/* * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #include #include #include #include #include "anv_private.h" #include "anv_measure.h" #include "genxml/gen8_pack.h" #include "genxml/genX_bits.h" #include "perf/intel_perf.h" #include "util/debug.h" #include "util/perf/u_trace.h" /** \file anv_batch_chain.c * * This file contains functions related to anv_cmd_buffer as a data * structure. This involves everything required to create and destroy * the actual batch buffers as well as link them together and handle * relocations and surface state. It specifically does *not* contain any * handling of actual vkCmd calls beyond vkCmdExecuteCommands. */ /*-----------------------------------------------------------------------* * Functions related to anv_reloc_list *-----------------------------------------------------------------------*/ VkResult anv_reloc_list_init(struct anv_reloc_list *list, const VkAllocationCallbacks *alloc) { memset(list, 0, sizeof(*list)); return VK_SUCCESS; } static VkResult anv_reloc_list_init_clone(struct anv_reloc_list *list, const VkAllocationCallbacks *alloc, const struct anv_reloc_list *other_list) { list->num_relocs = other_list->num_relocs; list->array_length = other_list->array_length; if (list->num_relocs > 0) { list->relocs = vk_alloc(alloc, list->array_length * sizeof(*list->relocs), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (list->relocs == NULL) return vk_error(NULL, VK_ERROR_OUT_OF_HOST_MEMORY); list->reloc_bos = vk_alloc(alloc, list->array_length * sizeof(*list->reloc_bos), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (list->reloc_bos == NULL) { vk_free(alloc, list->relocs); return vk_error(NULL, VK_ERROR_OUT_OF_HOST_MEMORY); } memcpy(list->relocs, other_list->relocs, list->array_length * sizeof(*list->relocs)); memcpy(list->reloc_bos, other_list->reloc_bos, list->array_length * sizeof(*list->reloc_bos)); } else { list->relocs = NULL; list->reloc_bos = NULL; } list->dep_words = other_list->dep_words; if (list->dep_words > 0) { list->deps = vk_alloc(alloc, list->dep_words * sizeof(BITSET_WORD), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); memcpy(list->deps, other_list->deps, list->dep_words * sizeof(BITSET_WORD)); } else { list->deps = NULL; } return VK_SUCCESS; } void anv_reloc_list_finish(struct anv_reloc_list *list, const VkAllocationCallbacks *alloc) { vk_free(alloc, list->relocs); vk_free(alloc, list->reloc_bos); vk_free(alloc, list->deps); } static VkResult anv_reloc_list_grow(struct anv_reloc_list *list, const VkAllocationCallbacks *alloc, size_t num_additional_relocs) { if (list->num_relocs + num_additional_relocs <= list->array_length) return VK_SUCCESS; size_t new_length = MAX2(16, list->array_length * 2); while (new_length < list->num_relocs + num_additional_relocs) new_length *= 2; struct drm_i915_gem_relocation_entry *new_relocs = vk_realloc(alloc, list->relocs, new_length * sizeof(*list->relocs), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (new_relocs == NULL) return vk_error(NULL, VK_ERROR_OUT_OF_HOST_MEMORY); list->relocs = new_relocs; struct anv_bo **new_reloc_bos = vk_realloc(alloc, list->reloc_bos, new_length * sizeof(*list->reloc_bos), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (new_reloc_bos == NULL) return vk_error(NULL, VK_ERROR_OUT_OF_HOST_MEMORY); list->reloc_bos = new_reloc_bos; list->array_length = new_length; return VK_SUCCESS; } static VkResult anv_reloc_list_grow_deps(struct anv_reloc_list *list, const VkAllocationCallbacks *alloc, uint32_t min_num_words) { if (min_num_words <= list->dep_words) return VK_SUCCESS; uint32_t new_length = MAX2(32, list->dep_words * 2); while (new_length < min_num_words) new_length *= 2; BITSET_WORD *new_deps = vk_realloc(alloc, list->deps, new_length * sizeof(BITSET_WORD), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (new_deps == NULL) return vk_error(NULL, VK_ERROR_OUT_OF_HOST_MEMORY); list->deps = new_deps; /* Zero out the new data */ memset(list->deps + list->dep_words, 0, (new_length - list->dep_words) * sizeof(BITSET_WORD)); list->dep_words = new_length; return VK_SUCCESS; } #define READ_ONCE(x) (*(volatile __typeof__(x) *)&(x)) VkResult anv_reloc_list_add_bo(struct anv_reloc_list *list, const VkAllocationCallbacks *alloc, struct anv_bo *target_bo) { assert(!target_bo->is_wrapper); assert(anv_bo_is_pinned(target_bo)); uint32_t idx = target_bo->gem_handle; VkResult result = anv_reloc_list_grow_deps(list, alloc, (idx / BITSET_WORDBITS) + 1); if (unlikely(result != VK_SUCCESS)) return result; BITSET_SET(list->deps, idx); return VK_SUCCESS; } VkResult anv_reloc_list_add(struct anv_reloc_list *list, const VkAllocationCallbacks *alloc, uint32_t offset, struct anv_bo *target_bo, uint32_t delta, uint64_t *address_u64_out) { struct drm_i915_gem_relocation_entry *entry; int index; struct anv_bo *unwrapped_target_bo = anv_bo_unwrap(target_bo); uint64_t target_bo_offset = READ_ONCE(unwrapped_target_bo->offset); if (address_u64_out) *address_u64_out = target_bo_offset + delta; assert(unwrapped_target_bo->gem_handle > 0); assert(unwrapped_target_bo->refcount > 0); if (anv_bo_is_pinned(unwrapped_target_bo)) return anv_reloc_list_add_bo(list, alloc, unwrapped_target_bo); VkResult result = anv_reloc_list_grow(list, alloc, 1); if (result != VK_SUCCESS) return result; /* XXX: Can we use I915_EXEC_HANDLE_LUT? */ index = list->num_relocs++; list->reloc_bos[index] = target_bo; entry = &list->relocs[index]; entry->target_handle = -1; /* See also anv_cmd_buffer_process_relocs() */ entry->delta = delta; entry->offset = offset; entry->presumed_offset = target_bo_offset; entry->read_domains = 0; entry->write_domain = 0; VG(VALGRIND_CHECK_MEM_IS_DEFINED(entry, sizeof(*entry))); return VK_SUCCESS; } static void anv_reloc_list_clear(struct anv_reloc_list *list) { list->num_relocs = 0; if (list->dep_words > 0) memset(list->deps, 0, list->dep_words * sizeof(BITSET_WORD)); } static VkResult anv_reloc_list_append(struct anv_reloc_list *list, const VkAllocationCallbacks *alloc, struct anv_reloc_list *other, uint32_t offset) { VkResult result = anv_reloc_list_grow(list, alloc, other->num_relocs); if (result != VK_SUCCESS) return result; if (other->num_relocs > 0) { memcpy(&list->relocs[list->num_relocs], &other->relocs[0], other->num_relocs * sizeof(other->relocs[0])); memcpy(&list->reloc_bos[list->num_relocs], &other->reloc_bos[0], other->num_relocs * sizeof(other->reloc_bos[0])); for (uint32_t i = 0; i < other->num_relocs; i++) list->relocs[i + list->num_relocs].offset += offset; list->num_relocs += other->num_relocs; } anv_reloc_list_grow_deps(list, alloc, other->dep_words); for (uint32_t w = 0; w < other->dep_words; w++) list->deps[w] |= other->deps[w]; return VK_SUCCESS; } /*-----------------------------------------------------------------------* * Functions related to anv_batch *-----------------------------------------------------------------------*/ void * anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords) { if (batch->next + num_dwords * 4 > batch->end) { VkResult result = batch->extend_cb(batch, batch->user_data); if (result != VK_SUCCESS) { anv_batch_set_error(batch, result); return NULL; } } void *p = batch->next; batch->next += num_dwords * 4; assert(batch->next <= batch->end); return p; } struct anv_address anv_batch_address(struct anv_batch *batch, void *batch_location) { assert(batch->start <= batch_location); /* Allow a jump at the current location of the batch. */ assert(batch->next >= batch_location); return anv_address_add(batch->start_addr, batch_location - batch->start); } void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other) { uint32_t size, offset; size = other->next - other->start; assert(size % 4 == 0); if (batch->next + size > batch->end) { VkResult result = batch->extend_cb(batch, batch->user_data); if (result != VK_SUCCESS) { anv_batch_set_error(batch, result); return; } } assert(batch->next + size <= batch->end); VG(VALGRIND_CHECK_MEM_IS_DEFINED(other->start, size)); memcpy(batch->next, other->start, size); offset = batch->next - batch->start; VkResult result = anv_reloc_list_append(batch->relocs, batch->alloc, other->relocs, offset); if (result != VK_SUCCESS) { anv_batch_set_error(batch, result); return; } batch->next += size; } /*-----------------------------------------------------------------------* * Functions related to anv_batch_bo *-----------------------------------------------------------------------*/ static VkResult anv_batch_bo_create(struct anv_cmd_buffer *cmd_buffer, uint32_t size, struct anv_batch_bo **bbo_out) { VkResult result; struct anv_batch_bo *bbo = vk_zalloc(&cmd_buffer->vk.pool->alloc, sizeof(*bbo), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (bbo == NULL) return vk_error(cmd_buffer, VK_ERROR_OUT_OF_HOST_MEMORY); result = anv_bo_pool_alloc(&cmd_buffer->device->batch_bo_pool, size, &bbo->bo); if (result != VK_SUCCESS) goto fail_alloc; result = anv_reloc_list_init(&bbo->relocs, &cmd_buffer->vk.pool->alloc); if (result != VK_SUCCESS) goto fail_bo_alloc; *bbo_out = bbo; return VK_SUCCESS; fail_bo_alloc: anv_bo_pool_free(&cmd_buffer->device->batch_bo_pool, bbo->bo); fail_alloc: vk_free(&cmd_buffer->vk.pool->alloc, bbo); return result; } static VkResult anv_batch_bo_clone(struct anv_cmd_buffer *cmd_buffer, const struct anv_batch_bo *other_bbo, struct anv_batch_bo **bbo_out) { VkResult result; struct anv_batch_bo *bbo = vk_alloc(&cmd_buffer->vk.pool->alloc, sizeof(*bbo), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (bbo == NULL) return vk_error(cmd_buffer, VK_ERROR_OUT_OF_HOST_MEMORY); result = anv_bo_pool_alloc(&cmd_buffer->device->batch_bo_pool, other_bbo->bo->size, &bbo->bo); if (result != VK_SUCCESS) goto fail_alloc; result = anv_reloc_list_init_clone(&bbo->relocs, &cmd_buffer->vk.pool->alloc, &other_bbo->relocs); if (result != VK_SUCCESS) goto fail_bo_alloc; bbo->length = other_bbo->length; memcpy(bbo->bo->map, other_bbo->bo->map, other_bbo->length); *bbo_out = bbo; return VK_SUCCESS; fail_bo_alloc: anv_bo_pool_free(&cmd_buffer->device->batch_bo_pool, bbo->bo); fail_alloc: vk_free(&cmd_buffer->vk.pool->alloc, bbo); return result; } static void anv_batch_bo_start(struct anv_batch_bo *bbo, struct anv_batch *batch, size_t batch_padding) { anv_batch_set_storage(batch, (struct anv_address) { .bo = bbo->bo, }, bbo->bo->map, bbo->bo->size - batch_padding); batch->relocs = &bbo->relocs; anv_reloc_list_clear(&bbo->relocs); } static void anv_batch_bo_continue(struct anv_batch_bo *bbo, struct anv_batch *batch, size_t batch_padding) { batch->start_addr = (struct anv_address) { .bo = bbo->bo, }; batch->start = bbo->bo->map; batch->next = bbo->bo->map + bbo->length; batch->end = bbo->bo->map + bbo->bo->size - batch_padding; batch->relocs = &bbo->relocs; } static void anv_batch_bo_finish(struct anv_batch_bo *bbo, struct anv_batch *batch) { assert(batch->start == bbo->bo->map); bbo->length = batch->next - batch->start; VG(VALGRIND_CHECK_MEM_IS_DEFINED(batch->start, bbo->length)); } static VkResult anv_batch_bo_grow(struct anv_cmd_buffer *cmd_buffer, struct anv_batch_bo *bbo, struct anv_batch *batch, size_t additional, size_t batch_padding) { assert(batch->start == bbo->bo->map); bbo->length = batch->next - batch->start; size_t new_size = bbo->bo->size; while (new_size <= bbo->length + additional + batch_padding) new_size *= 2; if (new_size == bbo->bo->size) return VK_SUCCESS; struct anv_bo *new_bo; VkResult result = anv_bo_pool_alloc(&cmd_buffer->device->batch_bo_pool, new_size, &new_bo); if (result != VK_SUCCESS) return result; memcpy(new_bo->map, bbo->bo->map, bbo->length); anv_bo_pool_free(&cmd_buffer->device->batch_bo_pool, bbo->bo); bbo->bo = new_bo; anv_batch_bo_continue(bbo, batch, batch_padding); return VK_SUCCESS; } static void anv_batch_bo_link(struct anv_cmd_buffer *cmd_buffer, struct anv_batch_bo *prev_bbo, struct anv_batch_bo *next_bbo, uint32_t next_bbo_offset) { const uint32_t bb_start_offset = prev_bbo->length - GFX8_MI_BATCH_BUFFER_START_length * 4; ASSERTED const uint32_t *bb_start = prev_bbo->bo->map + bb_start_offset; /* Make sure we're looking at a MI_BATCH_BUFFER_START */ assert(((*bb_start >> 29) & 0x07) == 0); assert(((*bb_start >> 23) & 0x3f) == 49); if (anv_use_relocations(cmd_buffer->device->physical)) { uint32_t reloc_idx = prev_bbo->relocs.num_relocs - 1; assert(prev_bbo->relocs.relocs[reloc_idx].offset == bb_start_offset + 4); prev_bbo->relocs.reloc_bos[reloc_idx] = next_bbo->bo; prev_bbo->relocs.relocs[reloc_idx].delta = next_bbo_offset; /* Use a bogus presumed offset to force a relocation */ prev_bbo->relocs.relocs[reloc_idx].presumed_offset = -1; } else { assert(anv_bo_is_pinned(prev_bbo->bo)); assert(anv_bo_is_pinned(next_bbo->bo)); write_reloc(cmd_buffer->device, prev_bbo->bo->map + bb_start_offset + 4, next_bbo->bo->offset + next_bbo_offset, true); } } static void anv_batch_bo_destroy(struct anv_batch_bo *bbo, struct anv_cmd_buffer *cmd_buffer) { anv_reloc_list_finish(&bbo->relocs, &cmd_buffer->vk.pool->alloc); anv_bo_pool_free(&cmd_buffer->device->batch_bo_pool, bbo->bo); vk_free(&cmd_buffer->vk.pool->alloc, bbo); } static VkResult anv_batch_bo_list_clone(const struct list_head *list, struct anv_cmd_buffer *cmd_buffer, struct list_head *new_list) { VkResult result = VK_SUCCESS; list_inithead(new_list); struct anv_batch_bo *prev_bbo = NULL; list_for_each_entry(struct anv_batch_bo, bbo, list, link) { struct anv_batch_bo *new_bbo = NULL; result = anv_batch_bo_clone(cmd_buffer, bbo, &new_bbo); if (result != VK_SUCCESS) break; list_addtail(&new_bbo->link, new_list); if (prev_bbo) anv_batch_bo_link(cmd_buffer, prev_bbo, new_bbo, 0); prev_bbo = new_bbo; } if (result != VK_SUCCESS) { list_for_each_entry_safe(struct anv_batch_bo, bbo, new_list, link) { list_del(&bbo->link); anv_batch_bo_destroy(bbo, cmd_buffer); } } return result; } /*-----------------------------------------------------------------------* * Functions related to anv_batch_bo *-----------------------------------------------------------------------*/ static struct anv_batch_bo * anv_cmd_buffer_current_batch_bo(struct anv_cmd_buffer *cmd_buffer) { return list_entry(cmd_buffer->batch_bos.prev, struct anv_batch_bo, link); } struct anv_address anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer) { struct anv_state_pool *pool = anv_binding_table_pool(cmd_buffer->device); struct anv_state *bt_block = u_vector_head(&cmd_buffer->bt_block_states); return (struct anv_address) { .bo = pool->block_pool.bo, .offset = bt_block->offset - pool->start_offset, }; } static void emit_batch_buffer_start(struct anv_cmd_buffer *cmd_buffer, struct anv_bo *bo, uint32_t offset) { /* In gfx8+ the address field grew to two dwords to accommodate 48 bit * offsets. The high 16 bits are in the last dword, so we can use the gfx8 * version in either case, as long as we set the instruction length in the * header accordingly. This means that we always emit three dwords here * and all the padding and adjustment we do in this file works for all * gens. */ #define GFX7_MI_BATCH_BUFFER_START_length 2 #define GFX7_MI_BATCH_BUFFER_START_length_bias 2 const uint32_t gfx7_length = GFX7_MI_BATCH_BUFFER_START_length - GFX7_MI_BATCH_BUFFER_START_length_bias; const uint32_t gfx8_length = GFX8_MI_BATCH_BUFFER_START_length - GFX8_MI_BATCH_BUFFER_START_length_bias; anv_batch_emit(&cmd_buffer->batch, GFX8_MI_BATCH_BUFFER_START, bbs) { bbs.DWordLength = cmd_buffer->device->info.ver < 8 ? gfx7_length : gfx8_length; bbs.SecondLevelBatchBuffer = Firstlevelbatch; bbs.AddressSpaceIndicator = ASI_PPGTT; bbs.BatchBufferStartAddress = (struct anv_address) { bo, offset }; } } static void cmd_buffer_chain_to_batch_bo(struct anv_cmd_buffer *cmd_buffer, struct anv_batch_bo *bbo) { struct anv_batch *batch = &cmd_buffer->batch; struct anv_batch_bo *current_bbo = anv_cmd_buffer_current_batch_bo(cmd_buffer); /* We set the end of the batch a little short so we would be sure we * have room for the chaining command. Since we're about to emit the * chaining command, let's set it back where it should go. */ batch->end += GFX8_MI_BATCH_BUFFER_START_length * 4; assert(batch->end == current_bbo->bo->map + current_bbo->bo->size); emit_batch_buffer_start(cmd_buffer, bbo->bo, 0); anv_batch_bo_finish(current_bbo, batch); } static void anv_cmd_buffer_record_chain_submit(struct anv_cmd_buffer *cmd_buffer_from, struct anv_cmd_buffer *cmd_buffer_to) { assert(!anv_use_relocations(cmd_buffer_from->device->physical)); uint32_t *bb_start = cmd_buffer_from->batch_end; struct anv_batch_bo *last_bbo = list_last_entry(&cmd_buffer_from->batch_bos, struct anv_batch_bo, link); struct anv_batch_bo *first_bbo = list_first_entry(&cmd_buffer_to->batch_bos, struct anv_batch_bo, link); struct GFX8_MI_BATCH_BUFFER_START gen_bb_start = { __anv_cmd_header(GFX8_MI_BATCH_BUFFER_START), .SecondLevelBatchBuffer = Firstlevelbatch, .AddressSpaceIndicator = ASI_PPGTT, .BatchBufferStartAddress = (struct anv_address) { first_bbo->bo, 0 }, }; struct anv_batch local_batch = { .start = last_bbo->bo->map, .end = last_bbo->bo->map + last_bbo->bo->size, .relocs = &last_bbo->relocs, .alloc = &cmd_buffer_from->vk.pool->alloc, }; __anv_cmd_pack(GFX8_MI_BATCH_BUFFER_START)(&local_batch, bb_start, &gen_bb_start); last_bbo->chained = true; } static void anv_cmd_buffer_record_end_submit(struct anv_cmd_buffer *cmd_buffer) { assert(!anv_use_relocations(cmd_buffer->device->physical)); struct anv_batch_bo *last_bbo = list_last_entry(&cmd_buffer->batch_bos, struct anv_batch_bo, link); last_bbo->chained = false; uint32_t *batch = cmd_buffer->batch_end; anv_pack_struct(batch, GFX8_MI_BATCH_BUFFER_END, __anv_cmd_header(GFX8_MI_BATCH_BUFFER_END)); } static VkResult anv_cmd_buffer_chain_batch(struct anv_batch *batch, void *_data) { struct anv_cmd_buffer *cmd_buffer = _data; struct anv_batch_bo *new_bbo = NULL; /* Cap reallocation to chunk. */ uint32_t alloc_size = MIN2(cmd_buffer->total_batch_size, ANV_MAX_CMD_BUFFER_BATCH_SIZE); VkResult result = anv_batch_bo_create(cmd_buffer, alloc_size, &new_bbo); if (result != VK_SUCCESS) return result; cmd_buffer->total_batch_size += alloc_size; struct anv_batch_bo **seen_bbo = u_vector_add(&cmd_buffer->seen_bbos); if (seen_bbo == NULL) { anv_batch_bo_destroy(new_bbo, cmd_buffer); return vk_error(cmd_buffer, VK_ERROR_OUT_OF_HOST_MEMORY); } *seen_bbo = new_bbo; cmd_buffer_chain_to_batch_bo(cmd_buffer, new_bbo); list_addtail(&new_bbo->link, &cmd_buffer->batch_bos); anv_batch_bo_start(new_bbo, batch, GFX8_MI_BATCH_BUFFER_START_length * 4); return VK_SUCCESS; } static VkResult anv_cmd_buffer_grow_batch(struct anv_batch *batch, void *_data) { struct anv_cmd_buffer *cmd_buffer = _data; struct anv_batch_bo *bbo = anv_cmd_buffer_current_batch_bo(cmd_buffer); anv_batch_bo_grow(cmd_buffer, bbo, &cmd_buffer->batch, 4096, GFX8_MI_BATCH_BUFFER_START_length * 4); return VK_SUCCESS; } /** Allocate a binding table * * This function allocates a binding table. This is a bit more complicated * than one would think due to a combination of Vulkan driver design and some * unfortunate hardware restrictions. * * The 3DSTATE_BINDING_TABLE_POINTERS_* packets only have a 16-bit field for * the binding table pointer which means that all binding tables need to live * in the bottom 64k of surface state base address. The way the GL driver has * classically dealt with this restriction is to emit all surface states * on-the-fly into the batch and have a batch buffer smaller than 64k. This * isn't really an option in Vulkan for a couple of reasons: * * 1) In Vulkan, we have growing (or chaining) batches so surface states have * to live in their own buffer and we have to be able to re-emit * STATE_BASE_ADDRESS as needed which requires a full pipeline stall. In * order to avoid emitting STATE_BASE_ADDRESS any more often than needed * (it's not that hard to hit 64k of just binding tables), we allocate * surface state objects up-front when VkImageView is created. In order * for this to work, surface state objects need to be allocated from a * global buffer. * * 2) We tried to design the surface state system in such a way that it's * already ready for bindless texturing. The way bindless texturing works * on our hardware is that you have a big pool of surface state objects * (with its own state base address) and the bindless handles are simply * offsets into that pool. With the architecture we chose, we already * have that pool and it's exactly the same pool that we use for regular * surface states so we should already be ready for bindless. * * 3) For render targets, we need to be able to fill out the surface states * later in vkBeginRenderPass so that we can assign clear colors * correctly. One way to do this would be to just create the surface * state data and then repeatedly copy it into the surface state BO every * time we have to re-emit STATE_BASE_ADDRESS. While this works, it's * rather annoying and just being able to allocate them up-front and * re-use them for the entire render pass. * * While none of these are technically blockers for emitting state on the fly * like we do in GL, the ability to have a single surface state pool is * simplifies things greatly. Unfortunately, it comes at a cost... * * Because of the 64k limitation of 3DSTATE_BINDING_TABLE_POINTERS_*, we can't * place the binding tables just anywhere in surface state base address. * Because 64k isn't a whole lot of space, we can't simply restrict the * surface state buffer to 64k, we have to be more clever. The solution we've * chosen is to have a block pool with a maximum size of 2G that starts at * zero and grows in both directions. All surface states are allocated from * the top of the pool (positive offsets) and we allocate blocks (< 64k) of * binding tables from the bottom of the pool (negative offsets). Every time * we allocate a new binding table block, we set surface state base address to * point to the bottom of the binding table block. This way all of the * binding tables in the block are in the bottom 64k of surface state base * address. When we fill out the binding table, we add the distance between * the bottom of our binding table block and zero of the block pool to the * surface state offsets so that they are correct relative to out new surface * state base address at the bottom of the binding table block. * * \see adjust_relocations_from_block_pool() * \see adjust_relocations_too_block_pool() * * \param[in] entries The number of surface state entries the binding * table should be able to hold. * * \param[out] state_offset The offset surface surface state base address * where the surface states live. This must be * added to the surface state offset when it is * written into the binding table entry. * * \return An anv_state representing the binding table */ struct anv_state anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer, uint32_t entries, uint32_t *state_offset) { struct anv_state *bt_block = u_vector_head(&cmd_buffer->bt_block_states); uint32_t bt_size = align_u32(entries * 4, 32); struct anv_state state = cmd_buffer->bt_next; if (bt_size > state.alloc_size) return (struct anv_state) { 0 }; state.alloc_size = bt_size; cmd_buffer->bt_next.offset += bt_size; cmd_buffer->bt_next.map += bt_size; cmd_buffer->bt_next.alloc_size -= bt_size; if (cmd_buffer->device->info.verx10 >= 125) { /* We're using 3DSTATE_BINDING_TABLE_POOL_ALLOC to change the binding * table address independently from surface state base address. We no * longer need any sort of offsetting. */ *state_offset = 0; } else { assert(bt_block->offset < 0); *state_offset = -bt_block->offset; } return state; } struct anv_state anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer) { struct isl_device *isl_dev = &cmd_buffer->device->isl_dev; return anv_state_stream_alloc(&cmd_buffer->surface_state_stream, isl_dev->ss.size, isl_dev->ss.align); } struct anv_state anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer, uint32_t size, uint32_t alignment) { return anv_state_stream_alloc(&cmd_buffer->dynamic_state_stream, size, alignment); } VkResult anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer) { struct anv_state *bt_block = u_vector_add(&cmd_buffer->bt_block_states); if (bt_block == NULL) { anv_batch_set_error(&cmd_buffer->batch, VK_ERROR_OUT_OF_HOST_MEMORY); return vk_error(cmd_buffer, VK_ERROR_OUT_OF_HOST_MEMORY); } *bt_block = anv_binding_table_pool_alloc(cmd_buffer->device); /* The bt_next state is a rolling state (we update it as we suballocate * from it) which is relative to the start of the binding table block. */ cmd_buffer->bt_next = *bt_block; cmd_buffer->bt_next.offset = 0; return VK_SUCCESS; } VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer) { struct anv_batch_bo *batch_bo = NULL; VkResult result; list_inithead(&cmd_buffer->batch_bos); cmd_buffer->total_batch_size = ANV_MIN_CMD_BUFFER_BATCH_SIZE; result = anv_batch_bo_create(cmd_buffer, cmd_buffer->total_batch_size, &batch_bo); if (result != VK_SUCCESS) return result; list_addtail(&batch_bo->link, &cmd_buffer->batch_bos); cmd_buffer->batch.alloc = &cmd_buffer->vk.pool->alloc; cmd_buffer->batch.user_data = cmd_buffer; if (cmd_buffer->device->can_chain_batches) { cmd_buffer->batch.extend_cb = anv_cmd_buffer_chain_batch; } else { cmd_buffer->batch.extend_cb = anv_cmd_buffer_grow_batch; } anv_batch_bo_start(batch_bo, &cmd_buffer->batch, GFX8_MI_BATCH_BUFFER_START_length * 4); int success = u_vector_init_pow2(&cmd_buffer->seen_bbos, 8, sizeof(struct anv_bo *)); if (!success) goto fail_batch_bo; *(struct anv_batch_bo **)u_vector_add(&cmd_buffer->seen_bbos) = batch_bo; success = u_vector_init(&cmd_buffer->bt_block_states, 8, sizeof(struct anv_state)); if (!success) goto fail_seen_bbos; result = anv_reloc_list_init(&cmd_buffer->surface_relocs, &cmd_buffer->vk.pool->alloc); if (result != VK_SUCCESS) goto fail_bt_blocks; cmd_buffer->last_ss_pool_center = 0; result = anv_cmd_buffer_new_binding_table_block(cmd_buffer); if (result != VK_SUCCESS) goto fail_bt_blocks; return VK_SUCCESS; fail_bt_blocks: u_vector_finish(&cmd_buffer->bt_block_states); fail_seen_bbos: u_vector_finish(&cmd_buffer->seen_bbos); fail_batch_bo: anv_batch_bo_destroy(batch_bo, cmd_buffer); return result; } void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer) { struct anv_state *bt_block; u_vector_foreach(bt_block, &cmd_buffer->bt_block_states) anv_binding_table_pool_free(cmd_buffer->device, *bt_block); u_vector_finish(&cmd_buffer->bt_block_states); anv_reloc_list_finish(&cmd_buffer->surface_relocs, &cmd_buffer->vk.pool->alloc); u_vector_finish(&cmd_buffer->seen_bbos); /* Destroy all of the batch buffers */ list_for_each_entry_safe(struct anv_batch_bo, bbo, &cmd_buffer->batch_bos, link) { list_del(&bbo->link); anv_batch_bo_destroy(bbo, cmd_buffer); } } void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer) { /* Delete all but the first batch bo */ assert(!list_is_empty(&cmd_buffer->batch_bos)); while (cmd_buffer->batch_bos.next != cmd_buffer->batch_bos.prev) { struct anv_batch_bo *bbo = anv_cmd_buffer_current_batch_bo(cmd_buffer); list_del(&bbo->link); anv_batch_bo_destroy(bbo, cmd_buffer); } assert(!list_is_empty(&cmd_buffer->batch_bos)); anv_batch_bo_start(anv_cmd_buffer_current_batch_bo(cmd_buffer), &cmd_buffer->batch, GFX8_MI_BATCH_BUFFER_START_length * 4); while (u_vector_length(&cmd_buffer->bt_block_states) > 1) { struct anv_state *bt_block = u_vector_remove(&cmd_buffer->bt_block_states); anv_binding_table_pool_free(cmd_buffer->device, *bt_block); } assert(u_vector_length(&cmd_buffer->bt_block_states) == 1); cmd_buffer->bt_next = *(struct anv_state *)u_vector_head(&cmd_buffer->bt_block_states); cmd_buffer->bt_next.offset = 0; anv_reloc_list_clear(&cmd_buffer->surface_relocs); cmd_buffer->last_ss_pool_center = 0; /* Reset the list of seen buffers */ cmd_buffer->seen_bbos.head = 0; cmd_buffer->seen_bbos.tail = 0; struct anv_batch_bo *first_bbo = anv_cmd_buffer_current_batch_bo(cmd_buffer); *(struct anv_batch_bo **)u_vector_add(&cmd_buffer->seen_bbos) = first_bbo; assert(!cmd_buffer->device->can_chain_batches || first_bbo->bo->size == ANV_MIN_CMD_BUFFER_BATCH_SIZE); cmd_buffer->total_batch_size = first_bbo->bo->size; } void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer) { struct anv_batch_bo *batch_bo = anv_cmd_buffer_current_batch_bo(cmd_buffer); if (cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_PRIMARY) { /* When we start a batch buffer, we subtract a certain amount of * padding from the end to ensure that we always have room to emit a * BATCH_BUFFER_START to chain to the next BO. We need to remove * that padding before we end the batch; otherwise, we may end up * with our BATCH_BUFFER_END in another BO. */ cmd_buffer->batch.end += GFX8_MI_BATCH_BUFFER_START_length * 4; assert(cmd_buffer->batch.start == batch_bo->bo->map); assert(cmd_buffer->batch.end == batch_bo->bo->map + batch_bo->bo->size); /* Save end instruction location to override it later. */ cmd_buffer->batch_end = cmd_buffer->batch.next; /* If we can chain this command buffer to another one, leave some place * for the jump instruction. */ batch_bo->chained = anv_cmd_buffer_is_chainable(cmd_buffer); if (batch_bo->chained) emit_batch_buffer_start(cmd_buffer, batch_bo->bo, 0); else anv_batch_emit(&cmd_buffer->batch, GFX8_MI_BATCH_BUFFER_END, bbe); /* Round batch up to an even number of dwords. */ if ((cmd_buffer->batch.next - cmd_buffer->batch.start) & 4) anv_batch_emit(&cmd_buffer->batch, GFX8_MI_NOOP, noop); cmd_buffer->exec_mode = ANV_CMD_BUFFER_EXEC_MODE_PRIMARY; } else { assert(cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_SECONDARY); /* If this is a secondary command buffer, we need to determine the * mode in which it will be executed with vkExecuteCommands. We * determine this statically here so that this stays in sync with the * actual ExecuteCommands implementation. */ const uint32_t length = cmd_buffer->batch.next - cmd_buffer->batch.start; if (!cmd_buffer->device->can_chain_batches) { cmd_buffer->exec_mode = ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT; } else if (cmd_buffer->device->physical->use_call_secondary) { cmd_buffer->exec_mode = ANV_CMD_BUFFER_EXEC_MODE_CALL_AND_RETURN; /* If the secondary command buffer begins & ends in the same BO and * its length is less than the length of CS prefetch, add some NOOPs * instructions so the last MI_BATCH_BUFFER_START is outside the CS * prefetch. */ if (cmd_buffer->batch_bos.next == cmd_buffer->batch_bos.prev) { const struct intel_device_info *devinfo = &cmd_buffer->device->info; /* Careful to have everything in signed integer. */ int32_t prefetch_len = devinfo->cs_prefetch_size; int32_t batch_len = cmd_buffer->batch.next - cmd_buffer->batch.start; for (int32_t i = 0; i < (prefetch_len - batch_len); i += 4) anv_batch_emit(&cmd_buffer->batch, GFX8_MI_NOOP, noop); } void *jump_addr = anv_batch_emitn(&cmd_buffer->batch, GFX8_MI_BATCH_BUFFER_START_length, GFX8_MI_BATCH_BUFFER_START, .AddressSpaceIndicator = ASI_PPGTT, .SecondLevelBatchBuffer = Firstlevelbatch) + (GFX8_MI_BATCH_BUFFER_START_BatchBufferStartAddress_start / 8); cmd_buffer->return_addr = anv_batch_address(&cmd_buffer->batch, jump_addr); /* The emit above may have caused us to chain batch buffers which * would mean that batch_bo is no longer valid. */ batch_bo = anv_cmd_buffer_current_batch_bo(cmd_buffer); } else if ((cmd_buffer->batch_bos.next == cmd_buffer->batch_bos.prev) && (length < ANV_MIN_CMD_BUFFER_BATCH_SIZE / 2)) { /* If the secondary has exactly one batch buffer in its list *and* * that batch buffer is less than half of the maximum size, we're * probably better of simply copying it into our batch. */ cmd_buffer->exec_mode = ANV_CMD_BUFFER_EXEC_MODE_EMIT; } else if (!(cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT)) { cmd_buffer->exec_mode = ANV_CMD_BUFFER_EXEC_MODE_CHAIN; /* In order to chain, we need this command buffer to contain an * MI_BATCH_BUFFER_START which will jump back to the calling batch. * It doesn't matter where it points now so long as has a valid * relocation. We'll adjust it later as part of the chaining * process. * * We set the end of the batch a little short so we would be sure we * have room for the chaining command. Since we're about to emit the * chaining command, let's set it back where it should go. */ cmd_buffer->batch.end += GFX8_MI_BATCH_BUFFER_START_length * 4; assert(cmd_buffer->batch.start == batch_bo->bo->map); assert(cmd_buffer->batch.end == batch_bo->bo->map + batch_bo->bo->size); emit_batch_buffer_start(cmd_buffer, batch_bo->bo, 0); assert(cmd_buffer->batch.start == batch_bo->bo->map); } else { cmd_buffer->exec_mode = ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN; } } anv_batch_bo_finish(batch_bo, &cmd_buffer->batch); } static VkResult anv_cmd_buffer_add_seen_bbos(struct anv_cmd_buffer *cmd_buffer, struct list_head *list) { list_for_each_entry(struct anv_batch_bo, bbo, list, link) { struct anv_batch_bo **bbo_ptr = u_vector_add(&cmd_buffer->seen_bbos); if (bbo_ptr == NULL) return vk_error(cmd_buffer, VK_ERROR_OUT_OF_HOST_MEMORY); *bbo_ptr = bbo; } return VK_SUCCESS; } void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary, struct anv_cmd_buffer *secondary) { anv_measure_add_secondary(primary, secondary); switch (secondary->exec_mode) { case ANV_CMD_BUFFER_EXEC_MODE_EMIT: anv_batch_emit_batch(&primary->batch, &secondary->batch); break; case ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT: { struct anv_batch_bo *bbo = anv_cmd_buffer_current_batch_bo(primary); unsigned length = secondary->batch.end - secondary->batch.start; anv_batch_bo_grow(primary, bbo, &primary->batch, length, GFX8_MI_BATCH_BUFFER_START_length * 4); anv_batch_emit_batch(&primary->batch, &secondary->batch); break; } case ANV_CMD_BUFFER_EXEC_MODE_CHAIN: { struct anv_batch_bo *first_bbo = list_first_entry(&secondary->batch_bos, struct anv_batch_bo, link); struct anv_batch_bo *last_bbo = list_last_entry(&secondary->batch_bos, struct anv_batch_bo, link); emit_batch_buffer_start(primary, first_bbo->bo, 0); struct anv_batch_bo *this_bbo = anv_cmd_buffer_current_batch_bo(primary); assert(primary->batch.start == this_bbo->bo->map); uint32_t offset = primary->batch.next - primary->batch.start; /* Make the tail of the secondary point back to right after the * MI_BATCH_BUFFER_START in the primary batch. */ anv_batch_bo_link(primary, last_bbo, this_bbo, offset); anv_cmd_buffer_add_seen_bbos(primary, &secondary->batch_bos); break; } case ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN: { struct list_head copy_list; VkResult result = anv_batch_bo_list_clone(&secondary->batch_bos, secondary, ©_list); if (result != VK_SUCCESS) return; /* FIXME */ anv_cmd_buffer_add_seen_bbos(primary, ©_list); struct anv_batch_bo *first_bbo = list_first_entry(©_list, struct anv_batch_bo, link); struct anv_batch_bo *last_bbo = list_last_entry(©_list, struct anv_batch_bo, link); cmd_buffer_chain_to_batch_bo(primary, first_bbo); list_splicetail(©_list, &primary->batch_bos); anv_batch_bo_continue(last_bbo, &primary->batch, GFX8_MI_BATCH_BUFFER_START_length * 4); break; } case ANV_CMD_BUFFER_EXEC_MODE_CALL_AND_RETURN: { struct anv_batch_bo *first_bbo = list_first_entry(&secondary->batch_bos, struct anv_batch_bo, link); uint64_t *write_return_addr = anv_batch_emitn(&primary->batch, GFX8_MI_STORE_DATA_IMM_length + 1 /* QWord write */, GFX8_MI_STORE_DATA_IMM, .Address = secondary->return_addr) + (GFX8_MI_STORE_DATA_IMM_ImmediateData_start / 8); emit_batch_buffer_start(primary, first_bbo->bo, 0); *write_return_addr = anv_address_physical(anv_batch_address(&primary->batch, primary->batch.next)); anv_cmd_buffer_add_seen_bbos(primary, &secondary->batch_bos); break; } default: assert(!"Invalid execution mode"); } anv_reloc_list_append(&primary->surface_relocs, &primary->vk.pool->alloc, &secondary->surface_relocs, 0); } struct anv_execbuf { struct drm_i915_gem_execbuffer2 execbuf; struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences; struct drm_i915_gem_exec_object2 * objects; uint32_t bo_count; struct anv_bo ** bos; /* Allocated length of the 'objects' and 'bos' arrays */ uint32_t array_length; uint32_t syncobj_count; uint32_t syncobj_array_length; struct drm_i915_gem_exec_fence * syncobjs; uint64_t * syncobj_values; /* List of relocations for surface states, only used with platforms not * using softpin. */ void * surface_states_relocs; uint32_t cmd_buffer_count; struct anv_query_pool *perf_query_pool; /* Indicates whether any of the command buffers have relocations. This * doesn't not necessarily mean we'll need the kernel to process them. It * might be that a previous execbuf has already placed things in the VMA * and we can make i915 skip the relocations. */ bool has_relocs; const VkAllocationCallbacks * alloc; VkSystemAllocationScope alloc_scope; int perf_query_pass; }; static void anv_execbuf_init(struct anv_execbuf *exec) { memset(exec, 0, sizeof(*exec)); } static void anv_execbuf_finish(struct anv_execbuf *exec) { vk_free(exec->alloc, exec->syncobjs); vk_free(exec->alloc, exec->syncobj_values); vk_free(exec->alloc, exec->surface_states_relocs); vk_free(exec->alloc, exec->objects); vk_free(exec->alloc, exec->bos); } static void anv_execbuf_add_ext(struct anv_execbuf *exec, uint32_t ext_name, struct i915_user_extension *ext) { __u64 *iter = &exec->execbuf.cliprects_ptr; exec->execbuf.flags |= I915_EXEC_USE_EXTENSIONS; while (*iter != 0) { iter = (__u64 *) &((struct i915_user_extension *)(uintptr_t)*iter)->next_extension; } ext->name = ext_name; *iter = (uintptr_t) ext; } static VkResult anv_execbuf_add_bo_bitset(struct anv_device *device, struct anv_execbuf *exec, uint32_t dep_words, BITSET_WORD *deps, uint32_t extra_flags); static VkResult anv_execbuf_add_bo(struct anv_device *device, struct anv_execbuf *exec, struct anv_bo *bo, struct anv_reloc_list *relocs, uint32_t extra_flags) { struct drm_i915_gem_exec_object2 *obj = NULL; bo = anv_bo_unwrap(bo); if (bo->exec_obj_index < exec->bo_count && exec->bos[bo->exec_obj_index] == bo) obj = &exec->objects[bo->exec_obj_index]; if (obj == NULL) { /* We've never seen this one before. Add it to the list and assign * an id that we can use later. */ if (exec->bo_count >= exec->array_length) { uint32_t new_len = exec->objects ? exec->array_length * 2 : 64; struct drm_i915_gem_exec_object2 *new_objects = vk_alloc(exec->alloc, new_len * sizeof(*new_objects), 8, exec->alloc_scope); if (new_objects == NULL) return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY); struct anv_bo **new_bos = vk_alloc(exec->alloc, new_len * sizeof(*new_bos), 8, exec->alloc_scope); if (new_bos == NULL) { vk_free(exec->alloc, new_objects); return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY); } if (exec->objects) { memcpy(new_objects, exec->objects, exec->bo_count * sizeof(*new_objects)); memcpy(new_bos, exec->bos, exec->bo_count * sizeof(*new_bos)); } vk_free(exec->alloc, exec->objects); vk_free(exec->alloc, exec->bos); exec->objects = new_objects; exec->bos = new_bos; exec->array_length = new_len; } assert(exec->bo_count < exec->array_length); bo->exec_obj_index = exec->bo_count++; obj = &exec->objects[bo->exec_obj_index]; exec->bos[bo->exec_obj_index] = bo; obj->handle = bo->gem_handle; obj->relocation_count = 0; obj->relocs_ptr = 0; obj->alignment = 0; obj->offset = bo->offset; obj->flags = bo->flags | extra_flags; obj->rsvd1 = 0; obj->rsvd2 = 0; } if (extra_flags & EXEC_OBJECT_WRITE) { obj->flags |= EXEC_OBJECT_WRITE; obj->flags &= ~EXEC_OBJECT_ASYNC; } if (relocs != NULL) { assert(obj->relocation_count == 0); if (relocs->num_relocs > 0) { /* This is the first time we've ever seen a list of relocations for * this BO. Go ahead and set the relocations and then walk the list * of relocations and add them all. */ exec->has_relocs = true; obj->relocation_count = relocs->num_relocs; obj->relocs_ptr = (uintptr_t) relocs->relocs; for (size_t i = 0; i < relocs->num_relocs; i++) { VkResult result; /* A quick sanity check on relocations */ assert(relocs->relocs[i].offset < bo->size); result = anv_execbuf_add_bo(device, exec, relocs->reloc_bos[i], NULL, extra_flags); if (result != VK_SUCCESS) return result; } } return anv_execbuf_add_bo_bitset(device, exec, relocs->dep_words, relocs->deps, extra_flags); } return VK_SUCCESS; } /* Add BO dependencies to execbuf */ static VkResult anv_execbuf_add_bo_bitset(struct anv_device *device, struct anv_execbuf *exec, uint32_t dep_words, BITSET_WORD *deps, uint32_t extra_flags) { for (uint32_t w = 0; w < dep_words; w++) { BITSET_WORD mask = deps[w]; while (mask) { int i = u_bit_scan(&mask); uint32_t gem_handle = w * BITSET_WORDBITS + i; struct anv_bo *bo = anv_device_lookup_bo(device, gem_handle); assert(bo->refcount > 0); VkResult result = anv_execbuf_add_bo(device, exec, bo, NULL, extra_flags); if (result != VK_SUCCESS) return result; } } return VK_SUCCESS; } static void anv_cmd_buffer_process_relocs(struct anv_cmd_buffer *cmd_buffer, struct anv_reloc_list *list) { for (size_t i = 0; i < list->num_relocs; i++) { list->relocs[i].target_handle = anv_bo_unwrap(list->reloc_bos[i])->exec_obj_index; } } static void adjust_relocations_from_state_pool(struct anv_state_pool *pool, struct anv_reloc_list *relocs, uint32_t last_pool_center_bo_offset) { assert(last_pool_center_bo_offset <= pool->block_pool.center_bo_offset); uint32_t delta = pool->block_pool.center_bo_offset - last_pool_center_bo_offset; for (size_t i = 0; i < relocs->num_relocs; i++) { /* All of the relocations from this block pool to other BO's should * have been emitted relative to the surface block pool center. We * need to add the center offset to make them relative to the * beginning of the actual GEM bo. */ relocs->relocs[i].offset += delta; } } static void adjust_relocations_to_state_pool(struct anv_state_pool *pool, struct anv_bo *from_bo, struct anv_reloc_list *relocs, uint32_t last_pool_center_bo_offset) { assert(!from_bo->is_wrapper); assert(last_pool_center_bo_offset <= pool->block_pool.center_bo_offset); uint32_t delta = pool->block_pool.center_bo_offset - last_pool_center_bo_offset; /* When we initially emit relocations into a block pool, we don't * actually know what the final center_bo_offset will be so we just emit * it as if center_bo_offset == 0. Now that we know what the center * offset is, we need to walk the list of relocations and adjust any * relocations that point to the pool bo with the correct offset. */ for (size_t i = 0; i < relocs->num_relocs; i++) { if (relocs->reloc_bos[i] == pool->block_pool.bo) { /* Adjust the delta value in the relocation to correctly * correspond to the new delta. Initially, this value may have * been negative (if treated as unsigned), but we trust in * uint32_t roll-over to fix that for us at this point. */ relocs->relocs[i].delta += delta; /* Since the delta has changed, we need to update the actual * relocated value with the new presumed value. This function * should only be called on batch buffers, so we know it isn't in * use by the GPU at the moment. */ assert(relocs->relocs[i].offset < from_bo->size); write_reloc(pool->block_pool.device, from_bo->map + relocs->relocs[i].offset, relocs->relocs[i].presumed_offset + relocs->relocs[i].delta, false); } } } static void anv_reloc_list_apply(struct anv_device *device, struct anv_reloc_list *list, struct anv_bo *bo, bool always_relocate) { bo = anv_bo_unwrap(bo); for (size_t i = 0; i < list->num_relocs; i++) { struct anv_bo *target_bo = anv_bo_unwrap(list->reloc_bos[i]); if (list->relocs[i].presumed_offset == target_bo->offset && !always_relocate) continue; void *p = bo->map + list->relocs[i].offset; write_reloc(device, p, target_bo->offset + list->relocs[i].delta, true); list->relocs[i].presumed_offset = target_bo->offset; } } /** * This function applies the relocation for a command buffer and writes the * actual addresses into the buffers as per what we were told by the kernel on * the previous execbuf2 call. This should be safe to do because, for each * relocated address, we have two cases: * * 1) The target BO is inactive (as seen by the kernel). In this case, it is * not in use by the GPU so updating the address is 100% ok. It won't be * in-use by the GPU (from our context) again until the next execbuf2 * happens. If the kernel decides to move it in the next execbuf2, it * will have to do the relocations itself, but that's ok because it should * have all of the information needed to do so. * * 2) The target BO is active (as seen by the kernel). In this case, it * hasn't moved since the last execbuffer2 call because GTT shuffling * *only* happens when the BO is idle. (From our perspective, it only * happens inside the execbuffer2 ioctl, but the shuffling may be * triggered by another ioctl, with full-ppgtt this is limited to only * execbuffer2 ioctls on the same context, or memory pressure.) Since the * target BO hasn't moved, our anv_bo::offset exactly matches the BO's GTT * address and the relocated value we are writing into the BO will be the * same as the value that is already there. * * There is also a possibility that the target BO is active but the exact * RENDER_SURFACE_STATE object we are writing the relocation into isn't in * use. In this case, the address currently in the RENDER_SURFACE_STATE * may be stale but it's still safe to write the relocation because that * particular RENDER_SURFACE_STATE object isn't in-use by the GPU and * won't be until the next execbuf2 call. * * By doing relocations on the CPU, we can tell the kernel that it doesn't * need to bother. We want to do this because the surface state buffer is * used by every command buffer so, if the kernel does the relocations, it * will always be busy and the kernel will always stall. This is also * probably the fastest mechanism for doing relocations since the kernel would * have to make a full copy of all the relocations lists. */ static bool execbuf_can_skip_relocations(struct anv_execbuf *exec) { if (!exec->has_relocs) return true; static int userspace_relocs = -1; if (userspace_relocs < 0) userspace_relocs = env_var_as_boolean("ANV_USERSPACE_RELOCS", true); if (!userspace_relocs) return false; /* First, we have to check to see whether or not we can even do the * relocation. New buffers which have never been submitted to the kernel * don't have a valid offset so we need to let the kernel do relocations so * that we can get offsets for them. On future execbuf2 calls, those * buffers will have offsets and we will be able to skip relocating. * Invalid offsets are indicated by anv_bo::offset == (uint64_t)-1. */ for (uint32_t i = 0; i < exec->bo_count; i++) { assert(!exec->bos[i]->is_wrapper); if (exec->bos[i]->offset == (uint64_t)-1) return false; } return true; } static void relocate_cmd_buffer(struct anv_cmd_buffer *cmd_buffer, struct anv_execbuf *exec) { /* Since surface states are shared between command buffers and we don't * know what order they will be submitted to the kernel, we don't know * what address is actually written in the surface state object at any * given time. The only option is to always relocate them. */ struct anv_bo *surface_state_bo = anv_bo_unwrap(cmd_buffer->device->surface_state_pool.block_pool.bo); anv_reloc_list_apply(cmd_buffer->device, &cmd_buffer->surface_relocs, surface_state_bo, true /* always relocate surface states */); /* Since we own all of the batch buffers, we know what values are stored * in the relocated addresses and only have to update them if the offsets * have changed. */ struct anv_batch_bo **bbo; u_vector_foreach(bbo, &cmd_buffer->seen_bbos) { anv_reloc_list_apply(cmd_buffer->device, &(*bbo)->relocs, (*bbo)->bo, false); } for (uint32_t i = 0; i < exec->bo_count; i++) exec->objects[i].offset = exec->bos[i]->offset; } static void reset_cmd_buffer_surface_offsets(struct anv_cmd_buffer *cmd_buffer) { /* In the case where we fall back to doing kernel relocations, we need to * ensure that the relocation list is valid. All relocations on the batch * buffers are already valid and kept up-to-date. Since surface states are * shared between command buffers and we don't know what order they will be * submitted to the kernel, we don't know what address is actually written * in the surface state object at any given time. The only option is to set * a bogus presumed offset and let the kernel relocate them. */ for (size_t i = 0; i < cmd_buffer->surface_relocs.num_relocs; i++) cmd_buffer->surface_relocs.relocs[i].presumed_offset = -1; } static VkResult anv_execbuf_add_syncobj(struct anv_device *device, struct anv_execbuf *exec, uint32_t syncobj, uint32_t flags, uint64_t timeline_value) { if (exec->syncobj_count >= exec->syncobj_array_length) { uint32_t new_len = MAX2(exec->syncobj_array_length * 2, 16); struct drm_i915_gem_exec_fence *new_syncobjs = vk_alloc(exec->alloc, new_len * sizeof(*new_syncobjs), 8, exec->alloc_scope); if (!new_syncobjs) return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY); if (exec->syncobjs) typed_memcpy(new_syncobjs, exec->syncobjs, exec->syncobj_count); exec->syncobjs = new_syncobjs; if (exec->syncobj_values) { uint64_t *new_syncobj_values = vk_alloc(exec->alloc, new_len * sizeof(*new_syncobj_values), 8, exec->alloc_scope); if (!new_syncobj_values) return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY); typed_memcpy(new_syncobj_values, exec->syncobj_values, exec->syncobj_count); exec->syncobj_values = new_syncobj_values; } exec->syncobj_array_length = new_len; } if (timeline_value && !exec->syncobj_values) { exec->syncobj_values = vk_zalloc(exec->alloc, exec->syncobj_array_length * sizeof(*exec->syncobj_values), 8, exec->alloc_scope); if (!exec->syncobj_values) return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY); } exec->syncobjs[exec->syncobj_count] = (struct drm_i915_gem_exec_fence) { .handle = syncobj, .flags = flags, }; if (timeline_value) exec->syncobj_values[exec->syncobj_count] = timeline_value; exec->syncobj_count++; return VK_SUCCESS; } static VkResult anv_execbuf_add_sync(struct anv_device *device, struct anv_execbuf *execbuf, struct vk_sync *sync, bool is_signal, uint64_t value) { /* It's illegal to signal a timeline with value 0 because that's never * higher than the current value. A timeline wait on value 0 is always * trivial because 0 <= uint64_t always. */ if ((sync->flags & VK_SYNC_IS_TIMELINE) && value == 0) return VK_SUCCESS; if (vk_sync_is_anv_bo_sync(sync)) { struct anv_bo_sync *bo_sync = container_of(sync, struct anv_bo_sync, sync); assert(is_signal == (bo_sync->state == ANV_BO_SYNC_STATE_RESET)); return anv_execbuf_add_bo(device, execbuf, bo_sync->bo, NULL, is_signal ? EXEC_OBJECT_WRITE : 0); } else if (vk_sync_type_is_drm_syncobj(sync->type)) { struct vk_drm_syncobj *syncobj = vk_sync_as_drm_syncobj(sync); if (!(sync->flags & VK_SYNC_IS_TIMELINE)) value = 0; return anv_execbuf_add_syncobj(device, execbuf, syncobj->syncobj, is_signal ? I915_EXEC_FENCE_SIGNAL : I915_EXEC_FENCE_WAIT, value); } unreachable("Invalid sync type"); } static VkResult setup_execbuf_for_cmd_buffer(struct anv_execbuf *execbuf, struct anv_cmd_buffer *cmd_buffer) { struct anv_state_pool *ss_pool = &cmd_buffer->device->surface_state_pool; adjust_relocations_from_state_pool(ss_pool, &cmd_buffer->surface_relocs, cmd_buffer->last_ss_pool_center); VkResult result; if (anv_use_relocations(cmd_buffer->device->physical)) { /* Since we aren't in the softpin case, all of our STATE_BASE_ADDRESS BOs * will get added automatically by processing relocations on the batch * buffer. We have to add the surface state BO manually because it has * relocations of its own that we need to be sure are processed. */ result = anv_execbuf_add_bo(cmd_buffer->device, execbuf, ss_pool->block_pool.bo, &cmd_buffer->surface_relocs, 0); if (result != VK_SUCCESS) return result; } else { /* Add surface dependencies (BOs) to the execbuf */ anv_execbuf_add_bo_bitset(cmd_buffer->device, execbuf, cmd_buffer->surface_relocs.dep_words, cmd_buffer->surface_relocs.deps, 0); } /* First, we walk over all of the bos we've seen and add them and their * relocations to the validate list. */ struct anv_batch_bo **bbo; u_vector_foreach(bbo, &cmd_buffer->seen_bbos) { adjust_relocations_to_state_pool(ss_pool, (*bbo)->bo, &(*bbo)->relocs, cmd_buffer->last_ss_pool_center); result = anv_execbuf_add_bo(cmd_buffer->device, execbuf, (*bbo)->bo, &(*bbo)->relocs, 0); if (result != VK_SUCCESS) return result; } /* Now that we've adjusted all of the surface state relocations, we need to * record the surface state pool center so future executions of the command * buffer can adjust correctly. */ cmd_buffer->last_ss_pool_center = ss_pool->block_pool.center_bo_offset; return VK_SUCCESS; } static void chain_command_buffers(struct anv_cmd_buffer **cmd_buffers, uint32_t num_cmd_buffers) { if (!anv_cmd_buffer_is_chainable(cmd_buffers[0])) { assert(num_cmd_buffers == 1); return; } /* Chain the N-1 first batch buffers */ for (uint32_t i = 0; i < (num_cmd_buffers - 1); i++) anv_cmd_buffer_record_chain_submit(cmd_buffers[i], cmd_buffers[i + 1]); /* Put an end to the last one */ anv_cmd_buffer_record_end_submit(cmd_buffers[num_cmd_buffers - 1]); } static VkResult setup_execbuf_for_cmd_buffers(struct anv_execbuf *execbuf, struct anv_queue *queue, struct anv_cmd_buffer **cmd_buffers, uint32_t num_cmd_buffers) { struct anv_device *device = queue->device; struct anv_state_pool *ss_pool = &device->surface_state_pool; VkResult result; /* Edit the tail of the command buffers to chain them all together if they * can be. */ chain_command_buffers(cmd_buffers, num_cmd_buffers); for (uint32_t i = 0; i < num_cmd_buffers; i++) { anv_measure_submit(cmd_buffers[i]); result = setup_execbuf_for_cmd_buffer(execbuf, cmd_buffers[i]); if (result != VK_SUCCESS) return result; } /* Add all the global BOs to the object list for softpin case. */ if (!anv_use_relocations(device->physical)) { anv_block_pool_foreach_bo(bo, &ss_pool->block_pool) { result = anv_execbuf_add_bo(device, execbuf, bo, NULL, 0); if (result != VK_SUCCESS) return result; } struct anv_block_pool *pool; pool = &device->dynamic_state_pool.block_pool; anv_block_pool_foreach_bo(bo, pool) { result = anv_execbuf_add_bo(device, execbuf, bo, NULL, 0); if (result != VK_SUCCESS) return result; } pool = &device->general_state_pool.block_pool; anv_block_pool_foreach_bo(bo, pool) { result = anv_execbuf_add_bo(device, execbuf, bo, NULL, 0); if (result != VK_SUCCESS) return result; } pool = &device->instruction_state_pool.block_pool; anv_block_pool_foreach_bo(bo, pool) { result = anv_execbuf_add_bo(device, execbuf, bo, NULL, 0); if (result != VK_SUCCESS) return result; } pool = &device->binding_table_pool.block_pool; anv_block_pool_foreach_bo(bo, pool) { result = anv_execbuf_add_bo(device, execbuf, bo, NULL, 0); if (result != VK_SUCCESS) return result; } /* Add the BOs for all user allocated memory objects because we can't * track after binding updates of VK_EXT_descriptor_indexing. */ list_for_each_entry(struct anv_device_memory, mem, &device->memory_objects, link) { result = anv_execbuf_add_bo(device, execbuf, mem->bo, NULL, 0); if (result != VK_SUCCESS) return result; } } else { /* We do not support chaining primary command buffers without * softpin. */ assert(num_cmd_buffers == 1); } bool no_reloc = true; if (execbuf->has_relocs) { no_reloc = execbuf_can_skip_relocations(execbuf); if (no_reloc) { /* If we were able to successfully relocate everything, tell the * kernel that it can skip doing relocations. The requirement for * using NO_RELOC is: * * 1) The addresses written in the objects must match the * corresponding reloc.presumed_offset which in turn must match * the corresponding execobject.offset. * * 2) To avoid stalling, execobject.offset should match the current * address of that object within the active context. * * In order to satisfy all of the invariants that make userspace * relocations to be safe (see relocate_cmd_buffer()), we need to * further ensure that the addresses we use match those used by the * kernel for the most recent execbuf2. * * The kernel may still choose to do relocations anyway if something * has moved in the GTT. In this case, the relocation list still * needs to be valid. All relocations on the batch buffers are * already valid and kept up-to-date. For surface state relocations, * by applying the relocations in relocate_cmd_buffer, we ensured * that the address in the RENDER_SURFACE_STATE matches * presumed_offset, so it should be safe for the kernel to relocate * them as needed. */ for (uint32_t i = 0; i < num_cmd_buffers; i++) { relocate_cmd_buffer(cmd_buffers[i], execbuf); anv_reloc_list_apply(device, &cmd_buffers[i]->surface_relocs, device->surface_state_pool.block_pool.bo, true /* always relocate surface states */); } } else { /* In the case where we fall back to doing kernel relocations, we * need to ensure that the relocation list is valid. All relocations * on the batch buffers are already valid and kept up-to-date. Since * surface states are shared between command buffers and we don't * know what order they will be submitted to the kernel, we don't * know what address is actually written in the surface state object * at any given time. The only option is to set a bogus presumed * offset and let the kernel relocate them. */ for (uint32_t i = 0; i < num_cmd_buffers; i++) reset_cmd_buffer_surface_offsets(cmd_buffers[i]); } } struct anv_batch_bo *first_batch_bo = list_first_entry(&cmd_buffers[0]->batch_bos, struct anv_batch_bo, link); /* The kernel requires that the last entry in the validation list be the * batch buffer to execute. We can simply swap the element * corresponding to the first batch_bo in the chain with the last * element in the list. */ if (first_batch_bo->bo->exec_obj_index != execbuf->bo_count - 1) { uint32_t idx = first_batch_bo->bo->exec_obj_index; uint32_t last_idx = execbuf->bo_count - 1; struct drm_i915_gem_exec_object2 tmp_obj = execbuf->objects[idx]; assert(execbuf->bos[idx] == first_batch_bo->bo); execbuf->objects[idx] = execbuf->objects[last_idx]; execbuf->bos[idx] = execbuf->bos[last_idx]; execbuf->bos[idx]->exec_obj_index = idx; execbuf->objects[last_idx] = tmp_obj; execbuf->bos[last_idx] = first_batch_bo->bo; first_batch_bo->bo->exec_obj_index = last_idx; } /* If we are pinning our BOs, we shouldn't have to relocate anything */ if (!anv_use_relocations(device->physical)) assert(!execbuf->has_relocs); /* Now we go through and fixup all of the relocation lists to point to the * correct indices in the object array (I915_EXEC_HANDLE_LUT). We have to * do this after we reorder the list above as some of the indices may have * changed. */ struct anv_batch_bo **bbo; if (execbuf->has_relocs) { assert(num_cmd_buffers == 1); u_vector_foreach(bbo, &cmd_buffers[0]->seen_bbos) anv_cmd_buffer_process_relocs(cmd_buffers[0], &(*bbo)->relocs); anv_cmd_buffer_process_relocs(cmd_buffers[0], &cmd_buffers[0]->surface_relocs); } if (device->physical->memory.need_clflush) { __builtin_ia32_mfence(); for (uint32_t i = 0; i < num_cmd_buffers; i++) { u_vector_foreach(bbo, &cmd_buffers[i]->seen_bbos) { for (uint32_t l = 0; l < (*bbo)->length; l += CACHELINE_SIZE) __builtin_ia32_clflush((*bbo)->bo->map + l); } } } struct anv_batch *batch = &cmd_buffers[0]->batch; execbuf->execbuf = (struct drm_i915_gem_execbuffer2) { .buffers_ptr = (uintptr_t) execbuf->objects, .buffer_count = execbuf->bo_count, .batch_start_offset = 0, /* On platforms that cannot chain batch buffers because of the i915 * command parser, we have to provide the batch length. Everywhere else * we'll chain batches so no point in passing a length. */ .batch_len = device->can_chain_batches ? 0 : batch->next - batch->start, .cliprects_ptr = 0, .num_cliprects = 0, .DR1 = 0, .DR4 = 0, .flags = I915_EXEC_HANDLE_LUT | queue->exec_flags | (no_reloc ? I915_EXEC_NO_RELOC : 0), .rsvd1 = device->context_id, .rsvd2 = 0, }; return VK_SUCCESS; } static VkResult setup_empty_execbuf(struct anv_execbuf *execbuf, struct anv_queue *queue) { struct anv_device *device = queue->device; VkResult result = anv_execbuf_add_bo(device, execbuf, device->trivial_batch_bo, NULL, 0); if (result != VK_SUCCESS) return result; execbuf->execbuf = (struct drm_i915_gem_execbuffer2) { .buffers_ptr = (uintptr_t) execbuf->objects, .buffer_count = execbuf->bo_count, .batch_start_offset = 0, .batch_len = 8, /* GFX7_MI_BATCH_BUFFER_END and NOOP */ .flags = I915_EXEC_HANDLE_LUT | queue->exec_flags | I915_EXEC_NO_RELOC, .rsvd1 = device->context_id, .rsvd2 = 0, }; return VK_SUCCESS; } static VkResult setup_utrace_execbuf(struct anv_execbuf *execbuf, struct anv_queue *queue, struct anv_utrace_flush_copy *flush) { struct anv_device *device = queue->device; VkResult result = anv_execbuf_add_bo(device, execbuf, flush->batch_bo, &flush->relocs, 0); if (result != VK_SUCCESS) return result; result = anv_execbuf_add_sync(device, execbuf, flush->sync, true /* is_signal */, 0 /* value */); if (result != VK_SUCCESS) return result; if (flush->batch_bo->exec_obj_index != execbuf->bo_count - 1) { uint32_t idx = flush->batch_bo->exec_obj_index; uint32_t last_idx = execbuf->bo_count - 1; struct drm_i915_gem_exec_object2 tmp_obj = execbuf->objects[idx]; assert(execbuf->bos[idx] == flush->batch_bo); execbuf->objects[idx] = execbuf->objects[last_idx]; execbuf->bos[idx] = execbuf->bos[last_idx]; execbuf->bos[idx]->exec_obj_index = idx; execbuf->objects[last_idx] = tmp_obj; execbuf->bos[last_idx] = flush->batch_bo; flush->batch_bo->exec_obj_index = last_idx; } if (device->physical->memory.need_clflush) intel_flush_range(flush->batch_bo->map, flush->batch_bo->size); execbuf->execbuf = (struct drm_i915_gem_execbuffer2) { .buffers_ptr = (uintptr_t) execbuf->objects, .buffer_count = execbuf->bo_count, .batch_start_offset = 0, .batch_len = flush->batch.next - flush->batch.start, .flags = I915_EXEC_HANDLE_LUT | I915_EXEC_FENCE_ARRAY | queue->exec_flags | (execbuf->has_relocs ? 0 : I915_EXEC_NO_RELOC), .rsvd1 = device->context_id, .rsvd2 = 0, .num_cliprects = execbuf->syncobj_count, .cliprects_ptr = (uintptr_t)execbuf->syncobjs, }; return VK_SUCCESS; } static VkResult anv_queue_exec_utrace_locked(struct anv_queue *queue, struct anv_utrace_flush_copy *flush) { assert(flush->batch_bo); struct anv_device *device = queue->device; struct anv_execbuf execbuf; anv_execbuf_init(&execbuf); execbuf.alloc = &device->vk.alloc; execbuf.alloc_scope = VK_SYSTEM_ALLOCATION_SCOPE_DEVICE; VkResult result = setup_utrace_execbuf(&execbuf, queue, flush); if (result != VK_SUCCESS) goto error; int ret = queue->device->info.no_hw ? 0 : anv_gem_execbuffer(queue->device, &execbuf.execbuf); if (ret) result = vk_queue_set_lost(&queue->vk, "execbuf2 failed: %m"); struct drm_i915_gem_exec_object2 *objects = execbuf.objects; for (uint32_t k = 0; k < execbuf.bo_count; k++) { if (anv_bo_is_pinned(execbuf.bos[k])) assert(execbuf.bos[k]->offset == objects[k].offset); execbuf.bos[k]->offset = objects[k].offset; } error: anv_execbuf_finish(&execbuf); return result; } /* We lock around execbuf for three main reasons: * * 1) When a block pool is resized, we create a new gem handle with a * different size and, in the case of surface states, possibly a different * center offset but we re-use the same anv_bo struct when we do so. If * this happens in the middle of setting up an execbuf, we could end up * with our list of BOs out of sync with our list of gem handles. * * 2) The algorithm we use for building the list of unique buffers isn't * thread-safe. While the client is supposed to synchronize around * QueueSubmit, this would be extremely difficult to debug if it ever came * up in the wild due to a broken app. It's better to play it safe and * just lock around QueueSubmit. * * 3) The anv_cmd_buffer_execbuf function may perform relocations in * userspace. Due to the fact that the surface state buffer is shared * between batches, we can't afford to have that happen from multiple * threads at the same time. Even though the user is supposed to ensure * this doesn't happen, we play it safe as in (2) above. * * Since the only other things that ever take the device lock such as block * pool resize only rarely happen, this will almost never be contended so * taking a lock isn't really an expensive operation in this case. */ static VkResult anv_queue_exec_locked(struct anv_queue *queue, uint32_t wait_count, const struct vk_sync_wait *waits, uint32_t cmd_buffer_count, struct anv_cmd_buffer **cmd_buffers, uint32_t signal_count, const struct vk_sync_signal *signals, struct anv_query_pool *perf_query_pool, uint32_t perf_query_pass) { struct anv_device *device = queue->device; struct anv_utrace_flush_copy *utrace_flush_data = NULL; struct anv_execbuf execbuf; anv_execbuf_init(&execbuf); execbuf.alloc = &queue->device->vk.alloc; execbuf.alloc_scope = VK_SYSTEM_ALLOCATION_SCOPE_DEVICE; execbuf.perf_query_pass = perf_query_pass; /* Flush the trace points first, they need to be moved */ VkResult result = anv_device_utrace_flush_cmd_buffers(queue, cmd_buffer_count, cmd_buffers, &utrace_flush_data); if (result != VK_SUCCESS) goto error; if (utrace_flush_data && !utrace_flush_data->batch_bo) { result = anv_execbuf_add_sync(device, &execbuf, utrace_flush_data->sync, true /* is_signal */, 0); if (result != VK_SUCCESS) goto error; utrace_flush_data = NULL; } /* Always add the workaround BO as it includes a driver identifier for the * error_state. */ result = anv_execbuf_add_bo(device, &execbuf, device->workaround_bo, NULL, 0); if (result != VK_SUCCESS) goto error; for (uint32_t i = 0; i < wait_count; i++) { result = anv_execbuf_add_sync(device, &execbuf, waits[i].sync, false /* is_signal */, waits[i].wait_value); if (result != VK_SUCCESS) goto error; } for (uint32_t i = 0; i < signal_count; i++) { result = anv_execbuf_add_sync(device, &execbuf, signals[i].sync, true /* is_signal */, signals[i].signal_value); if (result != VK_SUCCESS) goto error; } if (queue->sync) { result = anv_execbuf_add_sync(device, &execbuf, queue->sync, true /* is_signal */, 0 /* signal_value */); if (result != VK_SUCCESS) goto error; } if (cmd_buffer_count) { result = setup_execbuf_for_cmd_buffers(&execbuf, queue, cmd_buffers, cmd_buffer_count); } else { result = setup_empty_execbuf(&execbuf, queue); } if (result != VK_SUCCESS) goto error; const bool has_perf_query = perf_query_pool && perf_query_pass >= 0 && cmd_buffer_count; if (INTEL_DEBUG(DEBUG_SUBMIT)) { fprintf(stderr, "Batch offset=0x%x len=0x%x on queue 0\n", execbuf.execbuf.batch_start_offset, execbuf.execbuf.batch_len); for (uint32_t i = 0; i < execbuf.bo_count; i++) { const struct anv_bo *bo = execbuf.bos[i]; fprintf(stderr, " BO: addr=0x%016"PRIx64"-0x%016"PRIx64" size=0x%010"PRIx64 " handle=%05u name=%s\n", bo->offset, bo->offset + bo->size - 1, bo->size, bo->gem_handle, bo->name); } } if (INTEL_DEBUG(DEBUG_BATCH)) { fprintf(stderr, "Batch on queue %d\n", (int)(queue - device->queues)); if (cmd_buffer_count) { if (has_perf_query) { struct anv_bo *pass_batch_bo = perf_query_pool->bo; uint64_t pass_batch_offset = khr_perf_query_preamble_offset(perf_query_pool, perf_query_pass); intel_print_batch(&device->decoder_ctx, pass_batch_bo->map + pass_batch_offset, 64, pass_batch_bo->offset + pass_batch_offset, false); } for (uint32_t i = 0; i < cmd_buffer_count; i++) { struct anv_batch_bo **bo = u_vector_tail(&cmd_buffers[i]->seen_bbos); device->cmd_buffer_being_decoded = cmd_buffers[i]; intel_print_batch(&device->decoder_ctx, (*bo)->bo->map, (*bo)->bo->size, (*bo)->bo->offset, false); device->cmd_buffer_being_decoded = NULL; } } else { intel_print_batch(&device->decoder_ctx, device->trivial_batch_bo->map, device->trivial_batch_bo->size, device->trivial_batch_bo->offset, false); } } if (execbuf.syncobj_values) { execbuf.timeline_fences.fence_count = execbuf.syncobj_count; execbuf.timeline_fences.handles_ptr = (uintptr_t)execbuf.syncobjs; execbuf.timeline_fences.values_ptr = (uintptr_t)execbuf.syncobj_values; anv_execbuf_add_ext(&execbuf, DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES, &execbuf.timeline_fences.base); } else if (execbuf.syncobjs) { execbuf.execbuf.flags |= I915_EXEC_FENCE_ARRAY; execbuf.execbuf.num_cliprects = execbuf.syncobj_count; execbuf.execbuf.cliprects_ptr = (uintptr_t)execbuf.syncobjs; } if (has_perf_query) { assert(perf_query_pass < perf_query_pool->n_passes); struct intel_perf_query_info *query_info = perf_query_pool->pass_query[perf_query_pass]; /* Some performance queries just the pipeline statistic HW, no need for * OA in that case, so no need to reconfigure. */ if (!INTEL_DEBUG(DEBUG_NO_OACONFIG) && (query_info->kind == INTEL_PERF_QUERY_TYPE_OA || query_info->kind == INTEL_PERF_QUERY_TYPE_RAW)) { int ret = intel_ioctl(device->perf_fd, I915_PERF_IOCTL_CONFIG, (void *)(uintptr_t) query_info->oa_metrics_set_id); if (ret < 0) { result = vk_device_set_lost(&device->vk, "i915-perf config failed: %s", strerror(errno)); } } struct anv_bo *pass_batch_bo = perf_query_pool->bo; struct drm_i915_gem_exec_object2 query_pass_object = { .handle = pass_batch_bo->gem_handle, .offset = pass_batch_bo->offset, .flags = pass_batch_bo->flags, }; struct drm_i915_gem_execbuffer2 query_pass_execbuf = { .buffers_ptr = (uintptr_t) &query_pass_object, .buffer_count = 1, .batch_start_offset = khr_perf_query_preamble_offset(perf_query_pool, perf_query_pass), .flags = I915_EXEC_HANDLE_LUT | queue->exec_flags, .rsvd1 = device->context_id, }; int ret = queue->device->info.no_hw ? 0 : anv_gem_execbuffer(queue->device, &query_pass_execbuf); if (ret) result = vk_queue_set_lost(&queue->vk, "execbuf2 failed: %m"); } int ret = queue->device->info.no_hw ? 0 : anv_gem_execbuffer(queue->device, &execbuf.execbuf); if (ret) result = vk_queue_set_lost(&queue->vk, "execbuf2 failed: %m"); if (queue->sync) { VkResult result = vk_sync_wait(&device->vk, queue->sync, 0, VK_SYNC_WAIT_COMPLETE, UINT64_MAX); if (result != VK_SUCCESS) result = vk_queue_set_lost(&queue->vk, "sync wait failed"); } struct drm_i915_gem_exec_object2 *objects = execbuf.objects; for (uint32_t k = 0; k < execbuf.bo_count; k++) { if (anv_bo_is_pinned(execbuf.bos[k])) assert(execbuf.bos[k]->offset == objects[k].offset); execbuf.bos[k]->offset = objects[k].offset; } error: anv_execbuf_finish(&execbuf); if (result == VK_SUCCESS && utrace_flush_data) result = anv_queue_exec_utrace_locked(queue, utrace_flush_data); return result; } static inline bool can_chain_query_pools(struct anv_query_pool *p1, struct anv_query_pool *p2) { return (!p1 || !p2 || p1 == p2); } static VkResult anv_queue_submit_locked(struct anv_queue *queue, struct vk_queue_submit *submit) { VkResult result; if (submit->command_buffer_count == 0) { result = anv_queue_exec_locked(queue, submit->wait_count, submit->waits, 0 /* cmd_buffer_count */, NULL /* cmd_buffers */, submit->signal_count, submit->signals, NULL /* perf_query_pool */, 0 /* perf_query_pass */); if (result != VK_SUCCESS) return result; } else { /* Everything's easier if we don't have to bother with container_of() */ STATIC_ASSERT(offsetof(struct anv_cmd_buffer, vk) == 0); struct vk_command_buffer **vk_cmd_buffers = submit->command_buffers; struct anv_cmd_buffer **cmd_buffers = (void *)vk_cmd_buffers; uint32_t start = 0; uint32_t end = submit->command_buffer_count; struct anv_query_pool *perf_query_pool = cmd_buffers[start]->perf_query_pool; for (uint32_t n = 0; n < end; n++) { bool can_chain = false; uint32_t next = n + 1; /* Can we chain the last buffer into the next one? */ if (next < end && anv_cmd_buffer_is_chainable(cmd_buffers[next]) && can_chain_query_pools (cmd_buffers[next]->perf_query_pool, perf_query_pool)) { can_chain = true; perf_query_pool = perf_query_pool ? perf_query_pool : cmd_buffers[next]->perf_query_pool; } if (!can_chain) { /* The next buffer cannot be chained, or we have reached the * last buffer, submit what have been chained so far. */ VkResult result = anv_queue_exec_locked(queue, start == 0 ? submit->wait_count : 0, start == 0 ? submit->waits : NULL, next - start, &cmd_buffers[start], next == end ? submit->signal_count : 0, next == end ? submit->signals : NULL, perf_query_pool, submit->perf_pass_index); if (result != VK_SUCCESS) return result; if (next < end) { start = next; perf_query_pool = cmd_buffers[start]->perf_query_pool; } } } } for (uint32_t i = 0; i < submit->signal_count; i++) { if (!vk_sync_is_anv_bo_sync(submit->signals[i].sync)) continue; struct anv_bo_sync *bo_sync = container_of(submit->signals[i].sync, struct anv_bo_sync, sync); /* Once the execbuf has returned, we need to set the fence state to * SUBMITTED. We can't do this before calling execbuf because * anv_GetFenceStatus does take the global device lock before checking * fence->state. * * We set the fence state to SUBMITTED regardless of whether or not the * execbuf succeeds because we need to ensure that vkWaitForFences() and * vkGetFenceStatus() return a valid result (VK_ERROR_DEVICE_LOST or * VK_SUCCESS) in a finite amount of time even if execbuf fails. */ assert(bo_sync->state == ANV_BO_SYNC_STATE_RESET); bo_sync->state = ANV_BO_SYNC_STATE_SUBMITTED; } pthread_cond_broadcast(&queue->device->queue_submit); return VK_SUCCESS; } VkResult anv_queue_submit(struct vk_queue *vk_queue, struct vk_queue_submit *submit) { struct anv_queue *queue = container_of(vk_queue, struct anv_queue, vk); struct anv_device *device = queue->device; VkResult result; if (queue->device->info.no_hw) { for (uint32_t i = 0; i < submit->signal_count; i++) { result = vk_sync_signal(&device->vk, submit->signals[i].sync, submit->signals[i].signal_value); if (result != VK_SUCCESS) return vk_queue_set_lost(&queue->vk, "vk_sync_signal failed"); } return VK_SUCCESS; } uint64_t start_ts = intel_ds_begin_submit(queue->ds); pthread_mutex_lock(&device->mutex); result = anv_queue_submit_locked(queue, submit); /* Take submission ID under lock */ pthread_mutex_unlock(&device->mutex); intel_ds_end_submit(queue->ds, start_ts); return result; } VkResult anv_queue_submit_simple_batch(struct anv_queue *queue, struct anv_batch *batch) { struct anv_device *device = queue->device; VkResult result = VK_SUCCESS; int err; if (queue->device->info.no_hw) return VK_SUCCESS; /* This is only used by device init so we can assume the queue is empty and * we aren't fighting with a submit thread. */ assert(vk_queue_is_empty(&queue->vk)); uint32_t batch_size = align_u32(batch->next - batch->start, 8); struct anv_bo *batch_bo = NULL; result = anv_bo_pool_alloc(&device->batch_bo_pool, batch_size, &batch_bo); if (result != VK_SUCCESS) return result; memcpy(batch_bo->map, batch->start, batch_size); if (device->physical->memory.need_clflush) intel_flush_range(batch_bo->map, batch_size); struct anv_execbuf execbuf; anv_execbuf_init(&execbuf); execbuf.alloc = &queue->device->vk.alloc; execbuf.alloc_scope = VK_SYSTEM_ALLOCATION_SCOPE_DEVICE; result = anv_execbuf_add_bo(device, &execbuf, batch_bo, NULL, 0); if (result != VK_SUCCESS) goto fail; execbuf.execbuf = (struct drm_i915_gem_execbuffer2) { .buffers_ptr = (uintptr_t) execbuf.objects, .buffer_count = execbuf.bo_count, .batch_start_offset = 0, .batch_len = batch_size, .flags = I915_EXEC_HANDLE_LUT | queue->exec_flags | I915_EXEC_NO_RELOC, .rsvd1 = device->context_id, .rsvd2 = 0, }; err = anv_gem_execbuffer(device, &execbuf.execbuf); if (err) { result = vk_device_set_lost(&device->vk, "anv_gem_execbuffer failed: %m"); goto fail; } result = anv_device_wait(device, batch_bo, INT64_MAX); if (result != VK_SUCCESS) { result = vk_device_set_lost(&device->vk, "anv_device_wait failed: %m"); goto fail; } fail: anv_execbuf_finish(&execbuf); anv_bo_pool_free(&device->batch_bo_pool, batch_bo); return result; }