/* * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "nir/nir_builder.h" #include "radv_debug.h" #include "radv_meta.h" #include "radv_private.h" #include "util/format_rgb9e5.h" #include "vk_format.h" enum { DEPTH_CLEAR_SLOW, DEPTH_CLEAR_FAST }; static void build_color_shaders(struct radv_device *dev, struct nir_shader **out_vs, struct nir_shader **out_fs, uint32_t frag_output) { nir_builder vs_b = radv_meta_init_shader(dev, MESA_SHADER_VERTEX, "meta_clear_color_vs"); nir_builder fs_b = radv_meta_init_shader(dev, MESA_SHADER_FRAGMENT, "meta_clear_color_fs-%d", frag_output); const struct glsl_type *position_type = glsl_vec4_type(); const struct glsl_type *color_type = glsl_vec4_type(); nir_variable *vs_out_pos = nir_variable_create(vs_b.shader, nir_var_shader_out, position_type, "gl_Position"); vs_out_pos->data.location = VARYING_SLOT_POS; nir_ssa_def *in_color_load = nir_load_push_constant(&fs_b, 4, 32, nir_imm_int(&fs_b, 0), .range = 16); nir_variable *fs_out_color = nir_variable_create(fs_b.shader, nir_var_shader_out, color_type, "f_color"); fs_out_color->data.location = FRAG_RESULT_DATA0 + frag_output; nir_store_var(&fs_b, fs_out_color, in_color_load, 0xf); nir_ssa_def *outvec = nir_gen_rect_vertices(&vs_b, NULL, NULL); nir_store_var(&vs_b, vs_out_pos, outvec, 0xf); const struct glsl_type *layer_type = glsl_int_type(); nir_variable *vs_out_layer = nir_variable_create(vs_b.shader, nir_var_shader_out, layer_type, "v_layer"); vs_out_layer->data.location = VARYING_SLOT_LAYER; vs_out_layer->data.interpolation = INTERP_MODE_FLAT; nir_ssa_def *inst_id = nir_load_instance_id(&vs_b); nir_ssa_def *base_instance = nir_load_base_instance(&vs_b); nir_ssa_def *layer_id = nir_iadd(&vs_b, inst_id, base_instance); nir_store_var(&vs_b, vs_out_layer, layer_id, 0x1); *out_vs = vs_b.shader; *out_fs = fs_b.shader; } static VkResult create_pipeline(struct radv_device *device, uint32_t samples, struct nir_shader *vs_nir, struct nir_shader *fs_nir, const VkPipelineVertexInputStateCreateInfo *vi_state, const VkPipelineDepthStencilStateCreateInfo *ds_state, const VkPipelineColorBlendStateCreateInfo *cb_state, const VkPipelineRenderingCreateInfo *dyn_state, const VkPipelineLayout layout, const struct radv_graphics_pipeline_create_info *extra, const VkAllocationCallbacks *alloc, VkPipeline *pipeline) { VkDevice device_h = radv_device_to_handle(device); VkResult result; result = radv_graphics_pipeline_create( device_h, radv_pipeline_cache_to_handle(&device->meta_state.cache), &(VkGraphicsPipelineCreateInfo){ .sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO, .pNext = dyn_state, .stageCount = fs_nir ? 2 : 1, .pStages = (VkPipelineShaderStageCreateInfo[]){ { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_VERTEX_BIT, .module = vk_shader_module_handle_from_nir(vs_nir), .pName = "main", }, { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_FRAGMENT_BIT, .module = vk_shader_module_handle_from_nir(fs_nir), .pName = "main", }, }, .pVertexInputState = vi_state, .pInputAssemblyState = &(VkPipelineInputAssemblyStateCreateInfo){ .sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO, .topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP, .primitiveRestartEnable = false, }, .pViewportState = &(VkPipelineViewportStateCreateInfo){ .sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO, .viewportCount = 1, .scissorCount = 1, }, .pRasterizationState = &(VkPipelineRasterizationStateCreateInfo){ .sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO, .rasterizerDiscardEnable = false, .polygonMode = VK_POLYGON_MODE_FILL, .cullMode = VK_CULL_MODE_NONE, .frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE, .depthBiasEnable = false, .depthBiasConstantFactor = 0.0f, .depthBiasClamp = 0.0f, .depthBiasSlopeFactor = 0.0f, .lineWidth = 1.0f, }, .pMultisampleState = &(VkPipelineMultisampleStateCreateInfo){ .sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO, .rasterizationSamples = samples, .sampleShadingEnable = false, .pSampleMask = NULL, .alphaToCoverageEnable = false, .alphaToOneEnable = false, }, .pDepthStencilState = ds_state, .pColorBlendState = cb_state, .pDynamicState = &(VkPipelineDynamicStateCreateInfo){ .sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO, .dynamicStateCount = 3, .pDynamicStates = (VkDynamicState[]){ VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR, VK_DYNAMIC_STATE_STENCIL_REFERENCE, }, }, .layout = layout, .flags = 0, .renderPass = VK_NULL_HANDLE, .subpass = 0, }, extra, alloc, pipeline); ralloc_free(vs_nir); ralloc_free(fs_nir); return result; } static VkResult create_color_pipeline(struct radv_device *device, uint32_t samples, uint32_t frag_output, VkFormat format, VkPipeline *pipeline) { struct nir_shader *vs_nir; struct nir_shader *fs_nir; VkResult result; mtx_lock(&device->meta_state.mtx); if (*pipeline) { mtx_unlock(&device->meta_state.mtx); return VK_SUCCESS; } build_color_shaders(device, &vs_nir, &fs_nir, frag_output); const VkPipelineVertexInputStateCreateInfo vi_state = { .sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO, .vertexBindingDescriptionCount = 0, .vertexAttributeDescriptionCount = 0, }; const VkPipelineDepthStencilStateCreateInfo ds_state = { .sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO, .depthTestEnable = false, .depthWriteEnable = false, .depthBoundsTestEnable = false, .stencilTestEnable = false, .minDepthBounds = 0.0f, .maxDepthBounds = 1.0f, }; VkPipelineColorBlendAttachmentState blend_attachment_state[MAX_RTS] = {0}; blend_attachment_state[frag_output] = (VkPipelineColorBlendAttachmentState){ .blendEnable = false, .colorWriteMask = VK_COLOR_COMPONENT_A_BIT | VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT, }; const VkPipelineColorBlendStateCreateInfo cb_state = { .sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO, .logicOpEnable = false, .attachmentCount = MAX_RTS, .pAttachments = blend_attachment_state, .blendConstants = { 0.0f, 0.0f, 0.0f, 0.0f }}; VkFormat att_formats[MAX_RTS] = { 0 }; att_formats[frag_output] = format; const VkPipelineRenderingCreateInfo rendering_create_info = { .sType = VK_STRUCTURE_TYPE_PIPELINE_RENDERING_CREATE_INFO, .colorAttachmentCount = MAX_RTS, .pColorAttachmentFormats = att_formats, }; struct radv_graphics_pipeline_create_info extra = { .use_rectlist = true, }; result = create_pipeline(device, samples, vs_nir, fs_nir, &vi_state, &ds_state, &cb_state, &rendering_create_info, device->meta_state.clear_color_p_layout, &extra, &device->meta_state.alloc, pipeline); mtx_unlock(&device->meta_state.mtx); return result; } static void finish_meta_clear_htile_mask_state(struct radv_device *device) { struct radv_meta_state *state = &device->meta_state; radv_DestroyPipeline(radv_device_to_handle(device), state->clear_htile_mask_pipeline, &state->alloc); radv_DestroyPipelineLayout(radv_device_to_handle(device), state->clear_htile_mask_p_layout, &state->alloc); radv_DestroyDescriptorSetLayout(radv_device_to_handle(device), state->clear_htile_mask_ds_layout, &state->alloc); } static void finish_meta_clear_dcc_comp_to_single_state(struct radv_device *device) { struct radv_meta_state *state = &device->meta_state; for (uint32_t i = 0; i < 2; i++) { radv_DestroyPipeline(radv_device_to_handle(device), state->clear_dcc_comp_to_single_pipeline[i], &state->alloc); } radv_DestroyPipelineLayout(radv_device_to_handle(device), state->clear_dcc_comp_to_single_p_layout, &state->alloc); radv_DestroyDescriptorSetLayout(radv_device_to_handle(device), state->clear_dcc_comp_to_single_ds_layout, &state->alloc); } void radv_device_finish_meta_clear_state(struct radv_device *device) { struct radv_meta_state *state = &device->meta_state; for (uint32_t i = 0; i < ARRAY_SIZE(state->color_clear); ++i) { for (uint32_t j = 0; j < ARRAY_SIZE(state->color_clear[0]); ++j) { for (uint32_t k = 0; k < ARRAY_SIZE(state->color_clear[i][j].color_pipelines); ++k) { radv_DestroyPipeline(radv_device_to_handle(device), state->color_clear[i][j].color_pipelines[k], &state->alloc); } } } for (uint32_t i = 0; i < ARRAY_SIZE(state->ds_clear); ++i) { for (uint32_t j = 0; j < NUM_DEPTH_CLEAR_PIPELINES; j++) { radv_DestroyPipeline(radv_device_to_handle(device), state->ds_clear[i].depth_only_pipeline[j], &state->alloc); radv_DestroyPipeline(radv_device_to_handle(device), state->ds_clear[i].stencil_only_pipeline[j], &state->alloc); radv_DestroyPipeline(radv_device_to_handle(device), state->ds_clear[i].depthstencil_pipeline[j], &state->alloc); radv_DestroyPipeline(radv_device_to_handle(device), state->ds_clear[i].depth_only_unrestricted_pipeline[j], &state->alloc); radv_DestroyPipeline(radv_device_to_handle(device), state->ds_clear[i].stencil_only_unrestricted_pipeline[j], &state->alloc); radv_DestroyPipeline(radv_device_to_handle(device), state->ds_clear[i].depthstencil_unrestricted_pipeline[j], &state->alloc); } } radv_DestroyPipelineLayout(radv_device_to_handle(device), state->clear_color_p_layout, &state->alloc); radv_DestroyPipelineLayout(radv_device_to_handle(device), state->clear_depth_p_layout, &state->alloc); radv_DestroyPipelineLayout(radv_device_to_handle(device), state->clear_depth_unrestricted_p_layout, &state->alloc); finish_meta_clear_htile_mask_state(device); finish_meta_clear_dcc_comp_to_single_state(device); } static void emit_color_clear(struct radv_cmd_buffer *cmd_buffer, const VkClearAttachment *clear_att, const VkClearRect *clear_rect, uint32_t view_mask) { struct radv_device *device = cmd_buffer->device; const struct radv_subpass *subpass = cmd_buffer->state.subpass; const uint32_t subpass_att = clear_att->colorAttachment; const uint32_t pass_att = subpass->color_attachments[subpass_att].attachment; const struct radv_image_view *iview = cmd_buffer->state.attachments ? cmd_buffer->state.attachments[pass_att].iview : NULL; uint32_t samples, samples_log2; VkFormat format; unsigned fs_key; VkClearColorValue clear_value = clear_att->clearValue.color; VkCommandBuffer cmd_buffer_h = radv_cmd_buffer_to_handle(cmd_buffer); VkPipeline pipeline; /* When a framebuffer is bound to the current command buffer, get the * number of samples from it. Otherwise, get the number of samples from * the render pass because it's likely a secondary command buffer. */ if (iview) { samples = iview->image->info.samples; format = iview->vk.format; } else { samples = cmd_buffer->state.pass->attachments[pass_att].samples; format = cmd_buffer->state.pass->attachments[pass_att].format; } samples_log2 = ffs(samples) - 1; fs_key = radv_format_meta_fs_key(device, format); assert(fs_key != -1); if (device->meta_state.color_clear[samples_log2][clear_att->colorAttachment] .color_pipelines[fs_key] == VK_NULL_HANDLE) { VkResult ret = create_color_pipeline( device, samples, clear_att->colorAttachment, radv_fs_key_format_exemplars[fs_key], &device->meta_state.color_clear[samples_log2][clear_att->colorAttachment] .color_pipelines[fs_key]); if (ret != VK_SUCCESS) { cmd_buffer->record_result = ret; return; } } pipeline = device->meta_state.color_clear[samples_log2][clear_att->colorAttachment] .color_pipelines[fs_key]; assert(samples_log2 < ARRAY_SIZE(device->meta_state.color_clear)); assert(pipeline); assert(clear_att->aspectMask == VK_IMAGE_ASPECT_COLOR_BIT); assert(clear_att->colorAttachment < subpass->color_count); radv_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer), device->meta_state.clear_color_p_layout, VK_SHADER_STAGE_FRAGMENT_BIT, 0, 16, &clear_value); radv_CmdBindPipeline(cmd_buffer_h, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline); radv_CmdSetViewport(radv_cmd_buffer_to_handle(cmd_buffer), 0, 1, &(VkViewport){.x = clear_rect->rect.offset.x, .y = clear_rect->rect.offset.y, .width = clear_rect->rect.extent.width, .height = clear_rect->rect.extent.height, .minDepth = 0.0f, .maxDepth = 1.0f}); radv_CmdSetScissor(radv_cmd_buffer_to_handle(cmd_buffer), 0, 1, &clear_rect->rect); if (view_mask) { u_foreach_bit(i, view_mask) radv_CmdDraw(cmd_buffer_h, 3, 1, 0, i); } else { radv_CmdDraw(cmd_buffer_h, 3, clear_rect->layerCount, 0, clear_rect->baseArrayLayer); } } static void build_depthstencil_shader(struct radv_device *dev, struct nir_shader **out_vs, struct nir_shader **out_fs, bool unrestricted) { nir_builder vs_b = radv_meta_init_shader( dev, MESA_SHADER_VERTEX, unrestricted ? "meta_clear_depthstencil_unrestricted_vs" : "meta_clear_depthstencil_vs"); nir_builder fs_b = radv_meta_init_shader( dev, MESA_SHADER_FRAGMENT, unrestricted ? "meta_clear_depthstencil_unrestricted_fs" : "meta_clear_depthstencil_fs"); const struct glsl_type *position_out_type = glsl_vec4_type(); nir_variable *vs_out_pos = nir_variable_create(vs_b.shader, nir_var_shader_out, position_out_type, "gl_Position"); vs_out_pos->data.location = VARYING_SLOT_POS; nir_ssa_def *z; if (unrestricted) { nir_ssa_def *in_color_load = nir_load_push_constant(&fs_b, 1, 32, nir_imm_int(&fs_b, 0), .range = 4); nir_variable *fs_out_depth = nir_variable_create(fs_b.shader, nir_var_shader_out, glsl_int_type(), "f_depth"); fs_out_depth->data.location = FRAG_RESULT_DEPTH; nir_store_var(&fs_b, fs_out_depth, in_color_load, 0x1); z = nir_imm_float(&vs_b, 0.0); } else { z = nir_load_push_constant(&vs_b, 1, 32, nir_imm_int(&vs_b, 0), .range = 4); } nir_ssa_def *outvec = nir_gen_rect_vertices(&vs_b, z, NULL); nir_store_var(&vs_b, vs_out_pos, outvec, 0xf); const struct glsl_type *layer_type = glsl_int_type(); nir_variable *vs_out_layer = nir_variable_create(vs_b.shader, nir_var_shader_out, layer_type, "v_layer"); vs_out_layer->data.location = VARYING_SLOT_LAYER; vs_out_layer->data.interpolation = INTERP_MODE_FLAT; nir_ssa_def *inst_id = nir_load_instance_id(&vs_b); nir_ssa_def *base_instance = nir_load_base_instance(&vs_b); nir_ssa_def *layer_id = nir_iadd(&vs_b, inst_id, base_instance); nir_store_var(&vs_b, vs_out_layer, layer_id, 0x1); *out_vs = vs_b.shader; *out_fs = fs_b.shader; } static VkResult create_depthstencil_pipeline(struct radv_device *device, VkImageAspectFlags aspects, uint32_t samples, int index, bool unrestricted, VkPipeline *pipeline) { struct nir_shader *vs_nir, *fs_nir; VkResult result; mtx_lock(&device->meta_state.mtx); if (*pipeline) { mtx_unlock(&device->meta_state.mtx); return VK_SUCCESS; } build_depthstencil_shader(device, &vs_nir, &fs_nir, unrestricted); const VkPipelineVertexInputStateCreateInfo vi_state = { .sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO, .vertexBindingDescriptionCount = 0, .vertexAttributeDescriptionCount = 0, }; const VkPipelineDepthStencilStateCreateInfo ds_state = { .sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO, .depthTestEnable = !!(aspects & VK_IMAGE_ASPECT_DEPTH_BIT), .depthCompareOp = VK_COMPARE_OP_ALWAYS, .depthWriteEnable = !!(aspects & VK_IMAGE_ASPECT_DEPTH_BIT), .depthBoundsTestEnable = false, .stencilTestEnable = !!(aspects & VK_IMAGE_ASPECT_STENCIL_BIT), .front = { .passOp = VK_STENCIL_OP_REPLACE, .compareOp = VK_COMPARE_OP_ALWAYS, .writeMask = UINT32_MAX, .reference = 0, /* dynamic */ }, .back = {0 /* dont care */}, .minDepthBounds = 0.0f, .maxDepthBounds = 1.0f, }; const VkPipelineColorBlendStateCreateInfo cb_state = { .sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO, .logicOpEnable = false, .attachmentCount = 0, .pAttachments = NULL, .blendConstants = { 0.0f, 0.0f, 0.0f, 0.0f }, }; const VkPipelineRenderingCreateInfo rendering_create_info = { .sType = VK_STRUCTURE_TYPE_PIPELINE_RENDERING_CREATE_INFO, .depthAttachmentFormat = (aspects & VK_IMAGE_ASPECT_DEPTH_BIT) ? VK_FORMAT_D32_SFLOAT : VK_FORMAT_UNDEFINED, .stencilAttachmentFormat = (aspects & VK_IMAGE_ASPECT_STENCIL_BIT) ? VK_FORMAT_S8_UINT : VK_FORMAT_UNDEFINED, }; struct radv_graphics_pipeline_create_info extra = { .use_rectlist = true, }; if (aspects & VK_IMAGE_ASPECT_DEPTH_BIT) { extra.db_depth_clear = index == DEPTH_CLEAR_SLOW ? false : true; } if (aspects & VK_IMAGE_ASPECT_STENCIL_BIT) { extra.db_stencil_clear = index == DEPTH_CLEAR_SLOW ? false : true; } result = create_pipeline(device, samples, vs_nir, fs_nir, &vi_state, &ds_state, &cb_state, &rendering_create_info, device->meta_state.clear_depth_p_layout, &extra, &device->meta_state.alloc, pipeline); mtx_unlock(&device->meta_state.mtx); return result; } static bool depth_view_can_fast_clear(struct radv_cmd_buffer *cmd_buffer, const struct radv_image_view *iview, VkImageAspectFlags aspects, VkImageLayout layout, bool in_render_loop, const VkClearRect *clear_rect, VkClearDepthStencilValue clear_value) { if (!iview) return false; uint32_t queue_mask = radv_image_queue_family_mask(iview->image, cmd_buffer->qf, cmd_buffer->qf); if (clear_rect->rect.offset.x || clear_rect->rect.offset.y || clear_rect->rect.extent.width != iview->extent.width || clear_rect->rect.extent.height != iview->extent.height) return false; if (radv_image_is_tc_compat_htile(iview->image) && (((aspects & VK_IMAGE_ASPECT_DEPTH_BIT) && clear_value.depth != 0.0 && clear_value.depth != 1.0) || ((aspects & VK_IMAGE_ASPECT_STENCIL_BIT) && clear_value.stencil != 0))) return false; if (radv_htile_enabled(iview->image, iview->vk.base_mip_level) && iview->vk.base_mip_level == 0 && iview->vk.base_array_layer == 0 && iview->vk.layer_count == iview->image->info.array_size && radv_layout_is_htile_compressed(cmd_buffer->device, iview->image, layout, in_render_loop, queue_mask) && radv_image_extent_compare(iview->image, &iview->extent)) return true; return false; } static VkPipeline pick_depthstencil_pipeline(struct radv_cmd_buffer *cmd_buffer, struct radv_meta_state *meta_state, const struct radv_image_view *iview, int samples_log2, VkImageAspectFlags aspects, VkImageLayout layout, bool in_render_loop, const VkClearRect *clear_rect, VkClearDepthStencilValue clear_value) { bool fast = depth_view_can_fast_clear(cmd_buffer, iview, aspects, layout, in_render_loop, clear_rect, clear_value); bool unrestricted = cmd_buffer->device->vk.enabled_extensions.EXT_depth_range_unrestricted; int index = fast ? DEPTH_CLEAR_FAST : DEPTH_CLEAR_SLOW; VkPipeline *pipeline; switch (aspects) { case VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT: pipeline = unrestricted ? &meta_state->ds_clear[samples_log2].depthstencil_unrestricted_pipeline[index] : &meta_state->ds_clear[samples_log2].depthstencil_pipeline[index]; break; case VK_IMAGE_ASPECT_DEPTH_BIT: pipeline = unrestricted ? &meta_state->ds_clear[samples_log2].depth_only_unrestricted_pipeline[index] : &meta_state->ds_clear[samples_log2].depth_only_pipeline[index]; break; case VK_IMAGE_ASPECT_STENCIL_BIT: pipeline = unrestricted ? &meta_state->ds_clear[samples_log2].stencil_only_unrestricted_pipeline[index] : &meta_state->ds_clear[samples_log2].stencil_only_pipeline[index]; break; default: unreachable("expected depth or stencil aspect"); } if (*pipeline == VK_NULL_HANDLE) { VkResult ret = create_depthstencil_pipeline( cmd_buffer->device, aspects, 1u << samples_log2, index, unrestricted, pipeline); if (ret != VK_SUCCESS) { cmd_buffer->record_result = ret; return VK_NULL_HANDLE; } } return *pipeline; } static void emit_depthstencil_clear(struct radv_cmd_buffer *cmd_buffer, const VkClearAttachment *clear_att, const VkClearRect *clear_rect, struct radv_subpass_attachment *ds_att, uint32_t view_mask, bool ds_resolve_clear) { struct radv_device *device = cmd_buffer->device; struct radv_meta_state *meta_state = &device->meta_state; const struct radv_subpass *subpass = cmd_buffer->state.subpass; const uint32_t pass_att = ds_att->attachment; VkClearDepthStencilValue clear_value = clear_att->clearValue.depthStencil; VkImageAspectFlags aspects = clear_att->aspectMask; const struct radv_image_view *iview = cmd_buffer->state.attachments ? cmd_buffer->state.attachments[pass_att].iview : NULL; uint32_t samples, samples_log2; VkCommandBuffer cmd_buffer_h = radv_cmd_buffer_to_handle(cmd_buffer); /* When a framebuffer is bound to the current command buffer, get the * number of samples from it. Otherwise, get the number of samples from * the render pass because it's likely a secondary command buffer. */ if (iview) { samples = iview->image->info.samples; } else { samples = cmd_buffer->state.pass->attachments[pass_att].samples; } samples_log2 = ffs(samples) - 1; assert(pass_att != VK_ATTACHMENT_UNUSED); if (!(aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) clear_value.depth = 1.0f; if (cmd_buffer->device->vk.enabled_extensions.EXT_depth_range_unrestricted) { radv_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer), device->meta_state.clear_depth_unrestricted_p_layout, VK_SHADER_STAGE_FRAGMENT_BIT, 0, 4, &clear_value.depth); } else { radv_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer), device->meta_state.clear_depth_p_layout, VK_SHADER_STAGE_VERTEX_BIT, 0, 4, &clear_value.depth); } uint32_t prev_reference = cmd_buffer->state.dynamic.stencil_reference.front; if (aspects & VK_IMAGE_ASPECT_STENCIL_BIT) { radv_CmdSetStencilReference(cmd_buffer_h, VK_STENCIL_FACE_FRONT_BIT, clear_value.stencil); } VkPipeline pipeline = pick_depthstencil_pipeline(cmd_buffer, meta_state, iview, samples_log2, aspects, ds_att->layout, ds_att->in_render_loop, clear_rect, clear_value); if (!pipeline) return; struct radv_subpass clear_subpass = { .color_count = 0, .color_attachments = NULL, .depth_stencil_attachment = ds_att, }; if (ds_resolve_clear) radv_cmd_buffer_set_subpass(cmd_buffer, &clear_subpass); radv_CmdBindPipeline(cmd_buffer_h, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline); if (depth_view_can_fast_clear(cmd_buffer, iview, aspects, ds_att->layout, ds_att->in_render_loop, clear_rect, clear_value)) radv_update_ds_clear_metadata(cmd_buffer, iview, clear_value, aspects); radv_CmdSetViewport(radv_cmd_buffer_to_handle(cmd_buffer), 0, 1, &(VkViewport){.x = clear_rect->rect.offset.x, .y = clear_rect->rect.offset.y, .width = clear_rect->rect.extent.width, .height = clear_rect->rect.extent.height, .minDepth = 0.0f, .maxDepth = 1.0f}); radv_CmdSetScissor(radv_cmd_buffer_to_handle(cmd_buffer), 0, 1, &clear_rect->rect); if (view_mask) { u_foreach_bit(i, view_mask) radv_CmdDraw(cmd_buffer_h, 3, 1, 0, i); } else { radv_CmdDraw(cmd_buffer_h, 3, clear_rect->layerCount, 0, clear_rect->baseArrayLayer); } if (aspects & VK_IMAGE_ASPECT_STENCIL_BIT) { radv_CmdSetStencilReference(cmd_buffer_h, VK_STENCIL_FACE_FRONT_BIT, prev_reference); } if (ds_resolve_clear) radv_cmd_buffer_restore_subpass(cmd_buffer, subpass); } static uint32_t clear_htile_mask(struct radv_cmd_buffer *cmd_buffer, const struct radv_image *image, struct radeon_winsys_bo *bo, uint64_t offset, uint64_t size, uint32_t htile_value, uint32_t htile_mask) { struct radv_device *device = cmd_buffer->device; struct radv_meta_state *state = &device->meta_state; uint64_t block_count = round_up_u64(size, 1024); struct radv_meta_saved_state saved_state; struct radv_buffer dst_buffer; radv_meta_save( &saved_state, cmd_buffer, RADV_META_SAVE_COMPUTE_PIPELINE | RADV_META_SAVE_CONSTANTS | RADV_META_SAVE_DESCRIPTORS); radv_buffer_init(&dst_buffer, device, bo, size, offset); radv_CmdBindPipeline(radv_cmd_buffer_to_handle(cmd_buffer), VK_PIPELINE_BIND_POINT_COMPUTE, state->clear_htile_mask_pipeline); radv_meta_push_descriptor_set( cmd_buffer, VK_PIPELINE_BIND_POINT_COMPUTE, state->clear_htile_mask_p_layout, 0, /* set */ 1, /* descriptorWriteCount */ (VkWriteDescriptorSet[]){ {.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, .dstBinding = 0, .dstArrayElement = 0, .descriptorCount = 1, .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, .pBufferInfo = &(VkDescriptorBufferInfo){.buffer = radv_buffer_to_handle(&dst_buffer), .offset = 0, .range = size}}}); const unsigned constants[2] = { htile_value & htile_mask, ~htile_mask, }; radv_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer), state->clear_htile_mask_p_layout, VK_SHADER_STAGE_COMPUTE_BIT, 0, 8, constants); radv_CmdDispatch(radv_cmd_buffer_to_handle(cmd_buffer), block_count, 1, 1); radv_buffer_finish(&dst_buffer); radv_meta_restore(&saved_state, cmd_buffer); return RADV_CMD_FLAG_CS_PARTIAL_FLUSH | radv_src_access_flush(cmd_buffer, VK_ACCESS_2_SHADER_WRITE_BIT, image); } static uint32_t radv_get_htile_fast_clear_value(const struct radv_device *device, const struct radv_image *image, VkClearDepthStencilValue value) { uint32_t max_zval = 0x3fff; /* maximum 14-bit value. */ uint32_t zmask = 0, smem = 0; uint32_t htile_value; uint32_t zmin, zmax; /* Convert the depth value to 14-bit zmin/zmax values. */ zmin = lroundf(value.depth * max_zval); zmax = zmin; if (radv_image_tile_stencil_disabled(device, image)) { /* Z only (no stencil): * * |31 18|17 4|3 0| * +---------+---------+-------+ * | Max Z | Min Z | ZMask | */ htile_value = (((zmax & 0x3fff) << 18) | ((zmin & 0x3fff) << 4) | ((zmask & 0xf) << 0)); } else { /* Z and stencil: * * |31 12|11 10|9 8|7 6|5 4|3 0| * +-----------+-----+------+-----+-----+-------+ * | Z Range | | SMem | SR1 | SR0 | ZMask | * * Z, stencil, 4 bit VRS encoding: * |31 12| 11 10 |9 8|7 6 |5 4|3 0| * +-----------+------------+------+------------+-----+-------+ * | Z Range | VRS Y-rate | SMem | VRS X-rate | SR0 | ZMask | */ uint32_t delta = 0; uint32_t zrange = ((zmax << 6) | delta); uint32_t sresults = 0xf; /* SR0/SR1 both as 0x3. */ if (radv_image_has_vrs_htile(device, image)) sresults = 0x3; htile_value = (((zrange & 0xfffff) << 12) | ((smem & 0x3) << 8) | ((sresults & 0xf) << 4) | ((zmask & 0xf) << 0)); } return htile_value; } static uint32_t radv_get_htile_mask(const struct radv_device *device, const struct radv_image *image, VkImageAspectFlags aspects) { uint32_t mask = 0; if (radv_image_tile_stencil_disabled(device, image)) { /* All the HTILE buffer is used when there is no stencil. */ mask = UINT32_MAX; } else { if (aspects & VK_IMAGE_ASPECT_DEPTH_BIT) mask |= 0xfffffc0f; if (aspects & VK_IMAGE_ASPECT_STENCIL_BIT) mask |= 0x000003f0; } return mask; } static bool radv_is_fast_clear_depth_allowed(VkClearDepthStencilValue value) { return value.depth == 1.0f || value.depth == 0.0f; } static bool radv_is_fast_clear_stencil_allowed(VkClearDepthStencilValue value) { return value.stencil == 0; } static bool radv_can_fast_clear_depth(struct radv_cmd_buffer *cmd_buffer, const struct radv_image_view *iview, VkImageLayout image_layout, bool in_render_loop, VkImageAspectFlags aspects, const VkClearRect *clear_rect, const VkClearDepthStencilValue clear_value, uint32_t view_mask) { if (!iview || !iview->support_fast_clear) return false; if (!radv_layout_is_htile_compressed( cmd_buffer->device, iview->image, image_layout, in_render_loop, radv_image_queue_family_mask(iview->image, cmd_buffer->qf, cmd_buffer->qf))) return false; if (clear_rect->rect.offset.x || clear_rect->rect.offset.y || clear_rect->rect.extent.width != iview->image->info.width || clear_rect->rect.extent.height != iview->image->info.height) return false; if (view_mask && (iview->image->info.array_size >= 32 || (1u << iview->image->info.array_size) - 1u != view_mask)) return false; if (!view_mask && clear_rect->baseArrayLayer != 0) return false; if (!view_mask && clear_rect->layerCount != iview->image->info.array_size) return false; if (cmd_buffer->device->vk.enabled_extensions.EXT_depth_range_unrestricted && (aspects & VK_IMAGE_ASPECT_DEPTH_BIT) && (clear_value.depth < 0.0 || clear_value.depth > 1.0)) return false; if (radv_image_is_tc_compat_htile(iview->image) && (((aspects & VK_IMAGE_ASPECT_DEPTH_BIT) && !radv_is_fast_clear_depth_allowed(clear_value)) || ((aspects & VK_IMAGE_ASPECT_STENCIL_BIT) && !radv_is_fast_clear_stencil_allowed(clear_value)))) return false; if (iview->image->info.levels > 1) { uint32_t last_level = iview->vk.base_mip_level + iview->vk.level_count - 1; if (last_level >= iview->image->planes[0].surface.num_meta_levels) { /* Do not fast clears if one level can't be fast cleared. */ return false; } } return true; } static void radv_fast_clear_depth(struct radv_cmd_buffer *cmd_buffer, const struct radv_image_view *iview, const VkClearAttachment *clear_att, enum radv_cmd_flush_bits *pre_flush, enum radv_cmd_flush_bits *post_flush) { VkClearDepthStencilValue clear_value = clear_att->clearValue.depthStencil; VkImageAspectFlags aspects = clear_att->aspectMask; uint32_t clear_word, flush_bits; clear_word = radv_get_htile_fast_clear_value(cmd_buffer->device, iview->image, clear_value); if (pre_flush) { enum radv_cmd_flush_bits bits = radv_src_access_flush(cmd_buffer, VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT, iview->image) | radv_dst_access_flush(cmd_buffer, VK_ACCESS_2_SHADER_WRITE_BIT | VK_ACCESS_2_SHADER_READ_BIT, iview->image); cmd_buffer->state.flush_bits |= bits & ~*pre_flush; *pre_flush |= cmd_buffer->state.flush_bits; } VkImageSubresourceRange range = { .aspectMask = aspects, .baseMipLevel = iview->vk.base_mip_level, .levelCount = iview->vk.level_count, .baseArrayLayer = iview->vk.base_array_layer, .layerCount = iview->vk.layer_count, }; flush_bits = radv_clear_htile(cmd_buffer, iview->image, &range, clear_word); if (iview->image->planes[0].surface.has_stencil && !(aspects == (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT))) { /* Synchronize after performing a depth-only or a stencil-only * fast clear because the driver uses an optimized path which * performs a read-modify-write operation, and the two separate * aspects might use the same HTILE memory. */ cmd_buffer->state.flush_bits |= flush_bits; } radv_update_ds_clear_metadata(cmd_buffer, iview, clear_value, aspects); if (post_flush) { *post_flush |= flush_bits; } } static nir_shader * build_clear_htile_mask_shader(struct radv_device *dev) { nir_builder b = radv_meta_init_shader(dev, MESA_SHADER_COMPUTE, "meta_clear_htile_mask"); b.shader->info.workgroup_size[0] = 64; nir_ssa_def *global_id = get_global_ids(&b, 1); nir_ssa_def *offset = nir_imul_imm(&b, global_id, 16); offset = nir_channel(&b, offset, 0); nir_ssa_def *buf = radv_meta_load_descriptor(&b, 0, 0); nir_ssa_def *constants = nir_load_push_constant(&b, 2, 32, nir_imm_int(&b, 0), .range = 8); nir_ssa_def *load = nir_load_ssbo(&b, 4, 32, buf, offset, .align_mul = 16); /* data = (data & ~htile_mask) | (htile_value & htile_mask) */ nir_ssa_def *data = nir_iand(&b, load, nir_channel(&b, constants, 1)); data = nir_ior(&b, data, nir_channel(&b, constants, 0)); nir_store_ssbo(&b, data, buf, offset, .access = ACCESS_NON_READABLE, .align_mul = 16); return b.shader; } static VkResult init_meta_clear_htile_mask_state(struct radv_device *device) { struct radv_meta_state *state = &device->meta_state; VkResult result; nir_shader *cs = build_clear_htile_mask_shader(device); VkDescriptorSetLayoutCreateInfo ds_layout_info = { .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, .flags = VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR, .bindingCount = 1, .pBindings = (VkDescriptorSetLayoutBinding[]){ {.binding = 0, .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, .descriptorCount = 1, .stageFlags = VK_SHADER_STAGE_COMPUTE_BIT, .pImmutableSamplers = NULL}, }}; result = radv_CreateDescriptorSetLayout(radv_device_to_handle(device), &ds_layout_info, &state->alloc, &state->clear_htile_mask_ds_layout); if (result != VK_SUCCESS) goto fail; VkPipelineLayoutCreateInfo p_layout_info = { .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, .setLayoutCount = 1, .pSetLayouts = &state->clear_htile_mask_ds_layout, .pushConstantRangeCount = 1, .pPushConstantRanges = &(VkPushConstantRange){ VK_SHADER_STAGE_COMPUTE_BIT, 0, 8, }, }; result = radv_CreatePipelineLayout(radv_device_to_handle(device), &p_layout_info, &state->alloc, &state->clear_htile_mask_p_layout); if (result != VK_SUCCESS) goto fail; VkPipelineShaderStageCreateInfo shader_stage = { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_COMPUTE_BIT, .module = vk_shader_module_handle_from_nir(cs), .pName = "main", .pSpecializationInfo = NULL, }; VkComputePipelineCreateInfo pipeline_info = { .sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO, .stage = shader_stage, .flags = 0, .layout = state->clear_htile_mask_p_layout, }; result = radv_CreateComputePipelines(radv_device_to_handle(device), radv_pipeline_cache_to_handle(&state->cache), 1, &pipeline_info, NULL, &state->clear_htile_mask_pipeline); fail: ralloc_free(cs); return result; } /* Clear DCC using comp-to-single by storing the clear value at the beginning of every 256B block. * For MSAA images, clearing the first sample should be enough as long as CMASK is also cleared. */ static nir_shader * build_clear_dcc_comp_to_single_shader(struct radv_device *dev, bool is_msaa) { enum glsl_sampler_dim dim = is_msaa ? GLSL_SAMPLER_DIM_MS : GLSL_SAMPLER_DIM_2D; const struct glsl_type *img_type = glsl_image_type(dim, true, GLSL_TYPE_FLOAT); nir_builder b = radv_meta_init_shader(dev, MESA_SHADER_COMPUTE, "meta_clear_dcc_comp_to_single-%s", is_msaa ? "multisampled" : "singlesampled"); b.shader->info.workgroup_size[0] = 8; b.shader->info.workgroup_size[1] = 8; nir_ssa_def *global_id = get_global_ids(&b, 3); /* Load the dimensions in pixels of a block that gets compressed to one DCC byte. */ nir_ssa_def *dcc_block_size = nir_load_push_constant(&b, 2, 32, nir_imm_int(&b, 0), .range = 8); /* Compute the coordinates. */ nir_ssa_def *coord = nir_channels(&b, global_id, 0x3); coord = nir_imul(&b, coord, dcc_block_size); coord = nir_vec4(&b, nir_channel(&b, coord, 0), nir_channel(&b, coord, 1), nir_channel(&b, global_id, 2), nir_ssa_undef(&b, 1, 32)); nir_variable *output_img = nir_variable_create(b.shader, nir_var_image, img_type, "out_img"); output_img->data.descriptor_set = 0; output_img->data.binding = 0; /* Load the clear color values. */ nir_ssa_def *clear_values = nir_load_push_constant(&b, 2, 32, nir_imm_int(&b, 8), .range = 8); nir_ssa_def *data = nir_vec4(&b, nir_channel(&b, clear_values, 0), nir_channel(&b, clear_values, 1), nir_channel(&b, clear_values, 1), nir_channel(&b, clear_values, 1)); /* Store the clear color values. */ nir_ssa_def *sample_id = is_msaa ? nir_imm_int(&b, 0) : nir_ssa_undef(&b, 1, 32); nir_image_deref_store(&b, &nir_build_deref_var(&b, output_img)->dest.ssa, coord, sample_id, data, nir_imm_int(&b, 0), .image_dim = dim, .image_array = true); return b.shader; } static VkResult create_dcc_comp_to_single_pipeline(struct radv_device *device, bool is_msaa, VkPipeline *pipeline) { struct radv_meta_state *state = &device->meta_state; VkResult result; nir_shader *cs = build_clear_dcc_comp_to_single_shader(device, is_msaa); VkPipelineShaderStageCreateInfo shader_stage = { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_COMPUTE_BIT, .module = vk_shader_module_handle_from_nir(cs), .pName = "main", .pSpecializationInfo = NULL, }; VkComputePipelineCreateInfo pipeline_info = { .sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO, .stage = shader_stage, .flags = 0, .layout = state->clear_dcc_comp_to_single_p_layout, }; result = radv_CreateComputePipelines(radv_device_to_handle(device), radv_pipeline_cache_to_handle(&state->cache), 1, &pipeline_info, NULL, pipeline); ralloc_free(cs); return result; } static VkResult init_meta_clear_dcc_comp_to_single_state(struct radv_device *device) { struct radv_meta_state *state = &device->meta_state; VkResult result; VkDescriptorSetLayoutCreateInfo ds_layout_info = { .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, .flags = VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR, .bindingCount = 1, .pBindings = (VkDescriptorSetLayoutBinding[]){ {.binding = 0, .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, .descriptorCount = 1, .stageFlags = VK_SHADER_STAGE_COMPUTE_BIT, .pImmutableSamplers = NULL}, }}; result = radv_CreateDescriptorSetLayout(radv_device_to_handle(device), &ds_layout_info, &state->alloc, &state->clear_dcc_comp_to_single_ds_layout); if (result != VK_SUCCESS) goto fail; VkPipelineLayoutCreateInfo p_layout_info = { .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, .setLayoutCount = 1, .pSetLayouts = &state->clear_dcc_comp_to_single_ds_layout, .pushConstantRangeCount = 1, .pPushConstantRanges = &(VkPushConstantRange){ VK_SHADER_STAGE_COMPUTE_BIT, 0, 16, }, }; result = radv_CreatePipelineLayout(radv_device_to_handle(device), &p_layout_info, &state->alloc, &state->clear_dcc_comp_to_single_p_layout); if (result != VK_SUCCESS) goto fail; for (uint32_t i = 0; i < 2; i++) { result = create_dcc_comp_to_single_pipeline(device, !!i, &state->clear_dcc_comp_to_single_pipeline[i]); if (result != VK_SUCCESS) goto fail; } fail: return result; } VkResult radv_device_init_meta_clear_state(struct radv_device *device, bool on_demand) { VkResult res; struct radv_meta_state *state = &device->meta_state; VkPipelineLayoutCreateInfo pl_color_create_info = { .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, .setLayoutCount = 0, .pushConstantRangeCount = 1, .pPushConstantRanges = &(VkPushConstantRange){VK_SHADER_STAGE_FRAGMENT_BIT, 0, 16}, }; res = radv_CreatePipelineLayout(radv_device_to_handle(device), &pl_color_create_info, &device->meta_state.alloc, &device->meta_state.clear_color_p_layout); if (res != VK_SUCCESS) return res; VkPipelineLayoutCreateInfo pl_depth_create_info = { .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, .setLayoutCount = 0, .pushConstantRangeCount = 1, .pPushConstantRanges = &(VkPushConstantRange){VK_SHADER_STAGE_VERTEX_BIT, 0, 4}, }; res = radv_CreatePipelineLayout(radv_device_to_handle(device), &pl_depth_create_info, &device->meta_state.alloc, &device->meta_state.clear_depth_p_layout); if (res != VK_SUCCESS) return res; VkPipelineLayoutCreateInfo pl_depth_unrestricted_create_info = { .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, .setLayoutCount = 0, .pushConstantRangeCount = 1, .pPushConstantRanges = &(VkPushConstantRange){VK_SHADER_STAGE_FRAGMENT_BIT, 0, 4}, }; res = radv_CreatePipelineLayout(radv_device_to_handle(device), &pl_depth_unrestricted_create_info, &device->meta_state.alloc, &device->meta_state.clear_depth_unrestricted_p_layout); if (res != VK_SUCCESS) return res; res = init_meta_clear_htile_mask_state(device); if (res != VK_SUCCESS) return res; res = init_meta_clear_dcc_comp_to_single_state(device); if (res != VK_SUCCESS) return res; if (on_demand) return VK_SUCCESS; for (uint32_t i = 0; i < ARRAY_SIZE(state->color_clear); ++i) { uint32_t samples = 1 << i; /* Only precompile meta pipelines for attachment 0 as other are uncommon. */ for (uint32_t j = 0; j < NUM_META_FS_KEYS; ++j) { VkFormat format = radv_fs_key_format_exemplars[j]; unsigned fs_key = radv_format_meta_fs_key(device, format); assert(!state->color_clear[i][0].color_pipelines[fs_key]); res = create_color_pipeline(device, samples, 0, format, &state->color_clear[i][0].color_pipelines[fs_key]); if (res != VK_SUCCESS) return res; } } for (uint32_t i = 0; i < ARRAY_SIZE(state->ds_clear); ++i) { uint32_t samples = 1 << i; for (uint32_t j = 0; j < NUM_DEPTH_CLEAR_PIPELINES; j++) { res = create_depthstencil_pipeline(device, VK_IMAGE_ASPECT_DEPTH_BIT, samples, j, false, &state->ds_clear[i].depth_only_pipeline[j]); if (res != VK_SUCCESS) return res; res = create_depthstencil_pipeline(device, VK_IMAGE_ASPECT_STENCIL_BIT, samples, j, false, &state->ds_clear[i].stencil_only_pipeline[j]); if (res != VK_SUCCESS) return res; res = create_depthstencil_pipeline( device, VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT, samples, j, false, &state->ds_clear[i].depthstencil_pipeline[j]); if (res != VK_SUCCESS) return res; res = create_depthstencil_pipeline(device, VK_IMAGE_ASPECT_DEPTH_BIT, samples, j, true, &state->ds_clear[i].depth_only_unrestricted_pipeline[j]); if (res != VK_SUCCESS) return res; res = create_depthstencil_pipeline(device, VK_IMAGE_ASPECT_STENCIL_BIT, samples, j, true, &state->ds_clear[i].stencil_only_unrestricted_pipeline[j]); if (res != VK_SUCCESS) return res; res = create_depthstencil_pipeline( device, VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT, samples, j, true, &state->ds_clear[i].depthstencil_unrestricted_pipeline[j]); if (res != VK_SUCCESS) return res; } } return VK_SUCCESS; } static uint32_t radv_get_cmask_fast_clear_value(const struct radv_image *image) { uint32_t value = 0; /* Default value when no DCC. */ /* The fast-clear value is different for images that have both DCC and * CMASK metadata. */ if (radv_image_has_dcc(image)) { /* DCC fast clear with MSAA should clear CMASK to 0xC. */ return image->info.samples > 1 ? 0xcccccccc : 0xffffffff; } return value; } uint32_t radv_clear_cmask(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, const VkImageSubresourceRange *range, uint32_t value) { uint64_t offset = image->bindings[0].offset + image->planes[0].surface.cmask_offset; uint64_t size; if (cmd_buffer->device->physical_device->rad_info.gfx_level == GFX9) { /* TODO: clear layers. */ size = image->planes[0].surface.cmask_size; } else { unsigned slice_size = image->planes[0].surface.cmask_slice_size; offset += slice_size * range->baseArrayLayer; size = slice_size * radv_get_layerCount(image, range); } return radv_fill_buffer(cmd_buffer, image, image->bindings[0].bo, radv_buffer_get_va(image->bindings[0].bo) + offset, size, value); } uint32_t radv_clear_fmask(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, const VkImageSubresourceRange *range, uint32_t value) { uint64_t offset = image->bindings[0].offset + image->planes[0].surface.fmask_offset; unsigned slice_size = image->planes[0].surface.fmask_slice_size; uint64_t size; /* MSAA images do not support mipmap levels. */ assert(range->baseMipLevel == 0 && radv_get_levelCount(image, range) == 1); offset += slice_size * range->baseArrayLayer; size = slice_size * radv_get_layerCount(image, range); return radv_fill_buffer(cmd_buffer, image, image->bindings[0].bo, radv_buffer_get_va(image->bindings[0].bo) + offset, size, value); } uint32_t radv_clear_dcc(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, const VkImageSubresourceRange *range, uint32_t value) { uint32_t level_count = radv_get_levelCount(image, range); uint32_t layer_count = radv_get_layerCount(image, range); uint32_t flush_bits = 0; /* Mark the image as being compressed. */ radv_update_dcc_metadata(cmd_buffer, image, range, true); for (uint32_t l = 0; l < level_count; l++) { uint64_t offset = image->bindings[0].offset + image->planes[0].surface.meta_offset; uint32_t level = range->baseMipLevel + l; uint64_t size; if (cmd_buffer->device->physical_device->rad_info.gfx_level >= GFX10) { /* DCC for mipmaps+layers is currently disabled. */ offset += image->planes[0].surface.meta_slice_size * range->baseArrayLayer + image->planes[0].surface.u.gfx9.meta_levels[level].offset; size = image->planes[0].surface.u.gfx9.meta_levels[level].size * layer_count; } else if (cmd_buffer->device->physical_device->rad_info.gfx_level == GFX9) { /* Mipmap levels and layers aren't implemented. */ assert(level == 0); size = image->planes[0].surface.meta_size; } else { const struct legacy_surf_dcc_level *dcc_level = &image->planes[0].surface.u.legacy.color.dcc_level[level]; /* If dcc_fast_clear_size is 0 (which might happens for * mipmaps) the fill buffer operation below is a no-op. * This can only happen during initialization as the * fast clear path fallbacks to slow clears if one * level can't be fast cleared. */ offset += dcc_level->dcc_offset + dcc_level->dcc_slice_fast_clear_size * range->baseArrayLayer; size = dcc_level->dcc_slice_fast_clear_size * radv_get_layerCount(image, range); } /* Do not clear this level if it can't be compressed. */ if (!size) continue; flush_bits |= radv_fill_buffer(cmd_buffer, image, image->bindings[0].bo, radv_buffer_get_va(image->bindings[0].bo) + offset, size, value); } return flush_bits; } static uint32_t radv_clear_dcc_comp_to_single(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, const VkImageSubresourceRange *range, uint32_t color_values[2]) { struct radv_device *device = cmd_buffer->device; unsigned bytes_per_pixel = vk_format_get_blocksize(image->vk.format); unsigned layer_count = radv_get_layerCount(image, range); struct radv_meta_saved_state saved_state; bool is_msaa = image->info.samples > 1; struct radv_image_view iview; VkFormat format; switch (bytes_per_pixel) { case 1: format = VK_FORMAT_R8_UINT; break; case 2: format = VK_FORMAT_R16_UINT; break; case 4: format = VK_FORMAT_R32_UINT; break; case 8: format = VK_FORMAT_R32G32_UINT; break; case 16: format = VK_FORMAT_R32G32B32A32_UINT; break; default: unreachable("Unsupported number of bytes per pixel"); } radv_meta_save( &saved_state, cmd_buffer, RADV_META_SAVE_DESCRIPTORS | RADV_META_SAVE_COMPUTE_PIPELINE | RADV_META_SAVE_CONSTANTS); VkPipeline pipeline = device->meta_state.clear_dcc_comp_to_single_pipeline[is_msaa]; radv_CmdBindPipeline(radv_cmd_buffer_to_handle(cmd_buffer), VK_PIPELINE_BIND_POINT_COMPUTE, pipeline); for (uint32_t l = 0; l < radv_get_levelCount(image, range); l++) { uint32_t width, height; /* Do not write the clear color value for levels without DCC. */ if (!radv_dcc_enabled(image, range->baseMipLevel + l)) continue; width = radv_minify(image->info.width, range->baseMipLevel + l); height = radv_minify(image->info.height, range->baseMipLevel + l); radv_image_view_init( &iview, cmd_buffer->device, &(VkImageViewCreateInfo){ .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .image = radv_image_to_handle(image), .viewType = VK_IMAGE_VIEW_TYPE_2D, .format = format, .subresourceRange = {.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .baseMipLevel = range->baseMipLevel + l, .levelCount = 1, .baseArrayLayer = range->baseArrayLayer, .layerCount = layer_count}, }, 0, &(struct radv_image_view_extra_create_info){.disable_compression = true}); radv_meta_push_descriptor_set( cmd_buffer, VK_PIPELINE_BIND_POINT_COMPUTE, device->meta_state.clear_dcc_comp_to_single_p_layout, 0, 1, (VkWriteDescriptorSet[]){{.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, .dstBinding = 0, .dstArrayElement = 0, .descriptorCount = 1, .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, .pImageInfo = (VkDescriptorImageInfo[]){ { .sampler = VK_NULL_HANDLE, .imageView = radv_image_view_to_handle(&iview), .imageLayout = VK_IMAGE_LAYOUT_GENERAL, }, }}}); unsigned dcc_width = DIV_ROUND_UP(width, image->planes[0].surface.u.gfx9.color.dcc_block_width); unsigned dcc_height = DIV_ROUND_UP(height, image->planes[0].surface.u.gfx9.color.dcc_block_height); const unsigned constants[4] = { image->planes[0].surface.u.gfx9.color.dcc_block_width, image->planes[0].surface.u.gfx9.color.dcc_block_height, color_values[0], color_values[1], }; radv_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer), device->meta_state.clear_dcc_comp_to_single_p_layout, VK_SHADER_STAGE_COMPUTE_BIT, 0, 16, constants); radv_unaligned_dispatch(cmd_buffer, dcc_width, dcc_height, layer_count); radv_image_view_finish(&iview); } radv_meta_restore(&saved_state, cmd_buffer); return RADV_CMD_FLAG_CS_PARTIAL_FLUSH | radv_src_access_flush(cmd_buffer, VK_ACCESS_2_SHADER_WRITE_BIT, image); } uint32_t radv_clear_htile(struct radv_cmd_buffer *cmd_buffer, const struct radv_image *image, const VkImageSubresourceRange *range, uint32_t value) { uint32_t level_count = radv_get_levelCount(image, range); uint32_t flush_bits = 0; uint32_t htile_mask; htile_mask = radv_get_htile_mask(cmd_buffer->device, image, range->aspectMask); if (level_count != image->info.levels) { assert(cmd_buffer->device->physical_device->rad_info.gfx_level >= GFX10); /* Clear individuals levels separately. */ for (uint32_t l = 0; l < level_count; l++) { uint32_t level = range->baseMipLevel + l; uint64_t offset = image->bindings[0].offset + image->planes[0].surface.meta_offset + image->planes[0].surface.u.gfx9.meta_levels[level].offset; uint32_t size = image->planes[0].surface.u.gfx9.meta_levels[level].size; /* Do not clear this level if it can be compressed. */ if (!size) continue; if (htile_mask == UINT_MAX) { /* Clear the whole HTILE buffer. */ flush_bits |= radv_fill_buffer(cmd_buffer, image, image->bindings[0].bo, radv_buffer_get_va(image->bindings[0].bo) + offset, size, value); } else { /* Only clear depth or stencil bytes in the HTILE buffer. */ flush_bits |= clear_htile_mask(cmd_buffer, image, image->bindings[0].bo, offset, size, value, htile_mask); } } } else { unsigned layer_count = radv_get_layerCount(image, range); uint64_t size = image->planes[0].surface.meta_slice_size * layer_count; uint64_t offset = image->bindings[0].offset + image->planes[0].surface.meta_offset + image->planes[0].surface.meta_slice_size * range->baseArrayLayer; if (htile_mask == UINT_MAX) { /* Clear the whole HTILE buffer. */ flush_bits = radv_fill_buffer(cmd_buffer, image, image->bindings[0].bo, radv_buffer_get_va(image->bindings[0].bo) + offset, size, value); } else { /* Only clear depth or stencil bytes in the HTILE buffer. */ flush_bits = clear_htile_mask(cmd_buffer, image, image->bindings[0].bo, offset, size, value, htile_mask); } } return flush_bits; } enum { RADV_DCC_CLEAR_0000 = 0x00000000U, RADV_DCC_GFX8_CLEAR_0001 = 0x40404040U, RADV_DCC_GFX8_CLEAR_1110 = 0x80808080U, RADV_DCC_GFX8_CLEAR_1111 = 0xC0C0C0C0U, RADV_DCC_GFX8_CLEAR_REG = 0x20202020U, RADV_DCC_GFX9_CLEAR_SINGLE = 0x10101010U, RADV_DCC_GFX11_CLEAR_SINGLE = 0x01010101U, RADV_DCC_GFX11_CLEAR_0000 = 0x00000000U, RADV_DCC_GFX11_CLEAR_1111_UNORM = 0x02020202U, RADV_DCC_GFX11_CLEAR_1111_FP16 = 0x04040404U, RADV_DCC_GFX11_CLEAR_1111_FP32 = 0x06060606U, RADV_DCC_GFX11_CLEAR_0001_UNORM = 0x08080808U, RADV_DCC_GFX11_CLEAR_1110_UNORM = 0x0A0A0A0AU, }; static uint32_t radv_dcc_single_clear_value(const struct radv_device *device) { return device->physical_device->rad_info.gfx_level >= GFX11 ? RADV_DCC_GFX11_CLEAR_SINGLE : RADV_DCC_GFX9_CLEAR_SINGLE; } static void gfx8_get_fast_clear_parameters(struct radv_device *device, const struct radv_image_view *iview, const VkClearColorValue *clear_value, uint32_t *reset_value, bool *can_avoid_fast_clear_elim) { bool values[4] = {0}; int extra_channel; bool main_value = false; bool extra_value = false; bool has_color = false; bool has_alpha = false; /* comp-to-single allows to perform DCC fast clears without requiring a FCE. */ if (iview->image->support_comp_to_single) { *reset_value = RADV_DCC_GFX9_CLEAR_SINGLE; *can_avoid_fast_clear_elim = true; } else { *reset_value = RADV_DCC_GFX8_CLEAR_REG; *can_avoid_fast_clear_elim = false; } const struct util_format_description *desc = vk_format_description(iview->vk.format); if (iview->vk.format == VK_FORMAT_B10G11R11_UFLOAT_PACK32 || iview->vk.format == VK_FORMAT_R5G6B5_UNORM_PACK16 || iview->vk.format == VK_FORMAT_B5G6R5_UNORM_PACK16) extra_channel = -1; else if (desc->layout == UTIL_FORMAT_LAYOUT_PLAIN) { if (vi_alpha_is_on_msb(device, iview->vk.format)) extra_channel = desc->nr_channels - 1; else extra_channel = 0; } else return; for (int i = 0; i < 4; i++) { int index = desc->swizzle[i] - PIPE_SWIZZLE_X; if (desc->swizzle[i] < PIPE_SWIZZLE_X || desc->swizzle[i] > PIPE_SWIZZLE_W) continue; if (desc->channel[i].pure_integer && desc->channel[i].type == UTIL_FORMAT_TYPE_SIGNED) { /* Use the maximum value for clamping the clear color. */ int max = u_bit_consecutive(0, desc->channel[i].size - 1); values[i] = clear_value->int32[i] != 0; if (clear_value->int32[i] != 0 && MIN2(clear_value->int32[i], max) != max) return; } else if (desc->channel[i].pure_integer && desc->channel[i].type == UTIL_FORMAT_TYPE_UNSIGNED) { /* Use the maximum value for clamping the clear color. */ unsigned max = u_bit_consecutive(0, desc->channel[i].size); values[i] = clear_value->uint32[i] != 0U; if (clear_value->uint32[i] != 0U && MIN2(clear_value->uint32[i], max) != max) return; } else { values[i] = clear_value->float32[i] != 0.0F; if (clear_value->float32[i] != 0.0F && clear_value->float32[i] != 1.0F) return; } if (index == extra_channel) { extra_value = values[i]; has_alpha = true; } else { main_value = values[i]; has_color = true; } } /* If alpha isn't present, make it the same as color, and vice versa. */ if (!has_alpha) extra_value = main_value; else if (!has_color) main_value = extra_value; for (int i = 0; i < 4; ++i) if (values[i] != main_value && desc->swizzle[i] - PIPE_SWIZZLE_X != extra_channel && desc->swizzle[i] >= PIPE_SWIZZLE_X && desc->swizzle[i] <= PIPE_SWIZZLE_W) return; /* Only DCC clear code 0000 is allowed for signed<->unsigned formats. */ if ((main_value || extra_value) && iview->image->dcc_sign_reinterpret) return; *can_avoid_fast_clear_elim = true; if (main_value) { if (extra_value) *reset_value = RADV_DCC_GFX8_CLEAR_1111; else *reset_value = RADV_DCC_GFX8_CLEAR_1110; } else { if (extra_value) *reset_value = RADV_DCC_GFX8_CLEAR_0001; else *reset_value = RADV_DCC_CLEAR_0000; } } static bool gfx11_get_fast_clear_parameters(struct radv_device *device, const struct radv_image_view *iview, const VkClearColorValue *clear_value, uint32_t *reset_value) { int extra_channel; bool all_bits_are_0 = true; bool all_bits_are_1 = true; bool all_words_are_fp16_1 = true; bool all_words_are_fp32_1 = true; bool unorm_0001 = true; bool unorm_1110 = true; const struct util_format_description *desc = vk_format_description(iview->vk.format); if (iview->vk.format == VK_FORMAT_B10G11R11_UFLOAT_PACK32 || iview->vk.format == VK_FORMAT_R5G6B5_UNORM_PACK16 || iview->vk.format == VK_FORMAT_B5G6R5_UNORM_PACK16) extra_channel = -1; else if (desc->layout == UTIL_FORMAT_LAYOUT_PLAIN) { if (vi_alpha_is_on_msb(device, iview->vk.format)) extra_channel = desc->nr_channels - 1; else extra_channel = 0; } else return false; for (int i = 0; i < 4; i++) { int index = desc->swizzle[i] - PIPE_SWIZZLE_X; if (desc->swizzle[i] < PIPE_SWIZZLE_X || desc->swizzle[i] > PIPE_SWIZZLE_W) continue; uint32_t extra_xor = index == extra_channel ? ~0u : 0; if (clear_value->uint32[i] & ((1u << desc->channel[i].size) - 1)) all_bits_are_0 = false; if (~clear_value->uint32[i] & ((1u << desc->channel[i].size) - 1)) all_bits_are_1 = false; if (desc->channel[i].type != UTIL_FORMAT_TYPE_FLOAT || desc->channel[i].size != 16 || clear_value->float32[i] != 1.0) all_words_are_fp16_1 = false; if (desc->channel[i].type != UTIL_FORMAT_TYPE_FLOAT || desc->channel[i].size != 32 || clear_value->float32[i] != 1.0) all_words_are_fp32_1 = false; if ((clear_value->uint32[i] ^ extra_xor) & ((1u << desc->channel[i].size) - 1)) unorm_0001 = false; if ((~clear_value->uint32[i] ^ extra_xor) & ((1u << desc->channel[i].size) - 1)) unorm_1110 = false; } if (all_bits_are_0) *reset_value = RADV_DCC_CLEAR_0000; else if (all_bits_are_1) *reset_value = RADV_DCC_GFX11_CLEAR_1111_UNORM; else if (all_words_are_fp16_1) *reset_value = RADV_DCC_GFX11_CLEAR_1111_FP16; else if (all_words_are_fp32_1) *reset_value = RADV_DCC_GFX11_CLEAR_1111_FP32; else if (unorm_0001) *reset_value = RADV_DCC_GFX11_CLEAR_0001_UNORM; else if (unorm_1110) *reset_value = RADV_DCC_GFX11_CLEAR_1110_UNORM; else if (iview->image->support_comp_to_single) *reset_value = RADV_DCC_GFX11_CLEAR_SINGLE; else return false; return true; } static bool radv_can_fast_clear_color(struct radv_cmd_buffer *cmd_buffer, const struct radv_image_view *iview, VkImageLayout image_layout, bool in_render_loop, const VkClearRect *clear_rect, VkClearColorValue clear_value, uint32_t view_mask) { uint32_t clear_color[2]; if (!iview || !iview->support_fast_clear) return false; if (!radv_layout_can_fast_clear( cmd_buffer->device, iview->image, iview->vk.base_mip_level, image_layout, in_render_loop, radv_image_queue_family_mask(iview->image, cmd_buffer->qf, cmd_buffer->qf))) return false; if (clear_rect->rect.offset.x || clear_rect->rect.offset.y || clear_rect->rect.extent.width != iview->image->info.width || clear_rect->rect.extent.height != iview->image->info.height) return false; if (view_mask && (iview->image->info.array_size >= 32 || (1u << iview->image->info.array_size) - 1u != view_mask)) return false; if (!view_mask && clear_rect->baseArrayLayer != 0) return false; if (!view_mask && clear_rect->layerCount != iview->image->info.array_size) return false; /* DCC */ if (!radv_format_pack_clear_color(iview->vk.format, clear_color, &clear_value)) return false; /* Images that support comp-to-single clears don't have clear values. */ if (!iview->image->support_comp_to_single && !radv_image_has_clear_value(iview->image) && (clear_color[0] != 0 || clear_color[1] != 0)) return false; if (radv_dcc_enabled(iview->image, iview->vk.base_mip_level)) { bool can_avoid_fast_clear_elim; uint32_t reset_value; if (cmd_buffer->device->physical_device->rad_info.gfx_level >= GFX11) { if (!gfx11_get_fast_clear_parameters(cmd_buffer->device, iview, &clear_value, &reset_value)) return false; } else { gfx8_get_fast_clear_parameters(cmd_buffer->device, iview, &clear_value, &reset_value, &can_avoid_fast_clear_elim); } if (iview->image->info.levels > 1) { if (cmd_buffer->device->physical_device->rad_info.gfx_level >= GFX9) { uint32_t last_level = iview->vk.base_mip_level + iview->vk.level_count - 1; if (last_level >= iview->image->planes[0].surface.num_meta_levels) { /* Do not fast clears if one level can't be fast cleard. */ return false; } } else { for (uint32_t l = 0; l < iview->vk.level_count; l++) { uint32_t level = iview->vk.base_mip_level + l; struct legacy_surf_dcc_level *dcc_level = &iview->image->planes[0].surface.u.legacy.color.dcc_level[level]; /* Do not fast clears if one level can't be * fast cleared. */ if (!dcc_level->dcc_fast_clear_size) return false; } } } } return true; } static void radv_fast_clear_color(struct radv_cmd_buffer *cmd_buffer, const struct radv_image_view *iview, const VkClearAttachment *clear_att, uint32_t subpass_att, enum radv_cmd_flush_bits *pre_flush, enum radv_cmd_flush_bits *post_flush) { VkClearColorValue clear_value = clear_att->clearValue.color; uint32_t clear_color[2], flush_bits = 0; uint32_t cmask_clear_value; VkImageSubresourceRange range = { .aspectMask = iview->vk.aspects, .baseMipLevel = iview->vk.base_mip_level, .levelCount = iview->vk.level_count, .baseArrayLayer = iview->vk.base_array_layer, .layerCount = iview->vk.layer_count, }; if (pre_flush) { enum radv_cmd_flush_bits bits = radv_src_access_flush(cmd_buffer, VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT, iview->image) | radv_dst_access_flush(cmd_buffer, VK_ACCESS_2_SHADER_WRITE_BIT, iview->image); cmd_buffer->state.flush_bits |= bits & ~*pre_flush; *pre_flush |= cmd_buffer->state.flush_bits; } /* DCC */ radv_format_pack_clear_color(iview->vk.format, clear_color, &clear_value); cmask_clear_value = radv_get_cmask_fast_clear_value(iview->image); /* clear cmask buffer */ bool need_decompress_pass = false; if (radv_dcc_enabled(iview->image, iview->vk.base_mip_level)) { uint32_t reset_value; bool can_avoid_fast_clear_elim = true; if (cmd_buffer->device->physical_device->rad_info.gfx_level >= GFX11) { ASSERTED bool result = gfx11_get_fast_clear_parameters(cmd_buffer->device, iview, &clear_value, &reset_value); assert(result); } else { gfx8_get_fast_clear_parameters(cmd_buffer->device, iview, &clear_value, &reset_value, &can_avoid_fast_clear_elim); } if (radv_image_has_cmask(iview->image)) { flush_bits = radv_clear_cmask(cmd_buffer, iview->image, &range, cmask_clear_value); } if (!can_avoid_fast_clear_elim) need_decompress_pass = true; flush_bits |= radv_clear_dcc(cmd_buffer, iview->image, &range, reset_value); if (reset_value == radv_dcc_single_clear_value(cmd_buffer->device)) { /* Write the clear color to the first byte of each 256B block when the image supports DCC * fast clears with comp-to-single. */ flush_bits |= radv_clear_dcc_comp_to_single(cmd_buffer, iview->image, &range, clear_color); } } else { flush_bits = radv_clear_cmask(cmd_buffer, iview->image, &range, cmask_clear_value); /* Fast clearing with CMASK should always be eliminated. */ need_decompress_pass = true; } if (post_flush) { *post_flush |= flush_bits; } /* Update the FCE predicate to perform a fast-clear eliminate. */ radv_update_fce_metadata(cmd_buffer, iview->image, &range, need_decompress_pass); radv_update_color_clear_metadata(cmd_buffer, iview, subpass_att, clear_color); } /** * The parameters mean that same as those in vkCmdClearAttachments. */ static void emit_clear(struct radv_cmd_buffer *cmd_buffer, const VkClearAttachment *clear_att, const VkClearRect *clear_rect, enum radv_cmd_flush_bits *pre_flush, enum radv_cmd_flush_bits *post_flush, uint32_t view_mask, bool ds_resolve_clear) { const struct vk_framebuffer *fb = cmd_buffer->state.framebuffer; const struct radv_subpass *subpass = cmd_buffer->state.subpass; VkImageAspectFlags aspects = clear_att->aspectMask; if (aspects & VK_IMAGE_ASPECT_COLOR_BIT) { const uint32_t subpass_att = clear_att->colorAttachment; assert(subpass_att < subpass->color_count); const uint32_t pass_att = subpass->color_attachments[subpass_att].attachment; if (pass_att == VK_ATTACHMENT_UNUSED) return; VkImageLayout image_layout = subpass->color_attachments[subpass_att].layout; bool in_render_loop = subpass->color_attachments[subpass_att].in_render_loop; const struct radv_image_view *iview = fb ? cmd_buffer->state.attachments[pass_att].iview : NULL; VkClearColorValue clear_value = clear_att->clearValue.color; if (radv_can_fast_clear_color(cmd_buffer, iview, image_layout, in_render_loop, clear_rect, clear_value, view_mask)) { radv_fast_clear_color(cmd_buffer, iview, clear_att, subpass_att, pre_flush, post_flush); } else { emit_color_clear(cmd_buffer, clear_att, clear_rect, view_mask); } } else { struct radv_subpass_attachment *ds_att = subpass->depth_stencil_attachment; if (ds_resolve_clear) ds_att = subpass->ds_resolve_attachment; if (!ds_att || ds_att->attachment == VK_ATTACHMENT_UNUSED) return; VkImageLayout image_layout = ds_att->layout; bool in_render_loop = ds_att->in_render_loop; const struct radv_image_view *iview = fb ? cmd_buffer->state.attachments[ds_att->attachment].iview : NULL; VkClearDepthStencilValue clear_value = clear_att->clearValue.depthStencil; assert(aspects & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)); if (radv_can_fast_clear_depth(cmd_buffer, iview, image_layout, in_render_loop, aspects, clear_rect, clear_value, view_mask)) { radv_fast_clear_depth(cmd_buffer, iview, clear_att, pre_flush, post_flush); } else { emit_depthstencil_clear(cmd_buffer, clear_att, clear_rect, ds_att, view_mask, ds_resolve_clear); } } } static inline bool radv_attachment_needs_clear(struct radv_cmd_state *cmd_state, uint32_t a) { uint32_t view_mask = cmd_state->subpass->view_mask; return (a != VK_ATTACHMENT_UNUSED && cmd_state->attachments[a].pending_clear_aspects && (!view_mask || (view_mask & ~cmd_state->attachments[a].cleared_views))); } static bool radv_subpass_needs_clear(struct radv_cmd_buffer *cmd_buffer) { struct radv_cmd_state *cmd_state = &cmd_buffer->state; uint32_t a; if (!cmd_state->subpass) return false; for (uint32_t i = 0; i < cmd_state->subpass->color_count; ++i) { a = cmd_state->subpass->color_attachments[i].attachment; if (radv_attachment_needs_clear(cmd_state, a)) return true; } if (cmd_state->subpass->depth_stencil_attachment) { a = cmd_state->subpass->depth_stencil_attachment->attachment; if (radv_attachment_needs_clear(cmd_state, a)) return true; } if (!cmd_state->subpass->ds_resolve_attachment) return false; a = cmd_state->subpass->ds_resolve_attachment->attachment; return radv_attachment_needs_clear(cmd_state, a); } static void radv_subpass_clear_attachment(struct radv_cmd_buffer *cmd_buffer, struct radv_attachment_state *attachment, const VkClearAttachment *clear_att, enum radv_cmd_flush_bits *pre_flush, enum radv_cmd_flush_bits *post_flush, bool ds_resolve_clear) { struct radv_cmd_state *cmd_state = &cmd_buffer->state; uint32_t view_mask = cmd_state->subpass->view_mask; VkClearRect clear_rect = { .rect = cmd_state->render_area, .baseArrayLayer = 0, .layerCount = cmd_state->framebuffer->layers, }; radv_describe_begin_render_pass_clear(cmd_buffer, clear_att->aspectMask); emit_clear(cmd_buffer, clear_att, &clear_rect, pre_flush, post_flush, view_mask & ~attachment->cleared_views, ds_resolve_clear); if (view_mask) attachment->cleared_views |= view_mask; else attachment->pending_clear_aspects = 0; radv_describe_end_render_pass_clear(cmd_buffer); } /** * Emit any pending attachment clears for the current subpass. * * @see radv_attachment_state::pending_clear_aspects */ void radv_cmd_buffer_clear_subpass(struct radv_cmd_buffer *cmd_buffer) { struct radv_cmd_state *cmd_state = &cmd_buffer->state; struct radv_meta_saved_state saved_state; enum radv_cmd_flush_bits pre_flush = 0; enum radv_cmd_flush_bits post_flush = 0; if (!radv_subpass_needs_clear(cmd_buffer)) return; /* Subpass clear should not be affected by conditional rendering. */ radv_meta_save( &saved_state, cmd_buffer, RADV_META_SAVE_GRAPHICS_PIPELINE | RADV_META_SAVE_CONSTANTS | RADV_META_SUSPEND_PREDICATING); for (uint32_t i = 0; i < cmd_state->subpass->color_count; ++i) { uint32_t a = cmd_state->subpass->color_attachments[i].attachment; if (!radv_attachment_needs_clear(cmd_state, a)) continue; assert(cmd_state->attachments[a].pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT); VkClearAttachment clear_att = { .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .colorAttachment = i, /* Use attachment index relative to subpass */ .clearValue = cmd_state->attachments[a].clear_value, }; radv_subpass_clear_attachment(cmd_buffer, &cmd_state->attachments[a], &clear_att, &pre_flush, &post_flush, false); } if (cmd_state->subpass->depth_stencil_attachment) { uint32_t ds = cmd_state->subpass->depth_stencil_attachment->attachment; if (radv_attachment_needs_clear(cmd_state, ds)) { VkClearAttachment clear_att = { .aspectMask = cmd_state->attachments[ds].pending_clear_aspects, .clearValue = cmd_state->attachments[ds].clear_value, }; radv_subpass_clear_attachment(cmd_buffer, &cmd_state->attachments[ds], &clear_att, &pre_flush, &post_flush, false); } } if (cmd_state->subpass->ds_resolve_attachment) { uint32_t ds_resolve = cmd_state->subpass->ds_resolve_attachment->attachment; if (radv_attachment_needs_clear(cmd_state, ds_resolve)) { VkClearAttachment clear_att = { .aspectMask = cmd_state->attachments[ds_resolve].pending_clear_aspects, .clearValue = cmd_state->attachments[ds_resolve].clear_value, }; radv_subpass_clear_attachment(cmd_buffer, &cmd_state->attachments[ds_resolve], &clear_att, &pre_flush, &post_flush, true); } } radv_meta_restore(&saved_state, cmd_buffer); cmd_buffer->state.flush_bits |= post_flush; } static void radv_clear_image_layer(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, VkImageLayout image_layout, const VkImageSubresourceRange *range, VkFormat format, int level, unsigned layer_count, const VkClearValue *clear_val) { struct radv_image_view iview; uint32_t width = radv_minify(image->info.width, range->baseMipLevel + level); uint32_t height = radv_minify(image->info.height, range->baseMipLevel + level); radv_image_view_init(&iview, cmd_buffer->device, &(VkImageViewCreateInfo){ .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .image = radv_image_to_handle(image), .viewType = radv_meta_get_view_type(image), .format = format, .subresourceRange = {.aspectMask = range->aspectMask, .baseMipLevel = range->baseMipLevel + level, .levelCount = 1, .baseArrayLayer = range->baseArrayLayer, .layerCount = layer_count}, }, 0, NULL); VkClearAttachment clear_att = { .aspectMask = range->aspectMask, .colorAttachment = 0, .clearValue = *clear_val, }; VkClearRect clear_rect = { .rect = { .offset = {0, 0}, .extent = {width, height}, }, .baseArrayLayer = 0, .layerCount = layer_count, }; VkRenderingAttachmentInfo color_att = {0}, depth_att = {0}, stencil_att = {0}; if (range->aspectMask & VK_IMAGE_ASPECT_COLOR_BIT) { color_att.sType = VK_STRUCTURE_TYPE_RENDERING_ATTACHMENT_INFO; color_att.imageView = radv_image_view_to_handle(&iview); color_att.imageLayout = image_layout; color_att.loadOp = VK_ATTACHMENT_LOAD_OP_LOAD; color_att.storeOp = VK_ATTACHMENT_STORE_OP_STORE; } else { if (range->aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) { depth_att.sType = VK_STRUCTURE_TYPE_RENDERING_ATTACHMENT_INFO; depth_att.imageView = radv_image_view_to_handle(&iview); depth_att.imageLayout = image_layout; depth_att.loadOp = VK_ATTACHMENT_LOAD_OP_LOAD; depth_att.storeOp = VK_ATTACHMENT_STORE_OP_STORE; } if (range->aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) { stencil_att.sType = VK_STRUCTURE_TYPE_RENDERING_ATTACHMENT_INFO; stencil_att.imageView = radv_image_view_to_handle(&iview); stencil_att.imageLayout = image_layout; stencil_att.loadOp = VK_ATTACHMENT_LOAD_OP_LOAD; stencil_att.storeOp = VK_ATTACHMENT_STORE_OP_STORE; } } VkRenderingInfo rendering_info = { .sType = VK_STRUCTURE_TYPE_RENDERING_INFO, .renderArea = { .offset = { 0, 0 }, .extent = { width, height }, }, .layerCount = layer_count, }; if (range->aspectMask & VK_IMAGE_ASPECT_COLOR_BIT) { rendering_info.colorAttachmentCount = 1; rendering_info.pColorAttachments = &color_att; } else { if (range->aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) rendering_info.pDepthAttachment = &depth_att; if (range->aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) rendering_info.pStencilAttachment = &stencil_att; } radv_CmdBeginRendering(radv_cmd_buffer_to_handle(cmd_buffer), &rendering_info); emit_clear(cmd_buffer, &clear_att, &clear_rect, NULL, NULL, 0, false); radv_CmdEndRendering(radv_cmd_buffer_to_handle(cmd_buffer)); radv_image_view_finish(&iview); } /** * Return TRUE if a fast color or depth clear has been performed. */ static bool radv_fast_clear_range(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, VkFormat format, VkImageLayout image_layout, bool in_render_loop, const VkImageSubresourceRange *range, const VkClearValue *clear_val) { struct radv_image_view iview; bool fast_cleared = false; radv_image_view_init(&iview, cmd_buffer->device, &(VkImageViewCreateInfo){ .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .image = radv_image_to_handle(image), .viewType = radv_meta_get_view_type(image), .format = image->vk.format, .subresourceRange = { .aspectMask = range->aspectMask, .baseMipLevel = range->baseMipLevel, .levelCount = range->levelCount, .baseArrayLayer = range->baseArrayLayer, .layerCount = range->layerCount, }, }, 0, NULL); VkClearRect clear_rect = { .rect = { .offset = {0, 0}, .extent = { radv_minify(image->info.width, range->baseMipLevel), radv_minify(image->info.height, range->baseMipLevel), }, }, .baseArrayLayer = range->baseArrayLayer, .layerCount = range->layerCount, }; VkClearAttachment clear_att = { .aspectMask = range->aspectMask, .colorAttachment = 0, .clearValue = *clear_val, }; if (vk_format_is_color(format)) { if (radv_can_fast_clear_color(cmd_buffer, &iview, image_layout, in_render_loop, &clear_rect, clear_att.clearValue.color, 0)) { radv_fast_clear_color(cmd_buffer, &iview, &clear_att, clear_att.colorAttachment, NULL, NULL); fast_cleared = true; } } else { if (radv_can_fast_clear_depth(cmd_buffer, &iview, image_layout, in_render_loop, range->aspectMask, &clear_rect, clear_att.clearValue.depthStencil, 0)) { radv_fast_clear_depth(cmd_buffer, &iview, &clear_att, NULL, NULL); fast_cleared = true; } } radv_image_view_finish(&iview); return fast_cleared; } static void radv_cmd_clear_image(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, VkImageLayout image_layout, const VkClearValue *clear_value, uint32_t range_count, const VkImageSubresourceRange *ranges, bool cs) { VkFormat format = image->vk.format; VkClearValue internal_clear_value; if (ranges->aspectMask & VK_IMAGE_ASPECT_COLOR_BIT) internal_clear_value.color = clear_value->color; else internal_clear_value.depthStencil = clear_value->depthStencil; bool disable_compression = false; if (format == VK_FORMAT_E5B9G9R9_UFLOAT_PACK32) { bool blendable; if (cs ? !radv_is_storage_image_format_supported(cmd_buffer->device->physical_device, format) : !radv_is_colorbuffer_format_supported(cmd_buffer->device->physical_device, format, &blendable)) { format = VK_FORMAT_R32_UINT; internal_clear_value.color.uint32[0] = float3_to_rgb9e5(clear_value->color.float32); uint32_t queue_mask = radv_image_queue_family_mask(image, cmd_buffer->qf, cmd_buffer->qf); for (uint32_t r = 0; r < range_count; r++) { const VkImageSubresourceRange *range = &ranges[r]; /* Don't use compressed image stores because they will use an incompatible format. */ if (radv_layout_dcc_compressed(cmd_buffer->device, image, range->baseMipLevel, image_layout, false, queue_mask)) { disable_compression = cs; break; } } } } if (format == VK_FORMAT_R4G4_UNORM_PACK8) { uint8_t r, g; format = VK_FORMAT_R8_UINT; r = float_to_ubyte(clear_value->color.float32[0]) >> 4; g = float_to_ubyte(clear_value->color.float32[1]) >> 4; internal_clear_value.color.uint32[0] = (r << 4) | (g & 0xf); } for (uint32_t r = 0; r < range_count; r++) { const VkImageSubresourceRange *range = &ranges[r]; /* Try to perform a fast clear first, otherwise fallback to * the legacy path. */ if (!cs && radv_fast_clear_range(cmd_buffer, image, format, image_layout, false, range, &internal_clear_value)) { continue; } for (uint32_t l = 0; l < radv_get_levelCount(image, range); ++l) { const uint32_t layer_count = image->vk.image_type == VK_IMAGE_TYPE_3D ? radv_minify(image->info.depth, range->baseMipLevel + l) : radv_get_layerCount(image, range); if (cs) { for (uint32_t s = 0; s < layer_count; ++s) { struct radv_meta_blit2d_surf surf; surf.format = format; surf.image = image; surf.level = range->baseMipLevel + l; surf.layer = range->baseArrayLayer + s; surf.aspect_mask = range->aspectMask; surf.disable_compression = disable_compression; radv_meta_clear_image_cs(cmd_buffer, &surf, &internal_clear_value.color); } } else { assert(!disable_compression); radv_clear_image_layer(cmd_buffer, image, image_layout, range, format, l, layer_count, &internal_clear_value); } } } if (disable_compression) { enum radv_cmd_flush_bits flush_bits = 0; for (unsigned i = 0; i < range_count; i++) { if (radv_dcc_enabled(image, ranges[i].baseMipLevel)) flush_bits |= radv_clear_dcc(cmd_buffer, image, &ranges[i], 0xffffffffu); } cmd_buffer->state.flush_bits |= flush_bits; } } VKAPI_ATTR void VKAPI_CALL radv_CmdClearColorImage(VkCommandBuffer commandBuffer, VkImage image_h, VkImageLayout imageLayout, const VkClearColorValue *pColor, uint32_t rangeCount, const VkImageSubresourceRange *pRanges) { RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); RADV_FROM_HANDLE(radv_image, image, image_h); struct radv_meta_saved_state saved_state; bool cs; cs = cmd_buffer->qf == RADV_QUEUE_COMPUTE || !radv_image_is_renderable(cmd_buffer->device, image); /* Clear commands (except vkCmdClearAttachments) should not be affected by conditional rendering. */ enum radv_meta_save_flags save_flags = RADV_META_SAVE_CONSTANTS | RADV_META_SUSPEND_PREDICATING; if (cs) save_flags |= RADV_META_SAVE_COMPUTE_PIPELINE | RADV_META_SAVE_DESCRIPTORS; else save_flags |= RADV_META_SAVE_GRAPHICS_PIPELINE; radv_meta_save(&saved_state, cmd_buffer, save_flags); radv_cmd_clear_image(cmd_buffer, image, imageLayout, (const VkClearValue *)pColor, rangeCount, pRanges, cs); radv_meta_restore(&saved_state, cmd_buffer); } VKAPI_ATTR void VKAPI_CALL radv_CmdClearDepthStencilImage(VkCommandBuffer commandBuffer, VkImage image_h, VkImageLayout imageLayout, const VkClearDepthStencilValue *pDepthStencil, uint32_t rangeCount, const VkImageSubresourceRange *pRanges) { RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); RADV_FROM_HANDLE(radv_image, image, image_h); struct radv_meta_saved_state saved_state; /* Clear commands (except vkCmdClearAttachments) should not be affected by conditional rendering. */ radv_meta_save( &saved_state, cmd_buffer, RADV_META_SAVE_GRAPHICS_PIPELINE | RADV_META_SAVE_CONSTANTS | RADV_META_SUSPEND_PREDICATING); radv_cmd_clear_image(cmd_buffer, image, imageLayout, (const VkClearValue *)pDepthStencil, rangeCount, pRanges, false); radv_meta_restore(&saved_state, cmd_buffer); } VKAPI_ATTR void VKAPI_CALL radv_CmdClearAttachments(VkCommandBuffer commandBuffer, uint32_t attachmentCount, const VkClearAttachment *pAttachments, uint32_t rectCount, const VkClearRect *pRects) { RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); struct radv_meta_saved_state saved_state; enum radv_cmd_flush_bits pre_flush = 0; enum radv_cmd_flush_bits post_flush = 0; if (!cmd_buffer->state.subpass) return; radv_meta_save(&saved_state, cmd_buffer, RADV_META_SAVE_GRAPHICS_PIPELINE | RADV_META_SAVE_CONSTANTS); /* FINISHME: We can do better than this dumb loop. It thrashes too much * state. */ for (uint32_t a = 0; a < attachmentCount; ++a) { for (uint32_t r = 0; r < rectCount; ++r) { emit_clear(cmd_buffer, &pAttachments[a], &pRects[r], &pre_flush, &post_flush, cmd_buffer->state.subpass->view_mask, false); } } radv_meta_restore(&saved_state, cmd_buffer); cmd_buffer->state.flush_bits |= post_flush; }