->type->members[i] = vtn_value(b, w[i + 2], vtn_value_type_type)->type; fields[i].type = val->type->members[i]->type; fields[i].name = ralloc_asprintf(b, "field%d", i); fields[i].location = -1; fields[i].interpolation = 0; fields[i].centroid = 0; fields[i].sample = 0; fields[i].matrix_layout = 2; } struct member_decoration_ctx ctx = { .fields = fields, .type = val->type }; vtn_foreach_decoration(b, val, struct_member_decoration_cb, &ctx); const char *name = val->name ? val->name : "struct"; val->type->type = glsl_struct_type(fields, num_fields, name); break; } case SpvOpTypeFunction: { const struct glsl_type *return_type = vtn_value(b, w[2], vtn_value_type_type)->type->type; NIR_VLA(struct glsl_function_param, params, count - 3); for (unsigned i = 0; i < count - 3; i++) { params[i].type = vtn_value(b, w[i + 3], vtn_value_type_type)->type->type; /* FIXME: */ params[i].in = true; params[i].out = true; } val->type->type = glsl_function_type(return_type, params, count - 3); break; } case SpvOpTypePointer: /* FIXME: For now, we'll just do the really lame thing and return * the same type. The validator should ensure that the proper number * of dereferences happen */ val->type = vtn_value(b, w[3], vtn_value_type_type)->type; break; case SpvOpTypeImage: { const struct glsl_type *sampled_type = vtn_value(b, w[2], vtn_value_type_type)->type->type; assert(glsl_type_is_vector_or_scalar(sampled_type)); enum glsl_sampler_dim dim; switch ((SpvDim)w[3]) { case SpvDim1D: dim = GLSL_SAMPLER_DIM_1D; break; case SpvDim2D: dim = GLSL_SAMPLER_DIM_2D; break; case SpvDim3D: dim = GLSL_SAMPLER_DIM_3D; break; case SpvDimCube: dim = GLSL_SAMPLER_DIM_CUBE; break; case SpvDimRect: dim = GLSL_SAMPLER_DIM_RECT; break; case SpvDimBuffer: dim = GLSL_SAMPLER_DIM_BUF; break; default: unreachable("Invalid SPIR-V Sampler dimension"); } bool is_shadow = w[4]; bool is_array = w[5]; bool multisampled = w[6]; unsigned sampled = w[7]; SpvImageFormat format = w[8]; assert(!multisampled && "FIXME: Handl multi-sampled textures"); val->type->image_format = translate_image_format(format); if (sampled == 1) { val->type->type = glsl_sampler_type(dim, is_shadow, is_array, glsl_get_base_type(sampled_type)); } else if (sampled == 2) { assert(format); assert(!is_shadow); val->type->type = glsl_image_type(dim, is_array, glsl_get_base_type(sampled_type)); } else { assert(!"We need to know if the image will be sampled"); } break; } case SpvOpTypeSampledImage: val->type = vtn_value(b, w[2], vtn_value_type_type)->type; break; case SpvOpTypeSampler: /* The actual sampler type here doesn't really matter. It gets * thrown away the moment you combine it with an image. What really * matters is that it's a sampler type as opposed to an integer type * so the backend knows what to do. * * TODO: Eventually we should consider adding a "bare sampler" type * to glsl_types. */ val->type->type = glsl_sampler_type(GLSL_SAMPLER_DIM_2D, false, false, GLSL_TYPE_FLOAT); break; case SpvOpTypeOpaque: case SpvOpTypeEvent: case SpvOpTypeDeviceEvent: case SpvOpTypeReserveId: case SpvOpTypeQueue: case SpvOpTypePipe: default: unreachable("Unhandled opcode"); } vtn_foreach_decoration(b, val, type_decoration_cb, NULL); } static void vtn_handle_constant(struct vtn_builder *b, SpvOp opcode, const uint32_t *w, unsigned count) { struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_constant); val->const_type = vtn_value(b, w[1], vtn_value_type_type)->type->type; val->constant = ralloc(b, nir_constant); switch (opcode) { case SpvOpConstantTrue: assert(val->const_type == glsl_bool_type()); val->constant->value.u[0] = NIR_TRUE; break; case SpvOpConstantFalse: assert(val->const_type == glsl_bool_type()); val->constant->value.u[0] = NIR_FALSE; break; case SpvOpConstant: assert(glsl_type_is_scalar(val->const_type)); val->constant->value.u[0] = w[3]; break; case SpvOpConstantComposite: { unsigned elem_count = count - 3; nir_constant **elems = ralloc_array(b, nir_constant *, elem_count); for (unsigned i = 0; i < elem_count; i++) elems[i] = vtn_value(b, w[i + 3], vtn_value_type_constant)->constant; switch (glsl_get_base_type(val->const_type)) { case GLSL_TYPE_UINT: case GLSL_TYPE_INT: case GLSL_TYPE_FLOAT: case GLSL_TYPE_BOOL: if (glsl_type_is_matrix(val->const_type)) { unsigned rows = glsl_get_vector_elements(val->const_type); assert(glsl_get_matrix_columns(val->const_type) == elem_count); for (unsigned i = 0; i < elem_count; i++) for (unsigned j = 0; j < rows; j++) val->constant->value.u[rows * i + j] = elems[i]->value.u[j]; } else { assert(glsl_type_is_vector(val->const_type)); assert(glsl_get_vector_elements(val->const_type) == elem_count); for (unsigned i = 0; i < elem_count; i++) val->constant->value.u[i] = elems[i]->value.u[0]; } ralloc_free(elems); break; case GLSL_TYPE_STRUCT: case GLSL_TYPE_ARRAY: ralloc_steal(val->constant, elems); val->constant->elements = elems; break; default: unreachable("Unsupported type for constants"); } break; } default: unreachable("Unhandled opcode"); } } static void set_mode_system_value(nir_variable_mode *mode) { assert(*mode == nir_var_system_value || *mode == nir_var_shader_in); *mode = nir_var_system_value; } static void validate_per_vertex_mode(struct vtn_builder *b, nir_variable_mode mode) { switch (b->shader->stage) { case MESA_SHADER_VERTEX: assert(mode == nir_var_shader_out); break; case MESA_SHADER_GEOMETRY: assert(mode == nir_var_shader_out || mode == nir_var_shader_in); break; default: assert(!"Invalid shader stage"); } } static void vtn_get_builtin_location(struct vtn_builder *b, SpvBuiltIn builtin, int *location, nir_variable_mode *mode) { switch (builtin) { case SpvBuiltInPosition: *location = VARYING_SLOT_POS; validate_per_vertex_mode(b, *mode); break; case SpvBuiltInPointSize: *location = VARYING_SLOT_PSIZ; validate_per_vertex_mode(b, *mode); break; case SpvBuiltInClipDistance: *location = VARYING_SLOT_CLIP_DIST0; /* XXX CLIP_DIST1? */ validate_per_vertex_mode(b, *mode); break; case SpvBuiltInCullDistance: /* XXX figure this out */ unreachable("unhandled builtin"); case SpvBuiltInVertexId: /* Vulkan defines VertexID to be zero-based and reserves the new * builtin keyword VertexIndex to indicate the non-zero-based value. */ *location = SYSTEM_VALUE_VERTEX_ID_ZERO_BASE; set_mode_system_value(mode); break; case SpvBuiltInInstanceId: *location = SYSTEM_VALUE_INSTANCE_ID; set_mode_system_value(mode); break; case SpvBuiltInPrimitiveId: *location = VARYING_SLOT_PRIMITIVE_ID; *mode = nir_var_shader_out; break; case SpvBuiltInInvocationId: *location = SYSTEM_VALUE_INVOCATION_ID; set_mode_system_value(mode); break; case SpvBuiltInLayer: *location = VARYING_SLOT_LAYER; *mode = nir_var_shader_out; break; case SpvBuiltInTessLevelOuter: case SpvBuiltInTessLevelInner: case SpvBuiltInTessCoord: case SpvBuiltInPatchVertices: unreachable("no tessellation support"); case SpvBuiltInFragCoord: *location = VARYING_SLOT_POS; assert(b->shader->stage == MESA_SHADER_FRAGMENT); assert(*mode == nir_var_shader_in); break; case SpvBuiltInPointCoord: *location = VARYING_SLOT_PNTC; assert(b->shader->stage == MESA_SHADER_FRAGMENT); assert(*mode == nir_var_shader_in); break; case SpvBuiltInFrontFacing: *location = VARYING_SLOT_FACE; assert(b->shader->stage == MESA_SHADER_FRAGMENT); assert(*mode == nir_var_shader_in); break; case SpvBuiltInSampleId: *location = SYSTEM_VALUE_SAMPLE_ID; set_mode_system_value(mode); break; case SpvBuiltInSamplePosition: *location = SYSTEM_VALUE_SAMPLE_POS; set_mode_system_value(mode); break; case SpvBuiltInSampleMask: *location = SYSTEM_VALUE_SAMPLE_MASK_IN; /* XXX out? */ set_mode_system_value(mode); break; case SpvBuiltInFragDepth: *location = FRAG_RESULT_DEPTH; assert(b->shader->stage == MESA_SHADER_FRAGMENT); assert(*mode == nir_var_shader_out); break; case SpvBuiltInNumWorkgroups: *location = SYSTEM_VALUE_NUM_WORK_GROUPS; set_mode_system_value(mode); break; case SpvBuiltInWorkgroupSize: /* This should already be handled */ unreachable("unsupported builtin"); break; case SpvBuiltInWorkgroupId: *location = SYSTEM_VALUE_WORK_GROUP_ID; set_mode_system_value(mode); break; case SpvBuiltInLocalInvocationId: *location = SYSTEM_VALUE_LOCAL_INVOCATION_ID; set_mode_system_value(mode); break; case SpvBuiltInLocalInvocationIndex: *location = SYSTEM_VALUE_LOCAL_INVOCATION_INDEX; set_mode_system_value(mode); break; case SpvBuiltInGlobalInvocationId: *location = SYSTEM_VALUE_GLOBAL_INVOCATION_ID; set_mode_system_value(mode); break; case SpvBuiltInHelperInvocation: default: unreachable("unsupported builtin"); } } static void var_decoration_cb(struct vtn_builder *b, struct vtn_value *val, int member, const struct vtn_decoration *dec, void *void_var) { assert(val->value_type == vtn_value_type_deref); assert(val->deref->deref.child == NULL); assert(val->deref->var == void_var); nir_variable *var = void_var; switch (dec->decoration) { case SpvDecorationRelaxedPrecision: break; /* FIXME: Do nothing with this for now. */ case SpvDecorationNoPerspective: var->data.interpolation = INTERP_QUALIFIER_NOPERSPECTIVE; break; case SpvDecorationFlat: var->data.interpolation = INTERP_QUALIFIER_FLAT; break; case SpvDecorationCentroid: var->data.centroid = true; break; case SpvDecorationSample: var->data.sample = true; break; case SpvDecorationInvariant: var->data.invariant = true; break; case SpvDecorationConstant: assert(var->constant_initializer != NULL); var->data.read_only = true; break; case SpvDecorationNonWritable: var->data.read_only = true; break; case SpvDecorationLocation: var->data.location = dec->literals[0]; break; case SpvDecorationComponent: var->data.location_frac = dec->literals[0]; break; case SpvDecorationIndex: var->data.explicit_index = true; var->data.index = dec->literals[0]; break; case SpvDecorationBinding: var->data.explicit_binding = true; var->data.binding = dec->literals[0]; break; case SpvDecorationDescriptorSet: var->data.descriptor_set = dec->literals[0]; break; case SpvDecorationBuiltIn: { SpvBuiltIn builtin = dec->literals[0]; if (builtin == SpvBuiltInWorkgroupSize) { /* This shouldn't be a builtin. It's actually a constant. */ var->data.mode = nir_var_global; var->data.read_only = true; nir_constant *val = ralloc(var, nir_constant); val->value.u[0] = b->shader->info.cs.local_size[0]; val->value.u[1] = b->shader->info.cs.local_size[1]; val->value.u[2] = b->shader->info.cs.local_size[2]; var->constant_initializer = val; break; } nir_variable_mode mode = var->data.mode; vtn_get_builtin_location(b, builtin, &var->data.location, &mode); var->data.explicit_location = true; var->data.mode = mode; if (mode == nir_var_shader_in || mode == nir_var_system_value) var->data.read_only = true; if (builtin == SpvBuiltInFragCoord || builtin == SpvBuiltInSamplePosition) var->data.origin_upper_left = b->origin_upper_left; if (mode == nir_var_shader_out) b->builtins[dec->literals[0]].out = var; else b->builtins[dec->literals[0]].in = var; break; } case SpvDecorationRowMajor: case SpvDecorationColMajor: case SpvDecorationGLSLShared: case SpvDecorationPatch: case SpvDecorationRestrict: case SpvDecorationAliased: case SpvDecorationVolatile: case SpvDecorationCoherent: case SpvDecorationNonReadable: case SpvDecorationUniform: /* This is really nice but we have no use for it right now. */ case SpvDecorationCPacked: case SpvDecorationSaturatedConversion: case SpvDecorationStream: case SpvDecorationOffset: case SpvDecorationXfbBuffer: case SpvDecorationFuncParamAttr: case SpvDecorationFPRoundingMode: case SpvDecorationFPFastMathMode: case SpvDecorationLinkageAttributes: case SpvDecorationSpecId: break; default: unreachable("Unhandled variable decoration"); } } static nir_variable * get_builtin_variable(struct vtn_builder *b, nir_variable_mode mode, const struct glsl_type *type, SpvBuiltIn builtin) { nir_variable *var; if (mode == nir_var_shader_out) var = b->builtins[builtin].out; else var = b->builtins[builtin].in; if (!var) { int location; vtn_get_builtin_location(b, builtin, &location, &mode); var = nir_variable_create(b->shader, mode, type, "builtin"); var->data.location = location; var->data.explicit_location = true; if (builtin == SpvBuiltInFragCoord || builtin == SpvBuiltInSamplePosition) var->data.origin_upper_left = b->origin_upper_left; if (mode == nir_var_shader_out) b->builtins[builtin].out = var; else b->builtins[builtin].in = var; } return var; } static struct vtn_ssa_value * _vtn_variable_load(struct vtn_builder *b, nir_deref_var *src_deref, nir_deref *src_deref_tail) { struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value); val->type = src_deref_tail->type; /* The deref tail may contain a deref to select a component of a vector (in * other words, it might not be an actual tail) so we have to save it away * here since we overwrite it later. */ nir_deref *old_child = src_deref_tail->child; if (glsl_type_is_vector_or_scalar(val->type)) { /* Terminate the deref chain in case there is one more link to pick * off a component of the vector. */ src_deref_tail->child = NULL; nir_intrinsic_instr *load = nir_intrinsic_instr_create(b->shader, nir_intrinsic_load_var); load->variables[0] = nir_deref_as_var(nir_copy_deref(load, &src_deref->deref)); load->num_components = glsl_get_vector_elements(val->type); nir_ssa_dest_init(&load->instr, &load->dest, load->num_components, NULL); nir_builder_instr_insert(&b->nb, &load->instr); if (src_deref->var->data.mode == nir_var_uniform && glsl_get_base_type(val->type) == GLSL_TYPE_BOOL) { /* Uniform boolean loads need to be fixed up since they're defined * to be zero/nonzero rather than NIR_FALSE/NIR_TRUE. */ val->def = nir_ine(&b->nb, &load->dest.ssa, nir_imm_int(&b->nb, 0)); } else { val->def = &load->dest.ssa; } } else if (glsl_get_base_type(val->type) == GLSL_TYPE_ARRAY || glsl_type_is_matrix(val->type)) { unsigned elems = glsl_get_length(val->type); val->elems = ralloc_array(b, struct vtn_ssa_value *, elems); nir_deref_array *deref = nir_deref_array_create(b); deref->deref_array_type = nir_deref_array_type_direct; deref->deref.type = glsl_get_array_element(val->type); src_deref_tail->child = &deref->deref; for (unsigned i = 0; i < elems; i++) { deref->base_offset = i; val->elems[i] = _vtn_variable_load(b, src_deref, &deref->deref); } } else { assert(glsl_get_base_type(val->type) == GLSL_TYPE_STRUCT); unsigned elems = glsl_get_length(val->type); val->elems = ralloc_array(b, struct vtn_ssa_value *, elems); nir_deref_struct *deref = nir_deref_struct_create(b, 0); src_deref_tail->child = &deref->deref; for (unsigned i = 0; i < elems; i++) { deref->index = i; deref->deref.type = glsl_get_struct_field(val->type, i); val->elems[i] = _vtn_variable_load(b, src_deref, &deref->deref); } } src_deref_tail->child = old_child; return val; } static void _vtn_variable_store(struct vtn_builder *b, nir_deref_var *dest_deref, nir_deref *dest_deref_tail, struct vtn_ssa_value *src) { nir_deref *old_child = dest_deref_tail->child; if (glsl_type_is_vector_or_scalar(src->type)) { /* Terminate the deref chain in case there is one more link to pick * off a component of the vector. */ dest_deref_tail->child = NULL; nir_intrinsic_instr *store = nir_intrinsic_instr_create(b->shader, nir_intrinsic_store_var); store->variables[0] = nir_deref_as_var(nir_copy_deref(store, &dest_deref->deref)); store->num_components = glsl_get_vector_elements(src->type); store->src[0] = nir_src_for_ssa(src->def); nir_builder_instr_insert(&b->nb, &store->instr); } else if (glsl_get_base_type(src->type) == GLSL_TYPE_ARRAY || glsl_type_is_matrix(src->type)) { unsigned elems = glsl_get_length(src->type); nir_deref_array *deref = nir_deref_array_create(b); deref->deref_array_type = nir_deref_array_type_direct; deref->deref.type = glsl_get_array_element(src->type); dest_deref_tail->child = &deref->deref; for (unsigned i = 0; i < elems; i++) { deref->base_offset = i; _vtn_variable_store(b, dest_deref, &deref->deref, src->elems[i]); } } else { assert(glsl_get_base_type(src->type) == GLSL_TYPE_STRUCT); unsigned elems = glsl_get_length(src->type); nir_deref_struct *deref = nir_deref_struct_create(b, 0); dest_deref_tail->child = &deref->deref; for (unsigned i = 0; i < elems; i++) { deref->index = i; deref->deref.type = glsl_get_struct_field(src->type, i); _vtn_variable_store(b, dest_deref, &deref->deref, src->elems[i]); } } dest_deref_tail->child = old_child; } static nir_ssa_def * nir_vulkan_resource_index(nir_builder *b, unsigned set, unsigned binding, nir_variable_mode mode, nir_ssa_def *array_index) { if (array_index == NULL) array_index = nir_imm_int(b, 0); nir_intrinsic_instr *instr = nir_intrinsic_instr_create(b->shader, nir_intrinsic_vulkan_resource_index); instr->src[0] = nir_src_for_ssa(array_index); instr->const_index[0] = set; instr->const_index[1] = binding; instr->const_index[2] = mode; nir_ssa_dest_init(&instr->instr, &instr->dest, 1, NULL); nir_builder_instr_insert(b, &instr->instr); return &instr->dest.ssa; } static struct vtn_ssa_value * _vtn_block_load(struct vtn_builder *b, nir_intrinsic_op op, unsigned set, unsigned binding, nir_variable_mode mode, nir_ssa_def *index, nir_ssa_def *offset, struct vtn_type *type) { struct vtn_ssa_value *val = ralloc(b, struct vtn_ssa_value); val->type = type->type; val->transposed = NULL; if (glsl_type_is_vector_or_scalar(type->type)) { nir_intrinsic_instr *load = nir_intrinsic_instr_create(b->shader, op); load->num_components = glsl_get_vector_elements(type->type); switch (op) { case nir_intrinsic_load_ubo: case nir_intrinsic_load_ssbo: { nir_ssa_def *res_index = nir_vulkan_resource_index(&b->nb, set, binding, mode, index); load->src[0] = nir_src_for_ssa(res_index); load->src[1] = nir_src_for_ssa(offset); break; } case nir_intrinsic_load_push_constant: load->src[0] = nir_src_for_ssa(offset); break; default: unreachable("Invalid block load intrinsic"); } nir_ssa_dest_init(&load->instr, &load->dest, load->num_components, NULL); nir_builder_instr_insert(&b->nb, &load->instr); if (glsl_get_base_type(type->type) == GLSL_TYPE_BOOL) { /* Loads of booleans from externally visible memory need to be * fixed up since they're defined to be zero/nonzero rather than * NIR_FALSE/NIR_TRUE. */ val->def = nir_ine(&b->nb, &load->dest.ssa, nir_imm_int(&b->nb, 0)); } else { val->def = &load->dest.ssa; } } else { unsigned elems = glsl_get_length(type->type); val->elems = ralloc_array(b, struct vtn_ssa_value *, elems); if (glsl_type_is_struct(type->type)) { for (unsigned i = 0; i < elems; i++) { nir_ssa_def *child_offset = nir_iadd(&b->nb, offset, nir_imm_int(&b->nb, type->offsets[i])); val->elems[i] = _vtn_block_load(b, op, set, binding, mode, index, child_offset, type->members[i]); } } else { for (unsigned i = 0; i < elems; i++) { nir_ssa_def *child_offset = nir_iadd(&b->nb, offset, nir_imm_int(&b->nb, i * type->stride)); val->elems[i] = _vtn_block_load(b, op, set, binding, mode, index, child_offset,type->array_element); } } } return val; } static void vtn_block_get_offset(struct vtn_builder *b, nir_deref_var *src, struct vtn_type **type, nir_deref *src_tail, nir_ssa_def **index, nir_ssa_def **offset) { nir_deref *deref = &src->deref; if (deref->child->deref_type == nir_deref_type_array) { deref = deref->child; *type = (*type)->array_element; nir_deref_array *deref_array = nir_deref_as_array(deref); *index = nir_imm_int(&b->nb, deref_array->base_offset); if (deref_array->deref_array_type == nir_deref_array_type_indirect) *index = nir_iadd(&b->nb, *index, deref_array->indirect.ssa); } else { *index = nir_imm_int(&b->nb, 0); } *offset = nir_imm_int(&b->nb, 0); while (deref != src_tail) { deref = deref->child; switch (deref->deref_type) { case nir_deref_type_array: { nir_deref_array *deref_array = nir_deref_as_array(deref); nir_ssa_def *off = nir_imm_int(&b->nb, deref_array->base_offset); if (deref_array->deref_array_type == nir_deref_array_type_indirect) off = nir_iadd(&b->nb, off, deref_array->indirect.ssa); off = nir_imul(&b->nb, off, nir_imm_int(&b->nb, (*type)->stride)); *offset = nir_iadd(&b->nb, *offset, off); *type = (*type)->array_element; break; } case nir_deref_type_struct: { nir_deref_struct *deref_struct = nir_deref_as_struct(deref); unsigned elem_off = (*type)->offsets[deref_struct->index]; *offset = nir_iadd(&b->nb, *offset, nir_imm_int(&b->nb, elem_off)); *type = (*type)->members[deref_struct->index]; break; } default: unreachable("unknown deref type"); } } } static struct vtn_ssa_value * vtn_block_load(struct vtn_builder *b, nir_deref_var *src, struct vtn_type *type, nir_deref *src_tail) { nir_ssa_def *index; nir_ssa_def *offset; vtn_block_get_offset(b, src, &type, src_tail, &index, &offset); nir_intrinsic_op op; if (src->var->data.mode == nir_var_uniform) { if (src->var->data.descriptor_set >= 0) { /* UBO load */ assert(src->var->data.binding >= 0); op = nir_intrinsic_load_ubo; } else { /* Push constant load */ assert(src->var->data.descriptor_set == -1 && src->var->data.binding == -1); op = nir_intrinsic_load_push_constant; } } else { assert(src->var->data.mode == nir_var_shader_storage); op = nir_intrinsic_load_ssbo; } return _vtn_block_load(b, op, src->var->data.descriptor_set, src->var->data.binding, src->var->data.mode, index, offset, type); } /* * Gets the NIR-level deref tail, which may have as a child an array deref * selecting which component due to OpAccessChain supporting per-component * indexing in SPIR-V. */ static nir_deref * get_deref_tail(nir_deref_var *deref) { nir_deref *cur = &deref->deref; while (!glsl_type_is_vector_or_scalar(cur->type) && cur->child) cur = cur->child; return cur; } static nir_ssa_def *vtn_vector_extract(struct vtn_builder *b, nir_ssa_def *src, unsigned index); static nir_ssa_def *vtn_vector_extract_dynamic(struct vtn_builder *b, nir_ssa_def *src, nir_ssa_def *index); static bool variable_is_external_block(nir_variable *var) { return var->interface_type && glsl_type_is_struct(var->interface_type) && (var->data.mode == nir_var_uniform || var->data.mode == nir_var_shader_storage); } static struct vtn_ssa_value * vtn_variable_load(struct vtn_builder *b, nir_deref_var *src, struct vtn_type *src_type) { nir_deref *src_tail = get_deref_tail(src); struct vtn_ssa_value *val; if (variable_is_external_block(src->var)) val = vtn_block_load(b, src, src_type, src_tail); else val = _vtn_variable_load(b, src, src_tail); if (src_tail->child) { nir_deref_array *vec_deref = nir_deref_as_array(src_tail->child); assert(vec_deref->deref.child == NULL); val->type = vec_deref->deref.type; if (vec_deref->deref_array_type == nir_deref_array_type_direct) val->def = vtn_vector_extract(b, val->def, vec_deref->base_offset); else val->def = vtn_vector_extract_dynamic(b, val->def, vec_deref->indirect.ssa); } return val; } static void _vtn_block_store(struct vtn_builder *b, nir_intrinsic_op op, struct vtn_ssa_value *src, unsigned set, unsigned binding, nir_variable_mode mode, nir_ssa_def *index, nir_ssa_def *offset, struct vtn_type *type) { assert(src->type == type->type); if (glsl_type_is_vector_or_scalar(type->type)) { nir_intrinsic_instr *store = nir_intrinsic_instr_create(b->shader, op); store->num_components = glsl_get_vector_elements(type->type); store->const_index[0] = (1 << store->num_components) - 1; store->src[0] = nir_src_for_ssa(src->def); nir_ssa_def *res_index = nir_vulkan_resource_index(&b->nb, set, binding, mode, index); store->src[1] = nir_src_for_ssa(res_index); store->src[2] = nir_src_for_ssa(offset); nir_builder_instr_insert(&b->nb, &store->instr); } else { unsigned elems = glsl_get_length(type->type); if (glsl_type_is_struct(type->type)) { for (unsigned i = 0; i < elems; i++) { nir_ssa_def *child_offset = nir_iadd(&b->nb, offset, nir_imm_int(&b->nb, type->offsets[i])); _vtn_block_store(b, op, src->elems[i], set, binding, mode, index, child_offset, type->members[i]); } } else { for (unsigned i = 0; i < elems; i++) { nir_ssa_def *child_offset = nir_iadd(&b->nb, offset, nir_imm_int(&b->nb, i * type->stride)); _vtn_block_store(b, op, src->elems[i], set, binding, mode, index, child_offset, type->array_element); } } } } static void vtn_block_store(struct vtn_builder *b, struct vtn_ssa_value *src, nir_deref_var *dest, struct vtn_type *type, nir_deref *dest_tail) { nir_ssa_def *index; nir_ssa_def *offset; vtn_block_get_offset(b, dest, &type, dest_tail, &index, &offset); nir_intrinsic_op op = nir_intrinsic_store_ssbo; return _vtn_block_store(b, op, src, dest->var->data.descriptor_set, dest->var->data.binding, dest->var->data.mode, index, offset, type); } static nir_ssa_def * vtn_vector_insert(struct vtn_builder *b, nir_ssa_def *src, nir_ssa_def *insert, unsigned index); static nir_ssa_def * vtn_vector_insert_dynamic(struct vtn_builder *b, nir_ssa_def *src, nir_ssa_def *insert, nir_ssa_def *index); static void vtn_variable_store(struct vtn_builder *b, struct vtn_ssa_value *src, nir_deref_var *dest, struct vtn_type *dest_type) { nir_deref *dest_tail = get_deref_tail(dest); if (variable_is_external_block(dest->var)) { assert(dest->var->data.mode == nir_var_shader_storage); vtn_block_store(b, src, dest, dest_type, dest_tail); } else { if (dest_tail->child) { struct vtn_ssa_value *val = _vtn_variable_load(b, dest, dest_tail); nir_deref_array *deref = nir_deref_as_array(dest_tail->child); assert(deref->deref.child == NULL); if (deref->deref_array_type == nir_deref_array_type_direct) val->def = vtn_vector_insert(b, val->def, src->def, deref->base_offset); else val->def = vtn_vector_insert_dynamic(b, val->def, src->def, deref->indirect.ssa); _vtn_variable_store(b, dest, dest_tail, val); } else { _vtn_variable_store(b, dest, dest_tail, src); } } } static void vtn_variable_copy(struct vtn_builder *b, nir_deref_var *src, nir_deref_var *dest, struct vtn_type *type) { nir_deref *src_tail = get_deref_tail(src); if (src_tail->child || src->var->interface_type) { assert(get_deref_tail(dest)->child); struct vtn_ssa_value *val = vtn_variable_load(b, src, type); vtn_variable_store(b, val, dest, type); } else { nir_intrinsic_instr *copy = nir_intrinsic_instr_create(b->shader, nir_intrinsic_copy_var); copy->variables[0] = nir_deref_as_var(nir_copy_deref(copy, &dest->deref)); copy->variables[1] = nir_deref_as_var(nir_copy_deref(copy, &src->deref)); nir_builder_instr_insert(&b->nb, ©->instr); } } /* Tries to compute the size of an interface block based on the strides and * offsets that are provided to us in the SPIR-V source. */ static unsigned vtn_type_block_size(struct vtn_type *type) { enum glsl_base_type base_type = glsl_get_base_type(type->type); switch (base_type) { case GLSL_TYPE_UINT: case GLSL_TYPE_INT: case GLSL_TYPE_FLOAT: case GLSL_TYPE_BOOL: case GLSL_TYPE_DOUBLE: { unsigned cols = type->row_major ? glsl_get_vector_elements(type->type) : glsl_get_matrix_columns(type->type); if (cols > 1) { assert(type->stride > 0); return type->stride * cols; } else if (base_type == GLSL_TYPE_DOUBLE) { return glsl_get_vector_elements(type->type) * 8; } else { return glsl_get_vector_elements(type->type) * 4; } } case GLSL_TYPE_STRUCT: case GLSL_TYPE_INTERFACE: { unsigned size = 0; unsigned num_fields = glsl_get_length(type->type); for (unsigned f = 0; f < num_fields; f++) { unsigned field_end = type->offsets[f] + vtn_type_block_size(type->members[f]); size = MAX2(size, field_end); } return size; } case GLSL_TYPE_ARRAY: assert(type->stride > 0); assert(glsl_get_length(type->type) > 0); return type->stride * glsl_get_length(type->type); default: assert(!"Invalid block type"); return 0; } } static bool is_interface_type(struct vtn_type *type) { return type->block || type->buffer_block || glsl_type_is_sampler(type->type) || glsl_type_is_image(type->type); } static void vtn_handle_variables(struct vtn_builder *b, SpvOp opcode, const uint32_t *w, unsigned count) { switch (opcode) { case SpvOpVariable: { struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type; struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_deref); nir_variable *var = rzalloc(b->shader, nir_variable); var->type = type->type; var->name = ralloc_strdup(var, val->name); struct vtn_type *interface_type; if (is_interface_type(type)) { interface_type = type; } else if (glsl_type_is_array(type->type) && is_interface_type(type->array_element)) { interface_type = type->array_element; } else { interface_type = NULL; } if (interface_type) var->interface_type = interface_type->type; switch ((SpvStorageClass)w[3]) { case SpvStorageClassUniform: case SpvStorageClassUniformConstant: if (interface_type && interface_type->buffer_block) { var->data.mode = nir_var_shader_storage; b->shader->info.num_ssbos++; } else { /* UBO's and samplers */ var->data.mode = nir_var_uniform; var->data.read_only = true; if (interface_type) { if (glsl_type_is_image(interface_type->type)) { b->shader->info.num_images++; var->data.image.format = interface_type->image_format; } else if (glsl_type_is_sampler(interface_type->type)) { b->shader->info.num_textures++; } else { assert(glsl_type_is_struct(interface_type->type)); b->shader->info.num_ubos++; } } } break; case SpvStorageClassPushConstant: assert(interface_type && interface_type->block); var->data.mode = nir_var_uniform; var->data.read_only = true; var->data.descriptor_set = -1; var->data.binding = -1; /* We have exactly one push constant block */ assert(b->shader->num_uniforms == 0); b->shader->num_uniforms = vtn_type_block_size(type) * 4; break; case SpvStorageClassInput: var->data.mode = nir_var_shader_in; var->data.read_only = true; break; case SpvStorageClassOutput: var->data.mode = nir_var_shader_out; break; case SpvStorageClassPrivate: var->data.mode = nir_var_global; break; case SpvStorageClassFunction: var->data.mode = nir_var_local; break; case SpvStorageClassWorkgroup: case SpvStorageClassCrossWorkgroup: case SpvStorageClassGeneric: case SpvStorageClassAtomicCounter: default: unreachable("Unhandled variable storage class"); } if (count > 4) { assert(count == 5); var->constant_initializer = vtn_value(b, w[4], vtn_value_type_constant)->constant; } val->deref = nir_deref_var_create(b, var); val->deref_type = type; /* We handle decorations first because decorations might give us * location information. We use the data.explicit_location field to * note that the location provided is the "final" location. If * data.explicit_location == false, this means that it's relative to * whatever the base location is. */ vtn_foreach_decoration(b, val, var_decoration_cb, var); if (!var->data.explicit_location) { if (b->execution_model == SpvExecutionModelFragment && var->data.mode == nir_var_shader_out) { var->data.location += FRAG_RESULT_DATA0; } else if (b->execution_model == SpvExecutionModelVertex && var->data.mode == nir_var_shader_in) { var->data.location += VERT_ATTRIB_GENERIC0; } else if (var->data.mode == nir_var_shader_in || var->data.mode == nir_var_shader_out) { var->data.location += VARYING_SLOT_VAR0; } } /* Interface block variables aren't actually going to be referenced * by the generated NIR, so we don't put them in the list */ if (interface_type && glsl_type_is_struct(interface_type->type)) break; if (var->data.mode == nir_var_local) { nir_function_impl_add_variable(b->impl, var); } else { nir_shader_add_variable(b->shader, var); } break; } case SpvOpAccessChain: case SpvOpInBoundsAccessChain: { nir_deref_var *base; struct vtn_value *base_val = vtn_untyped_value(b, w[3]); if (base_val->value_type == vtn_value_type_sampled_image) { /* This is rather insane. SPIR-V allows you to use OpSampledImage * to combine an array of images with a single sampler to get an * array of sampled images that all share the same sampler. * Fortunately, this means that we can more-or-less ignore the * sampler when crawling the access chain, but it does leave us * with this rather awkward little special-case. */ base = base_val->sampled_image->image; } else { assert(base_val->value_type == vtn_value_type_deref); base = base_val->deref; } nir_deref_var *deref = nir_deref_as_var(nir_copy_deref(b, &base->deref)); struct vtn_type *deref_type = vtn_value(b, w[3], vtn_value_type_deref)->deref_type; nir_deref *tail = &deref->deref; while (tail->child) tail = tail->child; for (unsigned i = 0; i < count - 4; i++) { assert(w[i + 4] < b->value_id_bound); struct vtn_value *idx_val = &b->values[w[i + 4]]; enum glsl_base_type base_type = glsl_get_base_type(tail->type); switch (base_type) { case GLSL_TYPE_UINT: case GLSL_TYPE_INT: case GLSL_TYPE_FLOAT: case GLSL_TYPE_DOUBLE: case GLSL_TYPE_BOOL: case GLSL_TYPE_ARRAY: { nir_deref_array *deref_arr = nir_deref_array_create(b); if (base_type == GLSL_TYPE_ARRAY || glsl_type_is_matrix(tail->type)) { deref_type = deref_type->array_element; } else { assert(glsl_type_is_vector(tail->type)); deref_type = ralloc(b, struct vtn_type); deref_type->type = glsl_scalar_type(base_type); } deref_arr->deref.type = deref_type->type; if (idx_val->value_type == vtn_value_type_constant) { unsigned idx = idx_val->constant->value.u[0]; deref_arr->deref_array_type = nir_deref_array_type_direct; deref_arr->base_offset = idx; } else { assert(idx_val->value_type == vtn_value_type_ssa); assert(glsl_type_is_scalar(idx_val->ssa->type)); deref_arr->deref_array_type = nir_deref_array_type_indirect; deref_arr->base_offset = 0; deref_arr->indirect = nir_src_for_ssa(idx_val->ssa->def); } tail->child = &deref_arr->deref; break; } case GLSL_TYPE_STRUCT: { assert(idx_val->value_type == vtn_value_type_constant); unsigned idx = idx_val->constant->value.u[0]; deref_type = deref_type->members[idx]; nir_deref_struct *deref_struct = nir_deref_struct_create(b, idx); deref_struct->deref.type = deref_type->type; tail->child = &deref_struct->deref; break; } default: unreachable("Invalid type for deref"); } if (deref_type->is_builtin) { /* If we encounter a builtin, we throw away the ress of the * access chain, jump to the builtin, and keep building. */ const struct glsl_type *builtin_type = deref_type->type; nir_deref_array *per_vertex_deref = NULL; if (glsl_type_is_array(base->var->type)) { /* This builtin is a per-vertex builtin */ assert(b->shader->stage == MESA_SHADER_GEOMETRY); assert(base->var->data.mode == nir_var_shader_in); builtin_type = glsl_array_type(builtin_type, b->shader->info.gs.vertices_in); /* The first non-var deref should be an array deref. */ assert(deref->deref.child->deref_type == nir_deref_type_array); per_vertex_deref = nir_deref_as_array(deref->deref.child); } nir_variable *builtin = get_builtin_variable(b, base->var->data.mode, builtin_type, deref_type->builtin); deref = nir_deref_var_create(b, builtin); if (per_vertex_deref) { /* Since deref chains start at the variable, we can just * steal that link and use it. */ deref->deref.child = &per_vertex_deref->deref; per_vertex_deref->deref.child = NULL; per_vertex_deref->deref.type = glsl_get_array_element(builtin_type); tail = &per_vertex_deref->deref; } else { tail = &deref->deref; } } else { tail = tail->child; } } /* For uniform blocks, we don't resolve the access chain until we * actually access the variable, so we need to keep around the original * type of the variable. */ if (variable_is_external_block(base->var)) deref_type = vtn_value(b, w[3], vtn_value_type_deref)->deref_type; if (base_val->value_type == vtn_value_type_sampled_image) { struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_sampled_image); val->sampled_image = ralloc(b, struct vtn_sampled_image); val->sampled_image->image = deref; val->sampled_image->sampler = base_val->sampled_image->sampler; } else { struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_deref); val->deref = deref; val->deref_type = deref_type; } break; } case SpvOpCopyMemory: { nir_deref_var *dest = vtn_value(b, w[1], vtn_value_type_deref)->deref; nir_deref_var *src = vtn_value(b, w[2], vtn_value_type_deref)->deref; struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_deref)->deref_type; vtn_variable_copy(b, src, dest, type); break; } case SpvOpLoad: { nir_deref_var *src = vtn_value(b, w[3], vtn_value_type_deref)->deref; struct vtn_type *src_type = vtn_value(b, w[3], vtn_value_type_deref)->deref_type; if (src->var->interface_type && (glsl_type_is_sampler(src->var->interface_type) || glsl_type_is_image(src->var->interface_type))) { vtn_push_value(b, w[2], vtn_value_type_deref)->deref = src; return; } struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa); val->ssa = vtn_variable_load(b, src, src_type); break; } case SpvOpStore: { nir_deref_var *dest = vtn_value(b, w[1], vtn_value_type_deref)->deref; struct vtn_type *dest_type = vtn_value(b, w[1], vtn_value_type_deref)->deref_type; struct vtn_ssa_value *src = vtn_ssa_value(b, w[2]); vtn_variable_store(b, src, dest, dest_type); break; } case SpvOpCopyMemorySized: case SpvOpArrayLength: default: unreachable("Unhandled opcode"); } } static void vtn_handle_function_call(struct vtn_builder *b, SpvOp opcode, const uint32_t *w, unsigned count) { struct nir_function_overload *overload = vtn_value(b, w[3], vtn_value_type_function)->func->impl->overload; nir_call_instr *call = nir_call_instr_create(b->nb.shader, overload); for (unsigned i = 0; i < call->num_params; i++) { unsigned arg_id = w[4 + i]; struct vtn_value *arg = vtn_untyped_value(b, arg_id); if (arg->value_type == vtn_value_type_deref) { call->params[i] = nir_deref_as_var(nir_copy_deref(call, &arg->deref->deref)); } else { struct vtn_ssa_value *arg_ssa = vtn_ssa_value(b, arg_id); /* Make a temporary to store the argument in */ nir_variable *tmp = nir_local_variable_create(b->impl, arg_ssa->type, "arg_tmp"); call->params[i] = nir_deref_var_create(call, tmp); vtn_variable_store(b, arg_ssa, call->params[i], arg->type); } } nir_variable *out_tmp = NULL; if (!glsl_type_is_void(overload->return_type)) { out_tmp = nir_local_variable_create(b->impl, overload->return_type, "out_tmp"); call->return_deref = nir_deref_var_create(call, out_tmp); } nir_builder_instr_insert(&b->nb, &call->instr); if (glsl_type_is_void(overload->return_type)) { vtn_push_value(b, w[2], vtn_value_type_undef); } else { struct vtn_type *rettype = vtn_value(b, w[1], vtn_value_type_type)->type; struct vtn_value *retval = vtn_push_value(b, w[2], vtn_value_type_ssa); retval->ssa = vtn_variable_load(b, call->return_deref, rettype); } } static struct vtn_ssa_value * vtn_create_ssa_value(struct vtn_builder *b, const struct glsl_type *type) { struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value); val->type = type; if (!glsl_type_is_vector_or_scalar(type)) { unsigned elems = glsl_get_length(type); val->elems = ralloc_array(b, struct vtn_ssa_value *, elems); for (unsigned i = 0; i < elems; i++) { const struct glsl_type *child_type; switch (glsl_get_base_type(type)) { case GLSL_TYPE_INT: case GLSL_TYPE_UINT: case GLSL_TYPE_BOOL: case GLSL_TYPE_FLOAT: case GLSL_TYPE_DOUBLE: child_type = glsl_get_column_type(type); break; case GLSL_TYPE_ARRAY: child_type = glsl_get_array_element(type); break; case GLSL_TYPE_STRUCT: child_type = glsl_get_struct_field(type, i); break; default: unreachable("unkown base type"); } val->elems[i] = vtn_create_ssa_value(b, child_type); } } return val; } static nir_tex_src vtn_tex_src(struct vtn_builder *b, unsigned index, nir_tex_src_type type) { nir_tex_src src; src.src = nir_src_for_ssa(vtn_ssa_value(b, index)->def); src.src_type = type; return src; } static void vtn_handle_texture(struct vtn_builder *b, SpvOp opcode, const uint32_t *w, unsigned count) { if (opcode == SpvOpSampledImage) { struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_sampled_image); val->sampled_image = ralloc(b, struct vtn_sampled_image); val->sampled_image->image = vtn_value(b, w[3], vtn_value_type_deref)->deref; val->sampled_image->sampler = vtn_value(b, w[4], vtn_value_type_deref)->deref; return; } struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa); struct vtn_sampled_image sampled; struct vtn_value *sampled_val = vtn_untyped_value(b, w[3]); if (sampled_val->value_type == vtn_value_type_sampled_image) { sampled = *sampled_val->sampled_image; } else { assert(sampled_val->value_type == vtn_value_type_deref); sampled.image = NULL; sampled.sampler = sampled_val->deref; } nir_tex_src srcs[8]; /* 8 should be enough */ nir_tex_src *p = srcs; unsigned idx = 4; unsigned coord_components = 0; switch (opcode) { case SpvOpImageSampleImplicitLod: case SpvOpImageSampleExplicitLod: case SpvOpImageSampleDrefImplicitLod: case SpvOpImageSampleDrefExplicitLod: case SpvOpImageSampleProjImplicitLod: case SpvOpImageSampleProjExplicitLod: case SpvOpImageSampleProjDrefImplicitLod: case SpvOpImageSampleProjDrefExplicitLod: case SpvOpImageFetch: case SpvOpImageGather: case SpvOpImageDrefGather: case SpvOpImageQueryLod: { /* All these types have the coordinate as their first real argument */ struct vtn_ssa_value *coord = vtn_ssa_value(b, w[idx++]); coord_components = glsl_get_vector_elements(coord->type); p->src = nir_src_for_ssa(coord->def); p->src_type = nir_tex_src_coord; p++; break; } default: break; } /* These all have an explicit depth value as their next source */ switch (opcode) { case SpvOpImageSampleDrefImplicitLod: case SpvOpImageSampleDrefExplicitLod: case SpvOpImageSampleProjDrefImplicitLod: case SpvOpImageSampleProjDrefExplicitLod: (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_comparitor); break; default: break; } /* Figure out the base texture operation */ nir_texop texop; switch (opcode) { case SpvOpImageSampleImplicitLod: case SpvOpImageSampleDrefImplicitLod: case SpvOpImageSampleProjImplicitLod: case SpvOpImageSampleProjDrefImplicitLod: texop = nir_texop_tex; break; case SpvOpImageSampleExplicitLod: case SpvOpImageSampleDrefExplicitLod: case SpvOpImageSampleProjExplicitLod: case SpvOpImageSampleProjDrefExplicitLod: texop = nir_texop_txl; break; case SpvOpImageFetch: texop = nir_texop_txf; break; case SpvOpImageGather: case SpvOpImageDrefGather: texop = nir_texop_tg4; break; case SpvOpImageQuerySizeLod: case SpvOpImageQuerySize: texop = nir_texop_txs; break; case SpvOpImageQueryLod: texop = nir_texop_lod; break; case SpvOpImageQueryLevels: texop = nir_texop_query_levels; break; case SpvOpImageQuerySamples: default: unreachable("Unhandled opcode"); } /* Now we need to handle some number of optional arguments */ if (idx < count) { uint32_t operands = w[idx++]; if (operands & SpvImageOperandsBiasMask) { assert(texop == nir_texop_tex); texop = nir_texop_txb; (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_bias); } if (operands & SpvImageOperandsLodMask) { assert(texop == nir_texop_txl || texop == nir_texop_txf || texop == nir_texop_txs); (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_lod); } if (operands & SpvImageOperandsGradMask) { assert(texop == nir_texop_tex); texop = nir_texop_txd; (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ddx); (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ddy); } if (operands & SpvImageOperandsOffsetMask || operands & SpvImageOperandsConstOffsetMask) (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_offset); if (operands & SpvImageOperandsConstOffsetsMask) assert(!"Constant offsets to texture gather not yet implemented"); if (operands & SpvImageOperandsSampleMask) { assert(texop == nir_texop_txf); texop = nir_texop_txf_ms; (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ms_index); } } /* We should have now consumed exactly all of the arguments */ assert(idx == count); nir_tex_instr *instr = nir_tex_instr_create(b->shader, p - srcs); const struct glsl_type *sampler_type = nir_deref_tail(&sampled.sampler->deref)->type; instr->sampler_dim = glsl_get_sampler_dim(sampler_type); switch (glsl_get_sampler_result_type(sampler_type)) { case GLSL_TYPE_FLOAT: instr->dest_type = nir_type_float; break; case GLSL_TYPE_INT: instr->dest_type = nir_type_int; break; case GLSL_TYPE_UINT: instr->dest_type = nir_type_uint; break; case GLSL_TYPE_BOOL: instr->dest_type = nir_type_bool; break; default: unreachable("Invalid base type for sampler result"); } instr->op = texop; memcpy(instr->src, srcs, instr->num_srcs * sizeof(*instr->src)); instr->coord_components = coord_components; instr->is_array = glsl_sampler_type_is_array(sampler_type); instr->is_shadow = glsl_sampler_type_is_shadow(sampler_type); instr->sampler = nir_deref_as_var(nir_copy_deref(instr, &sampled.sampler->deref)); if (sampled.image) { instr->texture = nir_deref_as_var(nir_copy_deref(instr, &sampled.image->deref)); } else { instr->texture = NULL; } nir_ssa_dest_init(&instr->instr, &instr->dest, 4, NULL); val->ssa = vtn_create_ssa_value(b, glsl_vector_type(GLSL_TYPE_FLOAT, 4)); val->ssa->def = &instr->dest.ssa; nir_builder_instr_insert(&b->nb, &instr->instr); } static nir_ssa_def * get_image_coord(struct vtn_builder *b, uint32_t value) { struct vtn_ssa_value *coord = vtn_ssa_value(b, value); /* The image_load_store intrinsics assume a 4-dim coordinate */ unsigned dim = glsl_get_vector_elements(coord->type); unsigned swizzle[4]; for (unsigned i = 0; i < 4; i++) swizzle[i] = MIN2(i, dim - 1); return nir_swizzle(&b->nb, coord->def, swizzle, 4, false); } static void vtn_handle_image(struct vtn_builder *b, SpvOp opcode, const uint32_t *w, unsigned count) { /* Just get this one out of the way */ if (opcode == SpvOpImageTexelPointer) { struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_image_pointer); val->image = ralloc(b, struct vtn_image_pointer); val->image->deref = vtn_value(b, w[3], vtn_value_type_deref)->deref; val->image->coord = get_image_coord(b, w[4]); val->image->sample = vtn_ssa_value(b, w[5])->def; return; } struct vtn_image_pointer image; switch (opcode) { case SpvOpAtomicExchange: case SpvOpAtomicCompareExchange: case SpvOpAtomicCompareExchangeWeak: case SpvOpAtomicIIncrement: case SpvOpAtomicIDecrement: case SpvOpAtomicIAdd: case SpvOpAtomicISub: case SpvOpAtomicSMin: case SpvOpAtomicUMin: case SpvOpAtomicSMax: case SpvOpAtomicUMax: case SpvOpAtomicAnd: case SpvOpAtomicOr: case SpvOpAtomicXor: image = *vtn_value(b, w[3], vtn_value_type_image_pointer)->image; break; case SpvOpImageRead: image.deref = vtn_value(b, w[3], vtn_value_type_deref)->deref; image.coord = get_image_coord(b, w[4]); if (count > 5 && (w[5] & SpvImageOperandsSampleMask)) { assert(w[5] == SpvImageOperandsSampleMask); image.sample = vtn_ssa_value(b, w[6])->def; } else { image.sample = nir_ssa_undef(&b->nb, 1); } break; case SpvOpImageWrite: image.deref = vtn_value(b, w[1], vtn_value_type_deref)->deref; image.coord = get_image_coord(b, w[2]); /* texel = w[3] */ if (count > 4 && (w[4] & SpvImageOperandsSampleMask)) { assert(w[4] == SpvImageOperandsSampleMask); image.sample = vtn_ssa_value(b, w[5])->def; } else { image.sample = nir_ssa_undef(&b->nb, 1); } default: unreachable("Invalid image opcode"); } nir_intrinsic_op op; switch (opcode) { #define OP(S, N) case SpvOp##S: op = nir_intrinsic_image_##N; break; OP(ImageRead, load) OP(ImageWrite, store) OP(AtomicExchange, atomic_exchange) OP(AtomicCompareExchange, atomic_comp_swap) OP(AtomicIIncrement, atomic_add) OP(AtomicIDecrement, atomic_add) OP(AtomicIAdd, atomic_add) OP(AtomicISub, atomic_add) OP(AtomicSMin, atomic_min) OP(AtomicUMin, atomic_min) OP(AtomicSMax, atomic_max) OP(AtomicUMax, atomic_max) OP(AtomicAnd, atomic_and) OP(AtomicOr, atomic_or) OP(AtomicXor, atomic_xor) #undef OP default: unreachable("Invalid image opcode"); } nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(b->shader, op); intrin->variables[0] = nir_deref_as_var(nir_copy_deref(&intrin->instr, &image.deref->deref)); intrin->src[0] = nir_src_for_ssa(image.coord); intrin->src[1] = nir_src_for_ssa(image.sample); switch (opcode) { case SpvOpImageRead: break; case SpvOpImageWrite: intrin->src[2] = nir_src_for_ssa(vtn_ssa_value(b, w[3])->def); break; case SpvOpAtomicIIncrement: intrin->src[2] = nir_src_for_ssa(nir_imm_int(&b->nb, 1)); break; case SpvOpAtomicIDecrement: intrin->src[2] = nir_src_for_ssa(nir_imm_int(&b->nb, -1)); break; case SpvOpAtomicExchange: case SpvOpAtomicIAdd: case SpvOpAtomicSMin: case SpvOpAtomicUMin: case SpvOpAtomicSMax: case SpvOpAtomicUMax: case SpvOpAtomicAnd: case SpvOpAtomicOr: case SpvOpAtomicXor: intrin->src[2] = nir_src_for_ssa(vtn_ssa_value(b, w[6])->def); break; case SpvOpAtomicCompareExchange: intrin->src[2] = nir_src_for_ssa(vtn_ssa_value(b, w[7])->def); intrin->src[3] = nir_src_for_ssa(vtn_ssa_value(b, w[6])->def); break; case SpvOpAtomicISub: intrin->src[2] = nir_src_for_ssa(nir_ineg(&b->nb, vtn_ssa_value(b, w[6])->def)); break; default: unreachable("Invalid image opcode"); } if (opcode != SpvOpImageWrite) { struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa); struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type; nir_ssa_dest_init(&intrin->instr, &intrin->dest, glsl_get_vector_elements(type->type), NULL); val->ssa = vtn_create_ssa_value(b, type->type); val->ssa->def = &intrin->dest.ssa; } nir_builder_instr_insert(&b->nb, &intrin->instr); } static nir_alu_instr * create_vec(void *mem_ctx, unsigned num_components) { nir_op op; switch (num_components) { case 1: op = nir_op_fmov; break; case 2: op = nir_op_vec2; break; case 3: op = nir_op_vec3; break; case 4: op = nir_op_vec4; break; default: unreachable("bad vector size"); } nir_alu_instr *vec = nir_alu_instr_create(mem_ctx, op); nir_ssa_dest_init(&vec->instr, &vec->dest.dest, num_components, NULL); vec->dest.write_mask = (1 << num_components) - 1; return vec; } static struct vtn_ssa_value * vtn_transpose(struct vtn_builder *b, struct vtn_ssa_value *src) { if (src->transposed) return src->transposed; struct vtn_ssa_value *dest = vtn_create_ssa_value(b, glsl_transposed_type(src->type)); for (unsigned i = 0; i < glsl_get_matrix_columns(dest->type); i++) { nir_alu_instr *vec = create_vec(b, glsl_get_matrix_columns(src->type)); if (glsl_type_is_vector_or_scalar(src->type)) { vec->src[0].src = nir_src_for_ssa(src->def); vec->src[0].swizzle[0] = i; } else { for (unsigned j = 0; j < glsl_get_matrix_columns(src->type); j++) { vec->src[j].src = nir_src_for_ssa(src->elems[j]->def); vec->src[j].swizzle[0] = i; } } nir_builder_instr_insert(&b->nb, &vec->instr); dest->elems[i]->def = &vec->dest.dest.ssa; } dest->transposed = src; return dest; } /* * Normally, column vectors in SPIR-V correspond to a single NIR SSA * definition. But for matrix multiplies, we want to do one routine for * multiplying a matrix by a matrix and then pretend that vectors are matrices * with one column. So we "wrap" these things, and unwrap the result before we * send it off. */ static struct vtn_ssa_value * vtn_wrap_matrix(struct vtn_builder *b, struct vtn_ssa_value *val) { if (val == NULL) return NULL; if (glsl_type_is_matrix(val->type)) return val; struct vtn_ssa_value *dest = rzalloc(b, struct vtn_ssa_value); dest->type = val->type; dest->elems = ralloc_array(b, struct vtn_ssa_value *, 1); dest->elems[0] = val; return dest; } static struct vtn_ssa_value * vtn_unwrap_matrix(struct vtn_ssa_value *val) { if (glsl_type_is_matrix(val->type)) return val; return val->elems[0]; } static struct vtn_ssa_value * vtn_matrix_multiply(struct vtn_builder *b, struct vtn_ssa_value *_src0, struct vtn_ssa_value *_src1) { struct vtn_ssa_value *src0 = vtn_wrap_matrix(b, _src0); struct vtn_ssa_value *src1 = vtn_wrap_matrix(b, _src1); struct vtn_ssa_value *src0_transpose = vtn_wrap_matrix(b, _src0->transposed); struct vtn_ssa_value *src1_transpose = vtn_wrap_matrix(b, _src1->transposed); unsigned src0_rows = glsl_get_vector_elements(src0->type); unsigned src0_columns = glsl_get_matrix_columns(src0->type); unsigned src1_columns = glsl_get_matrix_columns(src1->type); struct vtn_ssa_value *dest = vtn_create_ssa_value(b, glsl_matrix_type(glsl_get_base_type(src0->type), src0_rows, src1_columns)); dest = vtn_wrap_matrix(b, dest); bool transpose_result = false; if (src0_transpose && src1_transpose) { /* transpose(A) * transpose(B) = transpose(B * A) */ src1 = src0_transpose; src0 = src1_transpose; src0_transpose = NULL; src1_transpose = NULL; transpose_result = true; } if (src0_transpose && !src1_transpose && glsl_get_base_type(src0->type) == GLSL_TYPE_FLOAT) { /* We already have the rows of src0 and the columns of src1 available, * so we can just take the dot product of each row with each column to * get the result. */ for (unsigned i = 0; i < src1_columns; i++) { nir_alu_instr *vec = create_vec(b, src0_rows); for (unsigned j = 0; j < src0_rows; j++) { vec->src[j].src = nir_src_for_ssa(nir_fdot(&b->nb, src0_transpose->elems[j]->def, src1->elems[i]->def)); } nir_builder_instr_insert(&b->nb, &vec->instr); dest->elems[i]->def = &vec->dest.dest.ssa; } } else { /* We don't handle the case where src1 is transposed but not src0, since * the general case only uses individual components of src1 so the * optimizer should chew through the transpose we emitted for src1. */ for (unsigned i = 0; i < src1_columns; i++) { /* dest[i] = sum(src0[j] * src1[i][j] for all j) */ dest->elems[i]->def = nir_fmul(&b->nb, src0->elems[0]->def, vtn_vector_extract(b, src1->elems[i]->def, 0)); for (unsigned j = 1; j < src0_columns; j++) { dest->elems[i]->def = nir_fadd(&b->nb, dest->elems[i]->def, nir_fmul(&b->nb, src0->elems[j]->def, vtn_vector_extract(b, src1->elems[i]->def, j))); } } } dest = vtn_unwrap_matrix(dest); if (transpose_result) dest = vtn_transpose(b, dest); return dest; } static struct vtn_ssa_value * vtn_mat_times_scalar(struct vtn_builder *b, struct vtn_ssa_value *mat, nir_ssa_def *scalar) { struct vtn_ssa_value *dest = vtn_create_ssa_value(b, mat->type); for (unsigned i = 0; i < glsl_get_matrix_columns(mat->type); i++) { if (glsl_get_base_type(mat->type) == GLSL_TYPE_FLOAT) dest->elems[i]->def = nir_fmul(&b->nb, mat->elems[i]->def, scalar); else dest->elems[i]->def = nir_imul(&b->nb, mat->elems[i]->def, scalar); } return dest; } static void vtn_handle_matrix_alu(struct vtn_builder *b, SpvOp opcode, const uint32_t *w, unsigned count) { struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa); switch (opcode) { case SpvOpTranspose: { struct vtn_ssa_value *src = vtn_ssa_value(b, w[3]); val->ssa = vtn_transpose(b, src); break; } case SpvOpOuterProduct: { struct vtn_ssa_value *src0 = vtn_ssa_value(b, w[3]); struct vtn_ssa_value *src1 = vtn_ssa_value(b, w[4]); val->ssa = vtn_matrix_multiply(b, src0, vtn_transpose(b, src1)); break; } case SpvOpMatrixTimesScalar: { struct vtn_ssa_value *mat = vtn_ssa_value(b, w[3]); struct vtn_ssa_value *scalar = vtn_ssa_value(b, w[4]); if (mat->transposed) { val->ssa = vtn_transpose(b, vtn_mat_times_scalar(b, mat->transposed, scalar->def)); } else { val->ssa = vtn_mat_times_scalar(b, mat, scalar->def); } break; } case SpvOpVectorTimesMatrix: case SpvOpMatrixTimesVector: case SpvOpMatrixTimesMatrix: { struct vtn_ssa_value *src0 = vtn_ssa_value(b, w[3]); struct vtn_ssa_value *src1 = vtn_ssa_value(b, w[4]); val->ssa = vtn_matrix_multiply(b, src0, src1); break; } default: unreachable("unknown matrix opcode"); } } static void vtn_handle_alu(struct vtn_builder *b, SpvOp opcode, const uint32_t *w, unsigned count) { struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa); const struct glsl_type *type = vtn_value(b, w[1], vtn_value_type_type)->type->type; val->ssa = vtn_create_ssa_value(b, type); /* Collect the various SSA sources */ unsigned num_inputs = count - 3; nir_ssa_def *src[4]; for (unsigned i = 0; i < num_inputs; i++) src[i] = vtn_ssa_value(b, w[i + 3])->def; /* Indicates that the first two arguments should be swapped. This is * used for implementing greater-than and less-than-or-equal. */ bool swap = false; nir_op op; switch (opcode) { /* Basic ALU operations */ case SpvOpSNegate: op = nir_op_ineg; break; case SpvOpFNegate: op = nir_op_fneg; break; case SpvOpNot: op = nir_op_inot; break; case SpvOpAny: switch (src[0]->num_components) { case 1: op = nir_op_imov; break; case 2: op = nir_op_bany2; break; case 3: op = nir_op_bany3; break; case 4: op = nir_op_bany4; break; } break; case SpvOpAll: switch (src[0]->num_components) { case 1: op = nir_op_imov; break; case 2: op = nir_op_ball2; break; case 3: op = nir_op_ball3; break; case 4: op = nir_op_ball4; break; } break; case SpvOpIAdd: op = nir_op_iadd; break; case SpvOpFAdd: op = nir_op_fadd; break; case SpvOpISub: op = nir_op_isub; break; case SpvOpFSub: op = nir_op_fsub; break; case SpvOpIMul: op = nir_op_imul; break; case SpvOpFMul: op = nir_op_fmul; break; case SpvOpUDiv: op = nir_op_udiv; break; case SpvOpSDiv: op = nir_op_idiv; break; case SpvOpFDiv: op = nir_op_fdiv; break; case SpvOpUMod: op = nir_op_umod; break; case SpvOpSMod: op = nir_op_umod; break; /* FIXME? */ case SpvOpFMod: op = nir_op_fmod; break; case SpvOpDot: assert(src[0]->num_components == src[1]->num_components); switch (src[0]->num_components) { case 1: op = nir_op_fmul; break; case 2: op = nir_op_fdot2; break; case 3: op = nir_op_fdot3; break; case 4: op = nir_op_fdot4; break; } break; case SpvOpShiftRightLogical: op = nir_op_ushr; break; case SpvOpShiftRightArithmetic: op = nir_op_ishr; break; case SpvOpShiftLeftLogical: op = nir_op_ishl; break; case SpvOpLogicalOr: op = nir_op_ior; break; case SpvOpLogicalEqual: op = nir_op_ieq; break; case SpvOpLogicalNotEqual: op = nir_op_ine; break; case SpvOpLogicalAnd: op = nir_op_iand; break; case SpvOpBitwiseOr: op = nir_op_ior; break; case SpvOpBitwiseXor: op = nir_op_ixor; break; case SpvOpBitwiseAnd: op = nir_op_iand; break; case SpvOpSelect: op = nir_op_bcsel; break; case SpvOpIEqual: op = nir_op_ieq; break; /* Comparisons: (TODO: How do we want to handled ordered/unordered?) */ case SpvOpFOrdEqual: op = nir_op_feq; break; case SpvOpFUnordEqual: op = nir_op_feq; break; case SpvOpINotEqual: op = nir_op_ine; break; case SpvOpFOrdNotEqual: op = nir_op_fne; break; case SpvOpFUnordNotEqual: op = nir_op_fne; break; case SpvOpULessThan: op = nir_op_ult; break; case SpvOpSLessThan: op = nir_op_ilt; break; case SpvOpFOrdLessThan: op = nir_op_flt; break; case SpvOpFUnordLessThan: op = nir_op_flt; break; case SpvOpUGreaterThan: op = nir_op_ult; swap = true; break; case SpvOpSGreaterThan: op = nir_op_ilt; swap = true; break; case SpvOpFOrdGreaterThan: op = nir_op_flt; swap = true; break; case SpvOpFUnordGreaterThan: op = nir_op_flt; swap = true; break; case SpvOpULessThanEqual: op = nir_op_uge; swap = true; break; case SpvOpSLessThanEqual: op = nir_op_ige; swap = true; break; case SpvOpFOrdLessThanEqual: op = nir_op_fge; swap = true; break; case SpvOpFUnordLessThanEqual: op = nir_op_fge; swap = true; break; case SpvOpUGreaterThanEqual: op = nir_op_uge; break; case SpvOpSGreaterThanEqual: op = nir_op_ige; break; case SpvOpFOrdGreaterThanEqual: op = nir_op_fge; break; case SpvOpFUnordGreaterThanEqual:op = nir_op_fge; break; /* Conversions: */ case SpvOpConvertFToU: op = nir_op_f2u; break; case SpvOpConvertFToS: op = nir_op_f2i; break; case SpvOpConvertSToF: op = nir_op_i2f; break; case SpvOpConvertUToF: op = nir_op_u2f; break; case SpvOpBitcast: op = nir_op_imov; break; case SpvOpUConvert: case SpvOpSConvert: op = nir_op_imov; /* TODO: NIR is 32-bit only; these are no-ops. */ break; case SpvOpFConvert: op = nir_op_fmov; break; /* Derivatives: */ case SpvOpDPdx: op = nir_op_fddx; break; case SpvOpDPdy: op = nir_op_fddy; break; case SpvOpDPdxFine: op = nir_op_fddx_fine; break; case SpvOpDPdyFine: op = nir_op_fddy_fine; break; case SpvOpDPdxCoarse: op = nir_op_fddx_coarse; break; case SpvOpDPdyCoarse: op = nir_op_fddy_coarse; break; case SpvOpFwidth: val->ssa->def = nir_fadd(&b->nb, nir_fabs(&b->nb, nir_fddx(&b->nb, src[0])), nir_fabs(&b->nb, nir_fddx(&b->nb, src[1]))); return; case SpvOpFwidthFine: val->ssa->def = nir_fadd(&b->nb, nir_fabs(&b->nb, nir_fddx_fine(&b->nb, src[0])), nir_fabs(&b->nb, nir_fddx_fine(&b->nb, src[1]))); return; case SpvOpFwidthCoarse: val->ssa->def = nir_fadd(&b->nb, nir_fabs(&b->nb, nir_fddx_coarse(&b->nb, src[0])), nir_fabs(&b->nb, nir_fddx_coarse(&b->nb, src[1]))); return; case SpvOpVectorTimesScalar: /* The builder will take care of splatting for us. */ val->ssa->def = nir_fmul(&b->nb, src[0], src[1]); return; case SpvOpSRem: case SpvOpFRem: unreachable("No NIR equivalent"); case SpvOpIsNan: case SpvOpIsInf: case SpvOpIsFinite: case SpvOpIsNormal: case SpvOpSignBitSet: case SpvOpLessOrGreater: case SpvOpOrdered: case SpvOpUnordered: default: unreachable("Unhandled opcode"); } if (swap) { nir_ssa_def *tmp = src[0]; src[0] = src[1]; src[1] = tmp; } nir_alu_instr *instr = nir_alu_instr_create(b->shader, op); nir_ssa_dest_init(&instr->instr, &instr->dest.dest, glsl_get_vector_elements(type), val->name); instr->dest.write_mask = (1 << glsl_get_vector_elements(type)) - 1; val->ssa->def = &instr->dest.dest.ssa; for (unsigned i = 0; i < nir_op_infos[op].num_inputs; i++) instr->src[i].src = nir_src_for_ssa(src[i]); nir_builder_instr_insert(&b->nb, &instr->instr); } static nir_ssa_def * vtn_vector_extract(struct vtn_builder *b, nir_ssa_def *src, unsigned index) { unsigned swiz[4] = { index }; return nir_swizzle(&b->nb, src, swiz, 1, true); } static nir_ssa_def * vtn_vector_insert(struct vtn_builder *b, nir_ssa_def *src, nir_ssa_def *insert, unsigned index) { nir_alu_instr *vec = create_vec(b->shader, src->num_components); for (unsigned i = 0; i < src->num_components; i++) { if (i == index) { vec->src[i].src = nir_src_for_ssa(insert); } else { vec->src[i].src = nir_src_for_ssa(src); vec->src[i].swizzle[0] = i; } } nir_builder_instr_insert(&b->nb, &vec->instr); return &vec->dest.dest.ssa; } static nir_ssa_def * vtn_vector_extract_dynamic(struct vtn_builder *b, nir_ssa_def *src, nir_ssa_def *index) { nir_ssa_def *dest = vtn_vector_extract(b, src, 0); for (unsigned i = 1; i < src->num_components; i++) dest = nir_bcsel(&b->nb, nir_ieq(&b->nb, index, nir_imm_int(&b->nb, i)), vtn_vector_extract(b, src, i), dest); return dest; } static nir_ssa_def * vtn_vector_insert_dynamic(struct vtn_builder *b, nir_ssa_def *src, nir_ssa_def *insert, nir_ssa_def *index) { nir_ssa_def *dest = vtn_vector_insert(b, src, insert, 0); for (unsigned i = 1; i < src->num_components; i++) dest = nir_bcsel(&b->nb, nir_ieq(&b->nb, index, nir_imm_int(&b->nb, i)), vtn_vector_insert(b, src, insert, i), dest); return dest; } static nir_ssa_def * vtn_vector_shuffle(struct vtn_builder *b, unsigned num_components, nir_ssa_def *src0, nir_ssa_def *src1, const uint32_t *indices) { nir_alu_instr *vec = create_vec(b->shader, num_components); nir_ssa_undef_instr *undef = nir_ssa_undef_instr_create(b->shader, 1); nir_builder_instr_insert(&b->nb, &undef->instr); for (unsigned i = 0; i < num_components; i++) { uint32_t index = indices[i]; if (index == 0xffffffff) { vec->src[i].src = nir_src_for_ssa(&undef->def); } else if (index < src0->num_components) { vec->src[i].src = nir_src_for_ssa(src0); vec->src[i].swizzle[0] = index; } else { vec->src[i].src = nir_src_for_ssa(src1); vec->src[i].swizzle[0] = index - src0->num_components; } } nir_builder_instr_insert(&b->nb, &vec->instr); return &vec->dest.dest.ssa; } /* * Concatentates a number of vectors/scalars together to produce a vector */ static nir_ssa_def * vtn_vector_construct(struct vtn_builder *b, unsigned num_components, unsigned num_srcs, nir_ssa_def **srcs) { nir_alu_instr *vec = create_vec(b->shader, num_components); unsigned dest_idx = 0; for (unsigned i = 0; i < num_srcs; i++) { nir_ssa_def *src = srcs[i]; for (unsigned j = 0; j < src->num_components; j++) { vec->src[dest_idx].src = nir_src_for_ssa(src); vec->src[dest_idx].swizzle[0] = j; dest_idx++; } } nir_builder_instr_insert(&b->nb, &vec->instr); return &vec->dest.dest.ssa; } static struct vtn_ssa_value * vtn_composite_copy(void *mem_ctx, struct vtn_ssa_value *src) { struct vtn_ssa_value *dest = rzalloc(mem_ctx, struct vtn_ssa_value); dest->type = src->type; if (glsl_type_is_vector_or_scalar(src->type)) { dest->def = src->def; } else { unsigned elems = glsl_get_length(src->type); dest->elems = ralloc_array(mem_ctx, struct vtn_ssa_value *, elems); for (unsigned i = 0; i < elems; i++) dest->elems[i] = vtn_composite_copy(mem_ctx, src->elems[i]); } return dest; } static struct vtn_ssa_value * vtn_composite_insert(struct vtn_builder *b, struct vtn_ssa_value *src, struct vtn_ssa_value *insert, const uint32_t *indices, unsigned num_indices) { struct vtn_ssa_value *dest = vtn_composite_copy(b, src); struct vtn_ssa_value *cur = dest; unsigned i; for (i = 0; i < num_indices - 1; i++) { cur = cur->elems[indices[i]]; } if (glsl_type_is_vector_or_scalar(cur->type)) { /* According to the SPIR-V spec, OpCompositeInsert may work down to * the component granularity. In that case, the last index will be * the index to insert the scalar into the vector. */ cur->def = vtn_vector_insert(b, cur->def, insert->def, indices[i]); } else { cur->elems[indices[i]] = insert; } return dest; } static struct vtn_ssa_value * vtn_composite_extract(struct vtn_builder *b, struct vtn_ssa_value *src, const uint32_t *indices, unsigned num_indices) { struct vtn_ssa_value *cur = src; for (unsigned i = 0; i < num_indices; i++) { if (glsl_type_is_vector_or_scalar(cur->type)) { assert(i == num_indices - 1); /* According to the SPIR-V spec, OpCompositeExtract may work down to * the component granularity. The last index will be the index of the * vector to extract. */ struct vtn_ssa_value *ret = rzalloc(b, struct vtn_ssa_value); ret->type = glsl_scalar_type(glsl_get_base_type(cur->type)); ret->def = vtn_vector_extract(b, cur->def, indices[i]); return ret; } else { cur = cur->elems[indices[i]]; } } return cur; } static void vtn_handle_composite(struct vtn_builder *b, SpvOp opcode, const uint32_t *w, unsigned count) { struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa); const struct glsl_type *type = vtn_value(b, w[1], vtn_value_type_type)->type->type; val->ssa = vtn_create_ssa_value(b, type); switch (opcode) { case SpvOpVectorExtractDynamic: val->ssa->def = vtn_vector_extract_dynamic(b, vtn_ssa_value(b, w[3])->def, vtn_ssa_value(b, w[4])->def); break; case SpvOpVectorInsertDynamic: val->ssa->def = vtn_vector_insert_dynamic(b, vtn_ssa_value(b, w[3])->def, vtn_ssa_value(b, w[4])->def, vtn_ssa_value(b, w[5])->def); break; case SpvOpVectorShuffle: val->ssa->def = vtn_vector_shuffle(b, glsl_get_vector_elements(type), vtn_ssa_value(b, w[3])->def, vtn_ssa_value(b, w[4])->def, w + 5); break; case SpvOpCompositeConstruct: { unsigned elems = count - 3; if (glsl_type_is_vector_or_scalar(type)) { nir_ssa_def *srcs[4]; for (unsigned i = 0; i < elems; i++) srcs[i] = vtn_ssa_value(b, w[3 + i])->def; val->ssa->def = vtn_vector_construct(b, glsl_get_vector_elements(type), elems, srcs); } else { val->ssa->elems = ralloc_array(b, struct vtn_ssa_value *, elems); for (unsigned i = 0; i < elems; i++) val->ssa->elems[i] = vtn_ssa_value(b, w[3 + i]); } break; } case SpvOpCompositeExtract: val->ssa = vtn_composite_extract(b, vtn_ssa_value(b, w[3]), w + 4, count - 4); break; case SpvOpCompositeInsert: val->ssa = vtn_composite_insert(b, vtn_ssa_value(b, w[4]), vtn_ssa_value(b, w[3]), w + 5, count - 5); break; case SpvOpCopyObject: val->ssa = vtn_composite_copy(b, vtn_ssa_value(b, w[3])); break; default: unreachable("unknown composite operation"); } } static void vtn_handle_barrier(struct vtn_builder *b, SpvOp opcode, const uint32_t *w, unsigned count) { nir_intrinsic_op intrinsic_op; switch (opcode) { case SpvOpEmitVertex: case SpvOpEmitStreamVertex: intrinsic_op = nir_intrinsic_emit_vertex; break; case SpvOpEndPrimitive: case SpvOpEndStreamPrimitive: intrinsic_op = nir_intrinsic_end_primitive; break; case SpvOpMemoryBarrier: intrinsic_op = nir_intrinsic_memory_barrier; break; case SpvOpControlBarrier: default: unreachable("unknown barrier instruction"); } nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(b->shader, intrinsic_op); if (opcode == SpvOpEmitStreamVertex || opcode == SpvOpEndStreamPrimitive) intrin->const_index[0] = w[1]; nir_builder_instr_insert(&b->nb, &intrin->instr); } static void vtn_phi_node_init(struct vtn_builder *b, struct vtn_ssa_value *val) { if (glsl_type_is_vector_or_scalar(val->type)) { nir_phi_instr *phi = nir_phi_instr_create(b->shader); nir_ssa_dest_init(&phi->instr, &phi->dest, glsl_get_vector_elements(val->type), NULL); exec_list_make_empty(&phi->srcs); nir_builder_instr_insert(&b->nb, &phi->instr); val->def = &phi->dest.ssa; } else { unsigned elems = glsl_get_length(val->type); for (unsigned i = 0; i < elems; i++) vtn_phi_node_init(b, val->elems[i]); } } static struct vtn_ssa_value * vtn_phi_node_create(struct vtn_builder *b, const struct glsl_type *type) { struct vtn_ssa_value *val = vtn_create_ssa_value(b, type); vtn_phi_node_init(b, val); return val; } static void vtn_handle_phi_first_pass(struct vtn_builder *b, const uint32_t *w) { struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa); const struct glsl_type *type = vtn_value(b, w[1], vtn_value_type_type)->type->type; val->ssa = vtn_phi_node_create(b, type); } static void vtn_phi_node_add_src(struct vtn_ssa_value *phi, const nir_block *pred, struct vtn_ssa_value *val) { assert(phi->type == val->type); if (glsl_type_is_vector_or_scalar(phi->type)) { nir_phi_instr *phi_instr = nir_instr_as_phi(phi->def->parent_instr); nir_phi_src *src = ralloc(phi_instr, nir_phi_src); src->pred = (nir_block *) pred; src->src = nir_src_for_ssa(val->def); exec_list_push_tail(&phi_instr->srcs, &src->node); } else { unsigned elems = glsl_get_length(phi->type); for (unsigned i = 0; i < elems; i++) vtn_phi_node_add_src(phi->elems[i], pred, val->elems[i]); } } static struct vtn_ssa_value * vtn_get_phi_node_src(struct vtn_builder *b, nir_block *block, const struct glsl_type *type, const uint32_t *w, unsigned count) { struct hash_entry *entry = _mesa_hash_table_search(b->block_table, block); if (entry) { struct vtn_block *spv_block = entry->data; for (unsigned off = 4; off < count; off += 2) { if (spv_block == vtn_value(b, w[off], vtn_value_type_block)->block) { return vtn_ssa_value(b, w[off - 1]); } } } b->nb.cursor = nir_before_block(block); struct vtn_ssa_value *phi = vtn_phi_node_create(b, type); struct set_entry *entry2; set_foreach(block->predecessors, entry2) { nir_block *pred = (nir_block *) entry2->key; struct vtn_ssa_value *val = vtn_get_phi_node_src(b, pred, type, w, count); vtn_phi_node_add_src(phi, pred, val); } return phi; } static bool vtn_handle_phi_second_pass(struct vtn_builder *b, SpvOp opcode, const uint32_t *w, unsigned count) { if (opcode == SpvOpLabel) { b->block = vtn_value(b, w[1], vtn_value_type_block)->block; return true; } if (opcode != SpvOpPhi) return true; struct vtn_ssa_value *phi = vtn_value(b, w[2], vtn_value_type_ssa)->ssa; struct set_entry *entry; set_foreach(b->block->block->predecessors, entry) { nir_block *pred = (nir_block *) entry->key; struct vtn_ssa_value *val = vtn_get_phi_node_src(b, pred, phi->type, w, count); vtn_phi_node_add_src(phi, pred, val); } return true; } static unsigned gl_primitive_from_spv_execution_mode(SpvExecutionMode mode) { switch (mode) { case SpvExecutionModeInputPoints: case SpvExecutionModeOutputPoints: return 0; /* GL_POINTS */ case SpvExecutionModeInputLines: return 1; /* GL_LINES */ case SpvExecutionModeInputLinesAdjacency: return 0x000A; /* GL_LINE_STRIP_ADJACENCY_ARB */ case SpvExecutionModeTriangles: return 4; /* GL_TRIANGLES */ case SpvExecutionModeInputTrianglesAdjacency: return 0x000C; /* GL_TRIANGLES_ADJACENCY_ARB */ case SpvExecutionModeQuads: return 7; /* GL_QUADS */ case SpvExecutionModeIsolines: return 0x8E7A; /* GL_ISOLINES */ case SpvExecutionModeOutputLineStrip: return 3; /* GL_LINE_STRIP */ case SpvExecutionModeOutputTriangleStrip: return 5; /* GL_TRIANGLE_STRIP */ default: assert(!"Invalid primitive type"); return 4; } } static unsigned vertices_in_from_spv_execution_mode(SpvExecutionMode mode) { switch (mode) { case SpvExecutionModeInputPoints: return 1; case SpvExecutionModeInputLines: return 2; case SpvExecutionModeInputLinesAdjacency: return 4; case SpvExecutionModeTriangles: return 3; case SpvExecutionModeInputTrianglesAdjacency: return 6; default: assert(!"Invalid GS input mode"); return 0; } } static bool vtn_handle_preamble_instruction(struct vtn_builder *b, SpvOp opcode, const uint32_t *w, unsigned count) { switch (opcode) { case SpvOpSource: case SpvOpSourceExtension: case SpvOpExtension: /* Unhandled, but these are for debug so that's ok. */ break; case SpvOpCapability: switch ((SpvCapability)w[1]) { case SpvCapabilityMatrix: case SpvCapabilityShader: /* All shaders support these */ break; case SpvCapabilityGeometry: assert(b->shader->stage == MESA_SHADER_GEOMETRY); break; default: assert(!"Unsupported capability"); } break; case SpvOpExtInstImport: vtn_handle_extension(b, opcode, w, count); break; case SpvOpMemoryModel: assert(w[1] == SpvAddressingModelLogical); assert(w[2] == SpvMemoryModelGLSL450); break; case SpvOpEntryPoint: assert(b->entry_point == NULL); b->entry_point = &b->values[w[2]]; b->execution_model = w[1]; break; case SpvOpExecutionMode: assert(b->entry_point == &b->values[w[1]]); SpvExecutionMode mode = w[2]; switch(mode) { case SpvExecutionModeOriginUpperLeft: case SpvExecutionModeOriginLowerLeft: b->origin_upper_left = (mode == SpvExecutionModeOriginUpperLeft); break; case SpvExecutionModeEarlyFragmentTests: assert(b->shader->stage == MESA_SHADER_FRAGMENT); b->shader->info.fs.early_fragment_tests = true; break; case SpvExecutionModeInvocations: assert(b->shader->stage == MESA_SHADER_GEOMETRY); b->shader->info.gs.invocations = MAX2(1, w[3]); break; case SpvExecutionModeDepthReplacing: assert(b->shader->stage == MESA_SHADER_FRAGMENT); b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_ANY; break; case SpvExecutionModeDepthGreater: assert(b->shader->stage == MESA_SHADER_FRAGMENT); b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_GREATER; break; case SpvExecutionModeDepthLess: assert(b->shader->stage == MESA_SHADER_FRAGMENT); b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_LESS; break; case SpvExecutionModeDepthUnchanged: assert(b->shader->stage == MESA_SHADER_FRAGMENT); b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_UNCHANGED; break; case SpvExecutionModeLocalSize: assert(b->shader->stage == MESA_SHADER_COMPUTE); b->shader->info.cs.local_size[0] = w[3]; b->shader->info.cs.local_size[1] = w[4]; b->shader->info.cs.local_size[2] = w[5]; break; case SpvExecutionModeLocalSizeHint: break; /* Nothing do do with this */ case SpvExecutionModeOutputVertices: assert(b->shader->stage == MESA_SHADER_GEOMETRY); b->shader->info.gs.vertices_out = w[3]; break; case SpvExecutionModeInputPoints: case SpvExecutionModeInputLines: case SpvExecutionModeInputLinesAdjacency: case SpvExecutionModeTriangles: case SpvExecutionModeInputTrianglesAdjacency: case SpvExecutionModeQuads: case SpvExecutionModeIsolines: if (b->shader->stage == MESA_SHADER_GEOMETRY) { b->shader->info.gs.vertices_in = vertices_in_from_spv_execution_mode(mode); } else { assert(!"Tesselation shaders not yet supported"); } break; case SpvExecutionModeOutputPoints: case SpvExecutionModeOutputLineStrip: case SpvExecutionModeOutputTriangleStrip: assert(b->shader->stage == MESA_SHADER_GEOMETRY); b->shader->info.gs.output_primitive = gl_primitive_from_spv_execution_mode(mode); break; case SpvExecutionModeSpacingEqual: case SpvExecutionModeSpacingFractionalEven: case SpvExecutionModeSpacingFractionalOdd: case SpvExecutionModeVertexOrderCw: case SpvExecutionModeVertexOrderCcw: case SpvExecutionModePointMode: assert(!"TODO: Add tessellation metadata"); break; case SpvExecutionModePixelCenterInteger: case SpvExecutionModeXfb: assert(!"Unhandled execution mode"); break; case SpvExecutionModeVecTypeHint: case SpvExecutionModeContractionOff: break; /* OpenCL */ } break; case SpvOpString: vtn_push_value(b, w[1], vtn_value_type_string)->str = vtn_string_literal(b, &w[2], count - 2); break; case SpvOpName: b->values[w[1]].name = vtn_string_literal(b, &w[2], count - 2); break; case SpvOpMemberName: /* TODO */ break; case SpvOpLine: break; /* Ignored for now */ case SpvOpDecorationGroup: case SpvOpDecorate: case SpvOpMemberDecorate: case SpvOpGroupDecorate: case SpvOpGroupMemberDecorate: vtn_handle_decoration(b, opcode, w, count); break; case SpvOpTypeVoid: case SpvOpTypeBool: case SpvOpTypeInt: case SpvOpTypeFloat: case SpvOpTypeVector: case SpvOpTypeMatrix: case SpvOpTypeImage: case SpvOpTypeSampler: case SpvOpTypeSampledImage: case SpvOpTypeArray: case SpvOpTypeRuntimeArray: case SpvOpTypeStruct: case SpvOpTypeOpaque: case SpvOpTypePointer: case SpvOpTypeFunction: case SpvOpTypeEvent: case SpvOpTypeDeviceEvent: case SpvOpTypeReserveId: case SpvOpTypeQueue: case SpvOpTypePipe: vtn_handle_type(b, opcode, w, count); break; case SpvOpConstantTrue: case SpvOpConstantFalse: case SpvOpConstant: case SpvOpConstantComposite: case SpvOpConstantSampler: case SpvOpSpecConstantTrue: case SpvOpSpecConstantFalse: case SpvOpSpecConstant: case SpvOpSpecConstantComposite: vtn_handle_constant(b, opcode, w, count); break; case SpvOpVariable: vtn_handle_variables(b, opcode, w, count); break; default: return false; /* End of preamble */ } return true; } static bool vtn_handle_first_cfg_pass_instruction(struct vtn_builder *b, SpvOp opcode, const uint32_t *w, unsigned count) { switch (opcode) { case SpvOpFunction: { assert(b->func == NULL); b->func = rzalloc(b, struct vtn_function); const struct glsl_type *result_type = vtn_value(b, w[1], vtn_value_type_type)->type->type; struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_function); val->func = b->func; const struct glsl_type *func_type = vtn_value(b, w[4], vtn_value_type_type)->type->type; assert(glsl_get_function_return_type(func_type) == result_type); nir_function *func = nir_function_create(b->shader, ralloc_strdup(b->shader, val->name)); nir_function_overload *overload = nir_function_overload_create(func); overload->num_params = glsl_get_length(func_type); overload->params = ralloc_array(overload, nir_parameter, overload->num_params); for (unsigned i = 0; i < overload->num_params; i++) { const struct glsl_function_param *param = glsl_get_function_param(func_type, i); overload->params[i].type = param->type; if (param->in) { if (param->out) { overload->params[i].param_type = nir_parameter_inout; } else { overload->params[i].param_type = nir_parameter_in; } } else { if (param->out) { overload->params[i].param_type = nir_parameter_out; } else { assert(!"Parameter is neither in nor out"); } } } overload->return_type = glsl_get_function_return_type(func_type); b->func->impl = nir_function_impl_create(overload); if (!glsl_type_is_void(overload->return_type)) { b->func->impl->return_var = nir_local_variable_create(b->func->impl, overload->return_type, "retval"); } b->func_param_idx = 0; break; } case SpvOpFunctionEnd: b->func->end = w; b->func = NULL; break; case SpvOpFunctionParameter: { struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_deref); assert(b->func_param_idx < b->func->impl->num_params); unsigned idx = b->func_param_idx++; nir_variable *param = nir_local_variable_create(b->func->impl, b->func->impl->overload->params[idx].type, val->name); b->func->impl->params[idx] = param; val->deref = nir_deref_var_create(b, param); val->deref_type = vtn_value(b, w[1], vtn_value_type_type)->type; break; } case SpvOpLabel: { assert(b->block == NULL); b->block = rzalloc(b, struct vtn_block); b->block->label = w; vtn_push_value(b, w[1], vtn_value_type_block)->block = b->block; if (b->func->start_block == NULL) { /* This is the first block encountered for this function. In this * case, we set the start block and add it to the list of * implemented functions that we'll walk later. */ b->func->start_block = b->block; exec_list_push_tail(&b->functions, &b->func->node); } break; } case SpvOpBranch: case SpvOpBranchConditional: case SpvOpSwitch: case SpvOpKill: case SpvOpReturn: case SpvOpReturnValue: case SpvOpUnreachable: assert(b->block); b->block->branch = w; b->block = NULL; break; case SpvOpSelectionMerge: case SpvOpLoopMerge: assert(b->block && b->block->merge_op == SpvOpNop); b->block->merge_op = opcode; b->block->merge_block_id = w[1]; break; default: /* Continue on as per normal */ return true; } return true; } static bool vtn_handle_body_instruction(struct vtn_builder *b, SpvOp opcode, const uint32_t *w, unsigned count) { switch (opcode) { case SpvOpLabel: { struct vtn_block *block = vtn_value(b, w[1], vtn_value_type_block)->block; assert(block->block == NULL); block->block = nir_cursor_current_block(b->nb.cursor); break; } case SpvOpLoopMerge: case SpvOpSelectionMerge: /* This is handled by cfg pre-pass and walk_blocks */ break; case SpvOpUndef: vtn_push_value(b, w[2], vtn_value_type_undef); break; case SpvOpExtInst: vtn_handle_extension(b, opcode, w, count); break; case SpvOpVariable: case SpvOpLoad: case SpvOpStore: case SpvOpCopyMemory: case SpvOpCopyMemorySized: case SpvOpAccessChain: case SpvOpInBoundsAccessChain: case SpvOpArrayLength: vtn_handle_variables(b, opcode, w, count); break; case SpvOpFunctionCall: vtn_handle_function_call(b, opcode, w, count); break; case SpvOpSampledImage: case SpvOpImageSampleImplicitLod: case SpvOpImageSampleExplicitLod: case SpvOpImageSampleDrefImplicitLod: case SpvOpImageSampleDrefExplicitLod: case SpvOpImageSampleProjImplicitLod: case SpvOpImageSampleProjExplicitLod: case SpvOpImageSampleProjDrefImplicitLod: case SpvOpImageSampleProjDrefExplicitLod: case SpvOpImageFetch: case SpvOpImageGather: case SpvOpImageDrefGather: case SpvOpImageQuerySizeLod: case SpvOpImageQuerySize: case SpvOpImageQueryLod: case SpvOpImageQueryLevels: case SpvOpImageQuerySamples: vtn_handle_texture(b, opcode, w, count); break; case SpvOpImageRead: case SpvOpImageWrite: case SpvOpImageTexelPointer: vtn_handle_image(b, opcode, w, count); break; case SpvOpAtomicExchange: case SpvOpAtomicCompareExchange: case SpvOpAtomicCompareExchangeWeak: case SpvOpAtomicIIncrement: case SpvOpAtomicIDecrement: case SpvOpAtomicIAdd: case SpvOpAtomicISub: case SpvOpAtomicSMin: case SpvOpAtomicUMin: case SpvOpAtomicSMax: case SpvOpAtomicUMax: case SpvOpAtomicAnd: case SpvOpAtomicOr: case SpvOpAtomicXor: { struct vtn_value *pointer = vtn_untyped_value(b, w[3]); if (pointer->value_type == vtn_value_type_image_pointer) { vtn_handle_image(b, opcode, w, count); } else { assert(!"Atomic buffers not yet implemented"); } } case SpvOpSNegate: case SpvOpFNegate: case SpvOpNot: case SpvOpAny: case SpvOpAll: case SpvOpConvertFToU: case SpvOpConvertFToS: case SpvOpConvertSToF: case SpvOpConvertUToF: case SpvOpUConvert: case SpvOpSConvert: case SpvOpFConvert: case SpvOpConvertPtrToU: case SpvOpConvertUToPtr: case SpvOpPtrCastToGeneric: case SpvOpGenericCastToPtr: case SpvOpBitcast: case SpvOpIsNan: case SpvOpIsInf: case SpvOpIsFinite: case SpvOpIsNormal: case SpvOpSignBitSet: case SpvOpLessOrGreater: case SpvOpOrdered: case SpvOpUnordered: case SpvOpIAdd: case SpvOpFAdd: case SpvOpISub: case SpvOpFSub: case SpvOpIMul: case SpvOpFMul: case SpvOpUDiv: case SpvOpSDiv: case SpvOpFDiv: case SpvOpUMod: case SpvOpSRem: case SpvOpSMod: case SpvOpFRem: case SpvOpFMod: case SpvOpVectorTimesScalar: case SpvOpDot: case SpvOpShiftRightLogical: case SpvOpShiftRightArithmetic: case SpvOpShiftLeftLogical: case SpvOpLogicalOr: case SpvOpLogicalEqual: case SpvOpLogicalNotEqual: case SpvOpLogicalAnd: case SpvOpBitwiseOr: case SpvOpBitwiseXor: case SpvOpBitwiseAnd: case SpvOpSelect: case SpvOpIEqual: case SpvOpFOrdEqual: case SpvOpFUnordEqual: case SpvOpINotEqual: case SpvOpFOrdNotEqual: case SpvOpFUnordNotEqual: case SpvOpULessThan: case SpvOpSLessThan: case SpvOpFOrdLessThan: case SpvOpFUnordLessThan: case SpvOpUGreaterThan: case SpvOpSGreaterThan: case SpvOpFOrdGreaterThan: case SpvOpFUnordGreaterThan: case SpvOpULessThanEqual: case SpvOpSLessThanEqual: case SpvOpFOrdLessThanEqual: case SpvOpFUnordLessThanEqual: case SpvOpUGreaterThanEqual: case SpvOpSGreaterThanEqual: case SpvOpFOrdGreaterThanEqual: case SpvOpFUnordGreaterThanEqual: case SpvOpDPdx: case SpvOpDPdy: case SpvOpFwidth: case SpvOpDPdxFine: case SpvOpDPdyFine: case SpvOpFwidthFine: case SpvOpDPdxCoarse: case SpvOpDPdyCoarse: case SpvOpFwidthCoarse: vtn_handle_alu(b, opcode, w, count); break; case SpvOpTranspose: case SpvOpOuterProduct: case SpvOpMatrixTimesScalar: case SpvOpVectorTimesMatrix: case SpvOpMatrixTimesVector: case SpvOpMatrixTimesMatrix: vtn_handle_matrix_alu(b, opcode, w, count); break; case SpvOpVectorExtractDynamic: case SpvOpVectorInsertDynamic: case SpvOpVectorShuffle: case SpvOpCompositeConstruct: case SpvOpCompositeExtract: case SpvOpCompositeInsert: case SpvOpCopyObject: vtn_handle_composite(b, opcode, w, count); break; case SpvOpPhi: vtn_handle_phi_first_pass(b, w); break; case SpvOpEmitVertex: case SpvOpEndPrimitive: case SpvOpEmitStreamVertex: case SpvOpEndStreamPrimitive: case SpvOpControlBarrier: case SpvOpMemoryBarrier: vtn_handle_barrier(b, opcode, w, count); break; default: unreachable("Unhandled opcode"); } return true; } static void vtn_walk_blocks(struct vtn_builder *b, struct vtn_block *start, struct vtn_block *break_block, struct vtn_block *cont_block, struct vtn_block *end_block) { struct vtn_block *block = start; while (block != end_block) { if (block->merge_op == SpvOpLoopMerge) { /* This is the jump into a loop. */ struct vtn_block *new_cont_block = block; struct vtn_block *new_break_block = vtn_value(b, block->merge_block_id, vtn_value_type_block)->block; nir_loop *loop = nir_loop_create(b->shader); nir_cf_node_insert(b->nb.cursor, &loop->cf_node); /* Reset the merge_op to prerevent infinite recursion */ block->merge_op = SpvOpNop; b->nb.cursor = nir_after_cf_list(&loop->body); vtn_walk_blocks(b, block, new_break_block, new_cont_block, NULL); b->nb.cursor = nir_after_cf_node(&loop->cf_node); block = new_break_block; continue; } const uint32_t *w = block->branch; SpvOp branch_op = w[0] & SpvOpCodeMask; b->block = block; vtn_foreach_instruction(b, block->label, block->branch, vtn_handle_body_instruction); nir_block *cur_block = nir_cursor_current_block(b->nb.cursor); assert(cur_block == block->block); _mesa_hash_table_insert(b->block_table, cur_block, block); switch (branch_op) { case SpvOpBranch: { struct vtn_block *branch_block = vtn_value(b, w[1], vtn_value_type_block)->block; if (branch_block == break_block) { nir_jump_instr *jump = nir_jump_instr_create(b->shader, nir_jump_break); nir_builder_instr_insert(&b->nb, &jump->instr); return; } else if (branch_block == cont_block) { nir_jump_instr *jump = nir_jump_instr_create(b->shader, nir_jump_continue); nir_builder_instr_insert(&b->nb, &jump->instr); return; } else if (branch_block == end_block) { /* We're branching to the merge block of an if, since for loops * and functions end_block == NULL, so we're done here. */ return; } else { /* We're branching to another block, and according to the rules, * we can only branch to another block with one predecessor (so * we're the only one jumping to it) so we can just process it * next. */ block = branch_block; continue; } } case SpvOpBranchConditional: { /* Gather up the branch blocks */ struct vtn_block *then_block = vtn_value(b, w[2], vtn_value_type_block)->block; struct vtn_block *else_block = vtn_value(b, w[3], vtn_value_type_block)->block; nir_if *if_stmt = nir_if_create(b->shader); if_stmt->condition = nir_src_for_ssa(vtn_ssa_value(b, w[1])->def); nir_cf_node_insert(b->nb.cursor, &if_stmt->cf_node); if (then_block == break_block) { nir_jump_instr *jump = nir_jump_instr_create(b->shader, nir_jump_break); nir_instr_insert_after_cf_list(&if_stmt->then_list, &jump->instr); block = else_block; } else if (else_block == break_block) { nir_jump_instr *jump = nir_jump_instr_create(b->shader, nir_jump_break); nir_instr_insert_after_cf_list(&if_stmt->else_list, &jump->instr); block = then_block; } else if (then_block == cont_block) { nir_jump_instr *jump = nir_jump_instr_create(b->shader, nir_jump_continue); nir_instr_insert_after_cf_list(&if_stmt->then_list, &jump->instr); block = else_block; } else if (else_block == cont_block) { nir_jump_instr *jump = nir_jump_instr_create(b->shader, nir_jump_continue); nir_instr_insert_after_cf_list(&if_stmt->else_list, &jump->instr); block = then_block; } else { /* According to the rules we're branching to two blocks that don't * have any other predecessors, so we can handle this as a * conventional if. */ assert(block->merge_op == SpvOpSelectionMerge); struct vtn_block *merge_block = vtn_value(b, block->merge_block_id, vtn_value_type_block)->block; b->nb.cursor = nir_after_cf_list(&if_stmt->then_list); vtn_walk_blocks(b, then_block, break_block, cont_block, merge_block); b->nb.cursor = nir_after_cf_list(&if_stmt->else_list); vtn_walk_blocks(b, else_block, break_block, cont_block, merge_block); b->nb.cursor = nir_after_cf_node(&if_stmt->cf_node); block = merge_block; continue; } /* If we got here then we inserted a predicated break or continue * above and we need to handle the other case. We already set * `block` above to indicate what block to visit after the * predicated break. */ /* It's possible that the other branch is also a break/continue. * If it is, we handle that here. */ if (block == break_block) { nir_jump_instr *jump = nir_jump_instr_create(b->shader, nir_jump_break); nir_builder_instr_insert(&b->nb, &jump->instr); return; } else if (block == cont_block) { nir_jump_instr *jump = nir_jump_instr_create(b->shader, nir_jump_continue); nir_builder_instr_insert(&b->nb, &jump->instr); return; } /* If we got here then there was a predicated break/continue but * the other half of the if has stuff in it. `block` was already * set above so there is nothing left for us to do. */ continue; } case SpvOpReturn: { nir_jump_instr *jump = nir_jump_instr_create(b->shader, nir_jump_return); nir_builder_instr_insert(&b->nb, &jump->instr); return; } case SpvOpReturnValue: { struct vtn_ssa_value *src = vtn_ssa_value(b, w[1]); vtn_variable_store(b, src, nir_deref_var_create(b, b->impl->return_var), NULL); nir_jump_instr *jump = nir_jump_instr_create(b->shader, nir_jump_return); nir_builder_instr_insert(&b->nb, &jump->instr); return; } case SpvOpKill: { nir_intrinsic_instr *discard = nir_intrinsic_instr_create(b->shader, nir_intrinsic_discard); nir_builder_instr_insert(&b->nb, &discard->instr); return; } case SpvOpSwitch: case SpvOpUnreachable: default: unreachable("Unhandled opcode"); } } } nir_shader * spirv_to_nir(const uint32_t *words, size_t word_count, gl_shader_stage stage, const nir_shader_compiler_options *options) { const uint32_t *word_end = words + word_count; /* Handle the SPIR-V header (first 4 dwords) */ assert(word_count > 5); assert(words[0] == SpvMagicNumber); assert(words[1] >= 0x10000); /* words[2] == generator magic */ unsigned value_id_bound = words[3]; assert(words[4] == 0); words+= 5; nir_shader *shader = nir_shader_create(NULL, stage, options); /* Initialize the stn_builder object */ struct vtn_builder *b = rzalloc(NULL, struct vtn_builder); b->shader = shader; b->value_id_bound = value_id_bound; b->values = rzalloc_array(b, struct vtn_value, value_id_bound); exec_list_make_empty(&b->functions); /* XXX: We shouldn't need these defaults */ if (b->shader->stage == MESA_SHADER_GEOMETRY) { b->shader->info.gs.vertices_in = 3; b->shader->info.gs.output_primitive = 4; /* GL_TRIANGLES */ } /* Handle all the preamble instructions */ words = vtn_foreach_instruction(b, words, word_end, vtn_handle_preamble_instruction); /* Do a very quick CFG analysis pass */ vtn_foreach_instruction(b, words, word_end, vtn_handle_first_cfg_pass_instruction); foreach_list_typed(struct vtn_function, func, node, &b->functions) { b->impl = func->impl; b->const_table = _mesa_hash_table_create(b, _mesa_hash_pointer, _mesa_key_pointer_equal); b->block_table = _mesa_hash_table_create(b, _mesa_hash_pointer, _mesa_key_pointer_equal); nir_builder_init(&b->nb, b->impl); b->nb.cursor = nir_after_cf_list(&b->impl->body); vtn_walk_blocks(b, func->start_block, NULL, NULL, NULL); vtn_foreach_instruction(b, func->start_block->label, func->end, vtn_handle_phi_second_pass); } /* Because we can still have output reads in NIR, we need to lower * outputs to temporaries before we are truely finished. */ nir_lower_outputs_to_temporaries(shader); ralloc_free(b); return shader; }