/* * Copyright 2012 Advanced Micro Devices, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * on the rights to use, copy, modify, merge, publish, distribute, sub * license, and/or sell copies of the Software, and to permit persons to whom * the Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "si_build_pm4.h" #include "util/u_upload_mgr.h" #include "util/u_viewport.h" #define SI_MAX_SCISSOR 16384 static void si_get_small_prim_cull_info(struct si_context *sctx, struct si_small_prim_cull_info *out) { /* This is needed by the small primitive culling, because it's done * in screen space. */ struct si_small_prim_cull_info info; unsigned num_samples = si_get_num_coverage_samples(sctx); assert(num_samples >= 1); info.scale[0] = sctx->viewports.states[0].scale[0]; info.scale[1] = sctx->viewports.states[0].scale[1]; info.translate[0] = sctx->viewports.states[0].translate[0]; info.translate[1] = sctx->viewports.states[0].translate[1]; /* The viewport shouldn't flip the X axis for the small prim culling to work. */ assert(-info.scale[0] + info.translate[0] <= info.scale[0] + info.translate[0]); /* Compute the line width used by the rasterizer. */ float line_width = sctx->queued.named.rasterizer->line_width; if (num_samples == 1) line_width = roundf(line_width); line_width = MAX2(line_width, 1); info.clip_half_line_width[0] = line_width * 0.5 / fabs(info.scale[0]); info.clip_half_line_width[1] = line_width * 0.5 / fabs(info.scale[1]); /* If the Y axis is inverted (OpenGL default framebuffer), reverse it. * This is because the viewport transformation inverts the clip space * bounding box, so min becomes max, which breaks small primitive * culling. */ if (sctx->viewport0_y_inverted) { info.scale[1] = -info.scale[1]; info.translate[1] = -info.translate[1]; } /* This is what the hardware does. */ if (!sctx->queued.named.rasterizer->half_pixel_center) { info.translate[0] += 0.5; info.translate[1] += 0.5; } memcpy(info.scale_no_aa, info.scale, sizeof(info.scale)); memcpy(info.translate_no_aa, info.translate, sizeof(info.translate)); /* Scale the framebuffer up, so that samples become pixels and small * primitive culling is the same for all sample counts. * This only works with the standard DX sample positions, because * the samples are evenly spaced on both X and Y axes. */ for (unsigned i = 0; i < 2; i++) { info.scale[i] *= num_samples; info.translate[i] *= num_samples; } /* Better subpixel precision increases the efficiency of small * primitive culling. (more precision means a tighter bounding box * around primitives and more accurate elimination) */ unsigned quant_mode = sctx->viewports.as_scissor[0].quant_mode; if (quant_mode == SI_QUANT_MODE_12_12_FIXED_POINT_1_4096TH) info.small_prim_precision_no_aa = 1.0 / 4096.0; else if (quant_mode == SI_QUANT_MODE_14_10_FIXED_POINT_1_1024TH) info.small_prim_precision_no_aa = 1.0 / 1024.0; else info.small_prim_precision_no_aa = 1.0 / 256.0; info.small_prim_precision = num_samples * info.small_prim_precision_no_aa; *out = info; } static void si_emit_cull_state(struct si_context *sctx) { assert(sctx->screen->use_ngg_culling); const unsigned upload_size = offsetof(struct si_small_prim_cull_info, small_prim_precision); struct si_small_prim_cull_info info; si_get_small_prim_cull_info(sctx, &info); if (!sctx->small_prim_cull_info_buf || memcmp(&info, &sctx->last_small_prim_cull_info, sizeof(info))) { unsigned offset = 0; u_upload_data(sctx->b.const_uploader, 0, upload_size, si_optimal_tcc_alignment(sctx, upload_size), &info, &offset, (struct pipe_resource **)&sctx->small_prim_cull_info_buf); sctx->small_prim_cull_info_address = sctx->small_prim_cull_info_buf->gpu_address + offset; sctx->last_small_prim_cull_info = info; } /* This will end up in SGPR6 as (value << 8), shifted by the hw. */ radeon_add_to_buffer_list(sctx, &sctx->gfx_cs, sctx->small_prim_cull_info_buf, RADEON_USAGE_READ | RADEON_PRIO_CONST_BUFFER); radeon_begin(&sctx->gfx_cs); radeon_set_sh_reg(R_00B230_SPI_SHADER_USER_DATA_GS_0 + GFX9_SGPR_SMALL_PRIM_CULL_INFO * 4, sctx->small_prim_cull_info_address); radeon_end(); /* Set VS_STATE.SMALL_PRIM_PRECISION for NGG culling. * * small_prim_precision is 1 / 2^n. We only need n between 5 (1/32) and 12 (1/4096). * Such a floating point value can be packed into 4 bits as follows: * If we pass the first 4 bits of the exponent to the shader and set the next 3 bits * to 1, we'll get the number exactly because all other bits are always 0. See: * 1 * value = (0x70 | value.exponent[0:3]) << 23 = ------------------------------ * 2 ^ (15 - value.exponent[0:3]) * * So pass only the first 4 bits of the float exponent to the shader. */ SET_FIELD(sctx->current_gs_state, GS_STATE_SMALL_PRIM_PRECISION, (fui(info.small_prim_precision) >> 23) & 0xf); } static void si_set_scissor_states(struct pipe_context *pctx, unsigned start_slot, unsigned num_scissors, const struct pipe_scissor_state *state) { struct si_context *ctx = (struct si_context *)pctx; int i; for (i = 0; i < num_scissors; i++) ctx->scissors[start_slot + i] = state[i]; if (!ctx->queued.named.rasterizer->scissor_enable) return; si_mark_atom_dirty(ctx, &ctx->atoms.s.scissors); } /* Since the guard band disables clipping, we have to clip per-pixel * using a scissor. */ static void si_get_scissor_from_viewport(struct si_context *ctx, const struct pipe_viewport_state *vp, struct si_signed_scissor *scissor) { float tmp, minx, miny, maxx, maxy; /* Convert (-1, -1) and (1, 1) from clip space into window space. */ minx = -vp->scale[0] + vp->translate[0]; miny = -vp->scale[1] + vp->translate[1]; maxx = vp->scale[0] + vp->translate[0]; maxy = vp->scale[1] + vp->translate[1]; /* Handle inverted viewports. */ if (minx > maxx) { tmp = minx; minx = maxx; maxx = tmp; } if (miny > maxy) { tmp = miny; miny = maxy; maxy = tmp; } /* Convert to integer and round up the max bounds. */ scissor->minx = minx; scissor->miny = miny; scissor->maxx = ceilf(maxx); scissor->maxy = ceilf(maxy); } static void si_clamp_scissor(struct si_context *ctx, struct pipe_scissor_state *out, struct si_signed_scissor *scissor) { out->minx = CLAMP(scissor->minx, 0, SI_MAX_SCISSOR); out->miny = CLAMP(scissor->miny, 0, SI_MAX_SCISSOR); out->maxx = CLAMP(scissor->maxx, 0, SI_MAX_SCISSOR); out->maxy = CLAMP(scissor->maxy, 0, SI_MAX_SCISSOR); } static void si_clip_scissor(struct pipe_scissor_state *out, struct pipe_scissor_state *clip) { out->minx = MAX2(out->minx, clip->minx); out->miny = MAX2(out->miny, clip->miny); out->maxx = MIN2(out->maxx, clip->maxx); out->maxy = MIN2(out->maxy, clip->maxy); } static void si_scissor_make_union(struct si_signed_scissor *out, struct si_signed_scissor *in) { out->minx = MIN2(out->minx, in->minx); out->miny = MIN2(out->miny, in->miny); out->maxx = MAX2(out->maxx, in->maxx); out->maxy = MAX2(out->maxy, in->maxy); out->quant_mode = MIN2(out->quant_mode, in->quant_mode); } static void si_emit_one_scissor(struct si_context *ctx, struct radeon_cmdbuf *cs, struct si_signed_scissor *vp_scissor, struct pipe_scissor_state *scissor) { struct pipe_scissor_state final; if (ctx->vs_disables_clipping_viewport) { final.minx = final.miny = 0; final.maxx = final.maxy = SI_MAX_SCISSOR; } else { si_clamp_scissor(ctx, &final, vp_scissor); } if (scissor) si_clip_scissor(&final, scissor); radeon_begin(cs); /* Workaround for a hw bug on GFX6 that occurs when PA_SU_HARDWARE_- * SCREEN_OFFSET != 0 and any_scissor.BR_X/Y <= 0. */ if (ctx->gfx_level == GFX6 && (final.maxx == 0 || final.maxy == 0)) { radeon_emit(S_028250_TL_X(1) | S_028250_TL_Y(1) | S_028250_WINDOW_OFFSET_DISABLE(1)); radeon_emit(S_028254_BR_X(1) | S_028254_BR_Y(1)); radeon_end(); return; } radeon_emit(S_028250_TL_X(final.minx) | S_028250_TL_Y(final.miny) | S_028250_WINDOW_OFFSET_DISABLE(1)); radeon_emit(S_028254_BR_X(final.maxx) | S_028254_BR_Y(final.maxy)); radeon_end(); } #define MAX_PA_SU_HARDWARE_SCREEN_OFFSET 8176 static void si_emit_guardband(struct si_context *ctx) { const struct si_state_rasterizer *rs = ctx->queued.named.rasterizer; struct si_signed_scissor vp_as_scissor; struct pipe_viewport_state vp; float left, top, right, bottom, max_range, guardband_x, guardband_y; float discard_x, discard_y; if (ctx->vs_writes_viewport_index) { /* Shaders can draw to any viewport. Make a union of all * viewports. */ vp_as_scissor = ctx->viewports.as_scissor[0]; for (unsigned i = 1; i < SI_MAX_VIEWPORTS; i++) { si_scissor_make_union(&vp_as_scissor, &ctx->viewports.as_scissor[i]); } } else { vp_as_scissor = ctx->viewports.as_scissor[0]; } /* Blits don't set the viewport state. The vertex shader determines * the viewport size by scaling the coordinates, so we don't know * how large the viewport is. Assume the worst case. */ if (ctx->vs_disables_clipping_viewport) vp_as_scissor.quant_mode = SI_QUANT_MODE_16_8_FIXED_POINT_1_256TH; /* Determine the optimal hardware screen offset to center the viewport * within the viewport range in order to maximize the guardband size. */ int hw_screen_offset_x = (vp_as_scissor.maxx + vp_as_scissor.minx) / 2; int hw_screen_offset_y = (vp_as_scissor.maxy + vp_as_scissor.miny) / 2; /* GFX6-GFX7 need to align the offset to an ubertile consisting of all SEs. */ const unsigned hw_screen_offset_alignment = ctx->gfx_level >= GFX11 ? 32 : ctx->gfx_level >= GFX8 ? 16 : MAX2(ctx->screen->se_tile_repeat, 16); /* Indexed by quantization modes */ static int max_viewport_size[] = {65535, 16383, 4095}; /* Ensure that the whole viewport stays representable in * absolute coordinates. * See comment in si_set_viewport_states. */ assert(vp_as_scissor.maxx <= max_viewport_size[vp_as_scissor.quant_mode] && vp_as_scissor.maxy <= max_viewport_size[vp_as_scissor.quant_mode]); hw_screen_offset_x = CLAMP(hw_screen_offset_x, 0, MAX_PA_SU_HARDWARE_SCREEN_OFFSET); hw_screen_offset_y = CLAMP(hw_screen_offset_y, 0, MAX_PA_SU_HARDWARE_SCREEN_OFFSET); /* Align the screen offset by dropping the low bits. */ hw_screen_offset_x &= ~(hw_screen_offset_alignment - 1); hw_screen_offset_y &= ~(hw_screen_offset_alignment - 1); /* Apply the offset to center the viewport and maximize the guardband. */ vp_as_scissor.minx -= hw_screen_offset_x; vp_as_scissor.maxx -= hw_screen_offset_x; vp_as_scissor.miny -= hw_screen_offset_y; vp_as_scissor.maxy -= hw_screen_offset_y; /* Reconstruct the viewport transformation from the scissor. */ vp.translate[0] = (vp_as_scissor.minx + vp_as_scissor.maxx) / 2.0; vp.translate[1] = (vp_as_scissor.miny + vp_as_scissor.maxy) / 2.0; vp.scale[0] = vp_as_scissor.maxx - vp.translate[0]; vp.scale[1] = vp_as_scissor.maxy - vp.translate[1]; /* Treat a 0x0 viewport as 1x1 to prevent division by zero. */ if (vp_as_scissor.minx == vp_as_scissor.maxx) vp.scale[0] = 0.5; if (vp_as_scissor.miny == vp_as_scissor.maxy) vp.scale[1] = 0.5; /* Find the biggest guard band that is inside the supported viewport * range. The guard band is specified as a horizontal and vertical * distance from (0,0) in clip space. * * This is done by applying the inverse viewport transformation * on the viewport limits to get those limits in clip space. * * The viewport range is [-max_viewport_size/2 - 1, max_viewport_size/2]. * (-1 to the min coord because max_viewport_size is odd and ViewportBounds * Min/Max are -32768, 32767). */ assert(vp_as_scissor.quant_mode < ARRAY_SIZE(max_viewport_size)); max_range = max_viewport_size[vp_as_scissor.quant_mode] / 2; left = (-max_range - 1 - vp.translate[0]) / vp.scale[0]; right = (max_range - vp.translate[0]) / vp.scale[0]; top = (-max_range - 1 - vp.translate[1]) / vp.scale[1]; bottom = (max_range - vp.translate[1]) / vp.scale[1]; assert(left <= -1 && top <= -1 && right >= 1 && bottom >= 1); guardband_x = MIN2(-left, right); guardband_y = MIN2(-top, bottom); discard_x = 1.0; discard_y = 1.0; if (unlikely(util_prim_is_points_or_lines(ctx->current_rast_prim))) { /* When rendering wide points or lines, we need to be more * conservative about when to discard them entirely. */ float pixels; if (ctx->current_rast_prim == PIPE_PRIM_POINTS) pixels = rs->max_point_size; else pixels = rs->line_width; /* Add half the point size / line width */ discard_x += pixels / (2.0 * vp.scale[0]); discard_y += pixels / (2.0 * vp.scale[1]); /* Discard primitives that would lie entirely outside the clip * region. */ discard_x = MIN2(discard_x, guardband_x); discard_y = MIN2(discard_y, guardband_y); } /* If any of the GB registers is updated, all of them must be updated. * R_028BE8_PA_CL_GB_VERT_CLIP_ADJ, R_028BEC_PA_CL_GB_VERT_DISC_ADJ * R_028BF0_PA_CL_GB_HORZ_CLIP_ADJ, R_028BF4_PA_CL_GB_HORZ_DISC_ADJ */ radeon_begin(&ctx->gfx_cs); radeon_opt_set_context_reg4(ctx, R_028BE8_PA_CL_GB_VERT_CLIP_ADJ, SI_TRACKED_PA_CL_GB_VERT_CLIP_ADJ, fui(guardband_y), fui(discard_y), fui(guardband_x), fui(discard_x)); radeon_opt_set_context_reg(ctx, R_028234_PA_SU_HARDWARE_SCREEN_OFFSET, SI_TRACKED_PA_SU_HARDWARE_SCREEN_OFFSET, S_028234_HW_SCREEN_OFFSET_X(hw_screen_offset_x >> 4) | S_028234_HW_SCREEN_OFFSET_Y(hw_screen_offset_y >> 4)); radeon_opt_set_context_reg( ctx, R_028BE4_PA_SU_VTX_CNTL, SI_TRACKED_PA_SU_VTX_CNTL, S_028BE4_PIX_CENTER(rs->half_pixel_center) | S_028BE4_ROUND_MODE(V_028BE4_X_ROUND_TO_EVEN) | S_028BE4_QUANT_MODE(V_028BE4_X_16_8_FIXED_POINT_1_256TH + vp_as_scissor.quant_mode)); radeon_end_update_context_roll(ctx); } static void si_emit_scissors(struct si_context *ctx) { struct radeon_cmdbuf *cs = &ctx->gfx_cs; struct pipe_scissor_state *states = ctx->scissors; bool scissor_enabled = ctx->queued.named.rasterizer->scissor_enable; /* The simple case: Only 1 viewport is active. */ if (!ctx->vs_writes_viewport_index) { struct si_signed_scissor *vp = &ctx->viewports.as_scissor[0]; radeon_begin(cs); radeon_set_context_reg_seq(R_028250_PA_SC_VPORT_SCISSOR_0_TL, 2); radeon_end(); si_emit_one_scissor(ctx, cs, vp, scissor_enabled ? &states[0] : NULL); return; } /* All registers in the array need to be updated if any of them is changed. * This is a hardware requirement. */ radeon_begin(cs); radeon_set_context_reg_seq(R_028250_PA_SC_VPORT_SCISSOR_0_TL, SI_MAX_VIEWPORTS * 2); radeon_end(); for (unsigned i = 0; i < SI_MAX_VIEWPORTS; i++) { si_emit_one_scissor(ctx, cs, &ctx->viewports.as_scissor[i], scissor_enabled ? &states[i] : NULL); } } static void si_set_viewport_states(struct pipe_context *pctx, unsigned start_slot, unsigned num_viewports, const struct pipe_viewport_state *state) { struct si_context *ctx = (struct si_context *)pctx; int i; for (i = 0; i < num_viewports; i++) { unsigned index = start_slot + i; struct si_signed_scissor *scissor = &ctx->viewports.as_scissor[index]; ctx->viewports.states[index] = state[i]; si_get_scissor_from_viewport(ctx, &state[i], scissor); int max_corner = MAX2( MAX2(abs(scissor->maxx), abs(scissor->maxy)), MAX2(abs(scissor->minx), abs(scissor->miny))); /* Determine the best quantization mode (subpixel precision), * but also leave enough space for the guardband. * * Note that primitive binning requires QUANT_MODE == 16_8 on Vega10 * and Raven1 for line and rectangle primitive types to work correctly. * Always use 16_8 if primitive binning is possible to occur. */ if ((ctx->family == CHIP_VEGA10 || ctx->family == CHIP_RAVEN) && ctx->screen->dpbb_allowed) max_corner = 16384; /* Use QUANT_MODE == 16_8. */ /* Another constraint is that all coordinates in the viewport * are representable in fixed point with respect to the * surface origin. * * It means that PA_SU_HARDWARE_SCREEN_OFFSET can't be given * an offset that would make the upper corner of the viewport * greater than the maximum representable number post * quantization, ie 2^quant_bits. * * This does not matter for 14.10 and 16.8 formats since the * offset is already limited at 8k, but it means we can't use * 12.12 if we are drawing to some pixels outside the lower * 4k x 4k of the render target. */ if (max_corner <= 1024) /* 4K scanline area for guardband */ scissor->quant_mode = SI_QUANT_MODE_12_12_FIXED_POINT_1_4096TH; else if (max_corner <= 4096) /* 16K scanline area for guardband */ scissor->quant_mode = SI_QUANT_MODE_14_10_FIXED_POINT_1_1024TH; else /* 64K scanline area for guardband */ scissor->quant_mode = SI_QUANT_MODE_16_8_FIXED_POINT_1_256TH; } if (start_slot == 0) { ctx->viewport0_y_inverted = -state->scale[1] + state->translate[1] > state->scale[1] + state->translate[1]; /* NGG cull state uses the viewport and quant mode. */ if (ctx->screen->use_ngg_culling) si_mark_atom_dirty(ctx, &ctx->atoms.s.ngg_cull_state); } si_mark_atom_dirty(ctx, &ctx->atoms.s.viewports); si_mark_atom_dirty(ctx, &ctx->atoms.s.guardband); si_mark_atom_dirty(ctx, &ctx->atoms.s.scissors); } static void si_emit_one_viewport(struct si_context *ctx, struct pipe_viewport_state *state) { struct radeon_cmdbuf *cs = &ctx->gfx_cs; radeon_begin(cs); radeon_emit(fui(state->scale[0])); radeon_emit(fui(state->translate[0])); radeon_emit(fui(state->scale[1])); radeon_emit(fui(state->translate[1])); radeon_emit(fui(state->scale[2])); radeon_emit(fui(state->translate[2])); radeon_end(); } static void si_emit_viewports(struct si_context *ctx) { struct radeon_cmdbuf *cs = &ctx->gfx_cs; struct pipe_viewport_state *states = ctx->viewports.states; /* The simple case: Only 1 viewport is active. */ if (!ctx->vs_writes_viewport_index) { radeon_begin(cs); radeon_set_context_reg_seq(R_02843C_PA_CL_VPORT_XSCALE, 6); radeon_end(); si_emit_one_viewport(ctx, &states[0]); return; } /* All registers in the array need to be updated if any of them is changed. * This is a hardware requirement. */ radeon_begin(cs); radeon_set_context_reg_seq(R_02843C_PA_CL_VPORT_XSCALE + 0, SI_MAX_VIEWPORTS * 6); radeon_end(); for (unsigned i = 0; i < SI_MAX_VIEWPORTS; i++) si_emit_one_viewport(ctx, &states[i]); } static inline void si_viewport_zmin_zmax(const struct pipe_viewport_state *vp, bool halfz, bool window_space_position, float *zmin, float *zmax) { if (window_space_position) { *zmin = 0; *zmax = 1; return; } util_viewport_zmin_zmax(vp, halfz, zmin, zmax); } static void si_emit_depth_ranges(struct si_context *ctx) { struct radeon_cmdbuf *cs = &ctx->gfx_cs; struct pipe_viewport_state *states = ctx->viewports.states; bool clip_halfz = ctx->queued.named.rasterizer->clip_halfz; bool window_space = ctx->vs_disables_clipping_viewport; float zmin, zmax; /* The simple case: Only 1 viewport is active. */ if (!ctx->vs_writes_viewport_index) { si_viewport_zmin_zmax(&states[0], clip_halfz, window_space, &zmin, &zmax); radeon_begin(cs); radeon_set_context_reg_seq(R_0282D0_PA_SC_VPORT_ZMIN_0, 2); radeon_emit(fui(zmin)); radeon_emit(fui(zmax)); radeon_end(); return; } /* All registers in the array need to be updated if any of them is changed. * This is a hardware requirement. */ radeon_begin(cs); radeon_set_context_reg_seq(R_0282D0_PA_SC_VPORT_ZMIN_0, SI_MAX_VIEWPORTS * 2); for (unsigned i = 0; i < SI_MAX_VIEWPORTS; i++) { si_viewport_zmin_zmax(&states[i], clip_halfz, window_space, &zmin, &zmax); radeon_emit(fui(zmin)); radeon_emit(fui(zmax)); } radeon_end(); } static void si_emit_viewport_states(struct si_context *ctx) { si_emit_viewports(ctx); si_emit_depth_ranges(ctx); } /** * This reacts to 2 state changes: * - VS.writes_viewport_index * - VS output position in window space (enable/disable) * * Normally, we only emit 1 viewport and 1 scissor if no shader is using * the VIEWPORT_INDEX output, and emitting the other viewports and scissors * is delayed. When a shader with VIEWPORT_INDEX appears, this should be * called to emit the rest. */ void si_update_vs_viewport_state(struct si_context *ctx) { struct si_shader_ctx_state *vs = si_get_vs(ctx); struct si_shader_info *info = vs->cso ? &vs->cso->info : NULL; bool vs_window_space; if (!info) return; /* When the VS disables clipping and viewport transformation. */ vs_window_space = vs->cso->stage == MESA_SHADER_VERTEX && info->base.vs.window_space_position; if (ctx->vs_disables_clipping_viewport != vs_window_space) { ctx->vs_disables_clipping_viewport = vs_window_space; si_mark_atom_dirty(ctx, &ctx->atoms.s.scissors); si_mark_atom_dirty(ctx, &ctx->atoms.s.viewports); } /* Viewport index handling. */ if (ctx->vs_writes_viewport_index == info->writes_viewport_index) return; /* This changes how the guardband is computed. */ ctx->vs_writes_viewport_index = info->writes_viewport_index; si_mark_atom_dirty(ctx, &ctx->atoms.s.guardband); /* Emit scissors and viewports that were enabled by having * the ViewportIndex output. */ if (info->writes_viewport_index) { si_mark_atom_dirty(ctx, &ctx->atoms.s.scissors); si_mark_atom_dirty(ctx, &ctx->atoms.s.viewports); } } static void si_emit_window_rectangles(struct si_context *sctx) { /* There are four clipping rectangles. Their corner coordinates are inclusive. * Every pixel is assigned a number from 0 and 15 by setting bits 0-3 depending * on whether the pixel is inside cliprects 0-3, respectively. For example, * if a pixel is inside cliprects 0 and 1, but outside 2 and 3, it is assigned * the number 3 (binary 0011). * * If CLIPRECT_RULE & (1 << number), the pixel is rasterized. */ struct radeon_cmdbuf *cs = &sctx->gfx_cs; static const unsigned outside[4] = { /* outside rectangle 0 */ V_02820C_OUT | V_02820C_IN_1 | V_02820C_IN_2 | V_02820C_IN_21 | V_02820C_IN_3 | V_02820C_IN_31 | V_02820C_IN_32 | V_02820C_IN_321, /* outside rectangles 0, 1 */ V_02820C_OUT | V_02820C_IN_2 | V_02820C_IN_3 | V_02820C_IN_32, /* outside rectangles 0, 1, 2 */ V_02820C_OUT | V_02820C_IN_3, /* outside rectangles 0, 1, 2, 3 */ V_02820C_OUT, }; const unsigned disabled = 0xffff; /* all inside and outside cases */ unsigned num_rectangles = sctx->num_window_rectangles; struct pipe_scissor_state *rects = sctx->window_rectangles; unsigned rule; assert(num_rectangles <= 4); if (num_rectangles == 0) rule = disabled; else if (sctx->window_rectangles_include) rule = ~outside[num_rectangles - 1]; else rule = outside[num_rectangles - 1]; radeon_begin(cs); radeon_opt_set_context_reg(sctx, R_02820C_PA_SC_CLIPRECT_RULE, SI_TRACKED_PA_SC_CLIPRECT_RULE, rule); if (num_rectangles == 0) { radeon_end(); return; } radeon_set_context_reg_seq(R_028210_PA_SC_CLIPRECT_0_TL, num_rectangles * 2); for (unsigned i = 0; i < num_rectangles; i++) { radeon_emit(S_028210_TL_X(rects[i].minx) | S_028210_TL_Y(rects[i].miny)); radeon_emit(S_028214_BR_X(rects[i].maxx) | S_028214_BR_Y(rects[i].maxy)); } radeon_end(); } static void si_set_window_rectangles(struct pipe_context *ctx, bool include, unsigned num_rectangles, const struct pipe_scissor_state *rects) { struct si_context *sctx = (struct si_context *)ctx; sctx->num_window_rectangles = num_rectangles; sctx->window_rectangles_include = include; if (num_rectangles) { memcpy(sctx->window_rectangles, rects, sizeof(*rects) * num_rectangles); } si_mark_atom_dirty(sctx, &sctx->atoms.s.window_rectangles); } void si_init_viewport_functions(struct si_context *ctx) { ctx->atoms.s.guardband.emit = si_emit_guardband; ctx->atoms.s.scissors.emit = si_emit_scissors; ctx->atoms.s.viewports.emit = si_emit_viewport_states; ctx->atoms.s.window_rectangles.emit = si_emit_window_rectangles; ctx->atoms.s.ngg_cull_state.emit = si_emit_cull_state; ctx->b.set_scissor_states = si_set_scissor_states; ctx->b.set_viewport_states = si_set_viewport_states; ctx->b.set_window_rectangles = si_set_window_rectangles; for (unsigned i = 0; i < 16; i++) ctx->viewports.as_scissor[i].quant_mode = SI_QUANT_MODE_16_8_FIXED_POINT_1_256TH; }