/* * Copyright 2017 Advanced Micro Devices, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * on the rights to use, copy, modify, merge, publish, distribute, sub * license, and/or sell copies of the Software, and to permit persons to whom * the Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "si_pipe.h" #include "sid.h" #include "util/format/u_format.h" #include "util/u_pack_color.h" #include "util/u_surface.h" enum { SI_CLEAR = SI_SAVE_FRAGMENT_STATE, SI_CLEAR_SURFACE = SI_SAVE_FRAMEBUFFER | SI_SAVE_FRAGMENT_STATE, }; void si_init_buffer_clear(struct si_clear_info *info, struct pipe_resource *resource, uint64_t offset, uint32_t size, uint32_t clear_value) { info->resource = resource; info->offset = offset; info->size = size; info->clear_value = clear_value; info->writemask = 0xffffffff; info->is_dcc_msaa = false; } static void si_init_buffer_clear_rmw(struct si_clear_info *info, struct pipe_resource *resource, uint64_t offset, uint32_t size, uint32_t clear_value, uint32_t writemask) { si_init_buffer_clear(info, resource, offset, size, clear_value); info->writemask = writemask; } void si_execute_clears(struct si_context *sctx, struct si_clear_info *info, unsigned num_clears, unsigned types) { if (!num_clears) return; /* Flush caches and wait for idle. */ if (types & (SI_CLEAR_TYPE_CMASK | SI_CLEAR_TYPE_DCC)) sctx->flags |= si_get_flush_flags(sctx, SI_COHERENCY_CB_META, L2_LRU); if (types & SI_CLEAR_TYPE_HTILE) sctx->flags |= si_get_flush_flags(sctx, SI_COHERENCY_DB_META, L2_LRU); /* Flush caches in case we use compute. */ sctx->flags |= SI_CONTEXT_INV_VCACHE; /* GFX6-8: CB and DB don't use L2. */ if (sctx->gfx_level <= GFX8) sctx->flags |= SI_CONTEXT_INV_L2; /* Execute clears. */ for (unsigned i = 0; i < num_clears; i++) { if (info[i].is_dcc_msaa) { gfx9_clear_dcc_msaa(sctx, info[i].resource, info[i].clear_value, SI_OP_SKIP_CACHE_INV_BEFORE, SI_COHERENCY_CP); continue; } assert(info[i].size > 0); if (info[i].writemask != 0xffffffff) { si_compute_clear_buffer_rmw(sctx, info[i].resource, info[i].offset, info[i].size, info[i].clear_value, info[i].writemask, SI_OP_SKIP_CACHE_INV_BEFORE, SI_COHERENCY_CP); } else { /* Compute shaders are much faster on both dGPUs and APUs. Don't use CP DMA. */ si_clear_buffer(sctx, info[i].resource, info[i].offset, info[i].size, &info[i].clear_value, 4, SI_OP_SKIP_CACHE_INV_BEFORE, SI_COHERENCY_CP, SI_COMPUTE_CLEAR_METHOD); } } /* Wait for idle. */ sctx->flags |= SI_CONTEXT_CS_PARTIAL_FLUSH; /* GFX6-8: CB and DB don't use L2. */ if (sctx->gfx_level <= GFX8) sctx->flags |= SI_CONTEXT_WB_L2; } static bool si_alloc_separate_cmask(struct si_screen *sscreen, struct si_texture *tex) { assert(sscreen->info.gfx_level < GFX11); /* CMASK for MSAA is allocated in advance or always disabled * by "nofmask" option. */ if (tex->cmask_buffer) return true; if (!tex->surface.cmask_size) return false; tex->cmask_buffer = si_aligned_buffer_create(&sscreen->b, PIPE_RESOURCE_FLAG_UNMAPPABLE, PIPE_USAGE_DEFAULT, tex->surface.cmask_size, 1 << tex->surface.cmask_alignment_log2); if (tex->cmask_buffer == NULL) return false; tex->cmask_base_address_reg = tex->cmask_buffer->gpu_address >> 8; tex->cb_color_info |= S_028C70_FAST_CLEAR(1); p_atomic_inc(&sscreen->compressed_colortex_counter); return true; } static bool si_set_clear_color(struct si_texture *tex, enum pipe_format surface_format, const union pipe_color_union *color) { union util_color uc; memset(&uc, 0, sizeof(uc)); if (tex->surface.bpe == 16) { /* DCC fast clear only: * CLEAR_WORD0 = R = G = B * CLEAR_WORD1 = A */ assert(color->ui[0] == color->ui[1] && color->ui[0] == color->ui[2]); uc.ui[0] = color->ui[0]; uc.ui[1] = color->ui[3]; } else { if (tex->swap_rgb_to_bgr) surface_format = util_format_rgb_to_bgr(surface_format); util_pack_color_union(surface_format, &uc, color); } if (memcmp(tex->color_clear_value, &uc, 2 * sizeof(uint32_t)) == 0) return false; memcpy(tex->color_clear_value, &uc, 2 * sizeof(uint32_t)); return true; } /** Linearize and convert luminance/intensity to red. */ enum pipe_format si_simplify_cb_format(enum pipe_format format) { format = util_format_linear(format); format = util_format_luminance_to_red(format); return util_format_intensity_to_red(format); } bool vi_alpha_is_on_msb(struct si_screen *sscreen, enum pipe_format format) { format = si_simplify_cb_format(format); const struct util_format_description *desc = util_format_description(format); unsigned comp_swap = si_translate_colorswap(sscreen->info.gfx_level, format, false); /* The following code matches the hw behavior. */ if (desc->nr_channels == 1) { return (comp_swap == V_028C70_SWAP_ALT_REV) != (sscreen->info.family == CHIP_RAVEN2 || sscreen->info.family == CHIP_RENOIR); } return comp_swap != V_028C70_SWAP_STD_REV && comp_swap != V_028C70_SWAP_ALT_REV; } static bool gfx8_get_dcc_clear_parameters(struct si_screen *sscreen, enum pipe_format base_format, enum pipe_format surface_format, const union pipe_color_union *color, uint32_t *clear_value, bool *eliminate_needed) { /* If we want to clear without needing a fast clear eliminate step, we * can set color and alpha independently to 0 or 1 (or 0/max for integer * formats). */ bool values[4] = {}; /* whether to clear to 0 or 1 */ bool color_value = false; /* clear color to 0 or 1 */ bool alpha_value = false; /* clear alpha to 0 or 1 */ int alpha_channel; /* index of the alpha component */ bool has_color = false; bool has_alpha = false; const struct util_format_description *desc = util_format_description(si_simplify_cb_format(surface_format)); /* 128-bit fast clear with different R,G,B values is unsupported. */ if (desc->block.bits == 128 && (color->ui[0] != color->ui[1] || color->ui[0] != color->ui[2])) return false; *eliminate_needed = true; *clear_value = GFX8_DCC_CLEAR_REG; if (desc->layout != UTIL_FORMAT_LAYOUT_PLAIN) return true; /* need ELIMINATE_FAST_CLEAR */ bool base_alpha_is_on_msb = vi_alpha_is_on_msb(sscreen, base_format); bool surf_alpha_is_on_msb = vi_alpha_is_on_msb(sscreen, surface_format); /* Formats with 3 channels can't have alpha. */ if (desc->nr_channels == 3) alpha_channel = -1; else if (surf_alpha_is_on_msb) alpha_channel = desc->nr_channels - 1; else alpha_channel = 0; for (int i = 0; i < 4; ++i) { if (desc->swizzle[i] >= PIPE_SWIZZLE_0) continue; if (desc->channel[i].pure_integer && desc->channel[i].type == UTIL_FORMAT_TYPE_SIGNED) { /* Use the maximum value for clamping the clear color. */ int max = u_bit_consecutive(0, desc->channel[i].size - 1); values[i] = color->i[i] != 0; if (color->i[i] != 0 && MIN2(color->i[i], max) != max) return true; /* need ELIMINATE_FAST_CLEAR */ } else if (desc->channel[i].pure_integer && desc->channel[i].type == UTIL_FORMAT_TYPE_UNSIGNED) { /* Use the maximum value for clamping the clear color. */ unsigned max = u_bit_consecutive(0, desc->channel[i].size); values[i] = color->ui[i] != 0U; if (color->ui[i] != 0U && MIN2(color->ui[i], max) != max) return true; /* need ELIMINATE_FAST_CLEAR */ } else { values[i] = color->f[i] != 0.0F; if (color->f[i] != 0.0F && color->f[i] != 1.0F) return true; /* need ELIMINATE_FAST_CLEAR */ } if (desc->swizzle[i] == alpha_channel) { alpha_value = values[i]; has_alpha = true; } else { color_value = values[i]; has_color = true; } } /* If alpha isn't present, make it the same as color, and vice versa. */ if (!has_alpha) alpha_value = color_value; else if (!has_color) color_value = alpha_value; if (color_value != alpha_value && base_alpha_is_on_msb != surf_alpha_is_on_msb) return true; /* require ELIMINATE_FAST_CLEAR */ /* Check if all color values are equal if they are present. */ for (int i = 0; i < 4; ++i) { if (desc->swizzle[i] <= PIPE_SWIZZLE_W && desc->swizzle[i] != alpha_channel && values[i] != color_value) return true; /* require ELIMINATE_FAST_CLEAR */ } /* This doesn't need ELIMINATE_FAST_CLEAR. * On chips predating Raven2, the DCC clear codes and the CB clear * color registers must match. */ *eliminate_needed = false; if (color_value) { if (alpha_value) *clear_value = GFX8_DCC_CLEAR_1111; else *clear_value = GFX8_DCC_CLEAR_1110; } else { if (alpha_value) *clear_value = GFX8_DCC_CLEAR_0001; else *clear_value = GFX8_DCC_CLEAR_0000; } return true; } static bool gfx11_get_dcc_clear_parameters(struct si_screen *sscreen, enum pipe_format surface_format, const union pipe_color_union *color, uint32_t *clear_value) { const struct util_format_description *desc = util_format_description(si_simplify_cb_format(surface_format)); unsigned start_bit = UINT_MAX; unsigned end_bit = 0; /* TODO: 8bpp and 16bpp fast DCC clears don't work. */ if (desc->block.bits <= 16) return false; /* Find the used bit range. */ for (unsigned i = 0; i < 4; i++) { unsigned swizzle = desc->swizzle[i]; if (swizzle >= PIPE_SWIZZLE_0) continue; start_bit = MIN2(start_bit, desc->channel[swizzle].shift); end_bit = MAX2(end_bit, desc->channel[swizzle].shift + desc->channel[swizzle].size); } union { uint8_t ub[16]; uint16_t us[8]; uint32_t ui[4]; } value = {}; util_pack_color_union(surface_format, (union util_color*)&value, color); /* Check the cases where all components or bits are either all 0 or all 1. */ bool all_bits_are_0 = true; bool all_bits_are_1 = true; bool all_words_are_fp16_1 = false; bool all_words_are_fp32_1 = false; for (unsigned i = start_bit; i < end_bit; i++) { bool bit = value.ub[i / 8] & BITFIELD_BIT(i % 8); all_bits_are_0 &= !bit; all_bits_are_1 &= bit; } if (start_bit % 16 == 0 && end_bit % 16 == 0) { all_words_are_fp16_1 = true; for (unsigned i = start_bit / 16; i < end_bit / 16; i++) all_words_are_fp16_1 &= value.us[i] == 0x3c00; } if (start_bit % 32 == 0 && end_bit % 32 == 0) { all_words_are_fp32_1 = true; for (unsigned i = start_bit / 32; i < end_bit / 32; i++) all_words_are_fp32_1 &= value.ui[i] == 0x3f800000; } #if 0 /* debug code */ int i = util_format_get_first_non_void_channel(surface_format); if (desc->channel[i].type == UTIL_FORMAT_TYPE_SIGNED && desc->channel[i].pure_integer) { printf("%i %i %i %i\n", color->i[0], color->i[1], color->i[2], color->i[3]); } else if (desc->channel[i].type == UTIL_FORMAT_TYPE_UNSIGNED && desc->channel[i].pure_integer) { printf("%u %u %u %u\n", color->ui[0], color->ui[1], color->ui[2], color->ui[3]); } else { printf("%f %f %f %f\n", color->f[0], color->f[1], color->f[2], color->f[3]); } for (unsigned i = 0; i < end_bit / 8; i++) printf("%02x", value.ub[i]); printf("\n"); printf("bits=[%u..%u)%s%s%s%s\n", start_bit, end_bit, all_bits_are_0 ? ", all 0" : "", all_bits_are_1 ? ", all 1" : "", all_words_are_fp16_1 ? ", all fp16 1" : "", all_words_are_fp32_1 ? ", all fp32 1" : ""); #endif *clear_value = 0; if (all_bits_are_0 || all_bits_are_1 || all_words_are_fp16_1 || all_words_are_fp32_1) { if (all_bits_are_0) *clear_value = GFX11_DCC_CLEAR_0000; else if (all_bits_are_1) *clear_value = GFX11_DCC_CLEAR_1111_UNORM; else if (all_words_are_fp16_1) *clear_value = GFX11_DCC_CLEAR_1111_FP16; else if (all_words_are_fp32_1) *clear_value = GFX11_DCC_CLEAR_1111_FP32; return true; } /* Check 0001 and 1110 cases. */ if (vi_alpha_is_on_msb(sscreen, surface_format)) { if (desc->nr_channels == 2 && desc->channel[0].size == 8) { if (value.ub[0] == 0x00 && value.ub[1] == 0xff) { *clear_value = GFX11_DCC_CLEAR_0001_UNORM; return true; } else if (value.ub[0] == 0xff && value.ub[1] == 0x00) { *clear_value = GFX11_DCC_CLEAR_1110_UNORM; return true; } } else if (desc->nr_channels == 4 && desc->channel[0].size == 8) { if (value.ub[0] == 0x00 && value.ub[1] == 0x00 && value.ub[2] == 0x00 && value.ub[3] == 0xff) { *clear_value = GFX11_DCC_CLEAR_0001_UNORM; return true; } else if (value.ub[0] == 0xff && value.ub[1] == 0xff && value.ub[2] == 0xff && value.ub[3] == 0x00) { *clear_value = GFX11_DCC_CLEAR_1110_UNORM; return true; } } else if (desc->nr_channels == 4 && desc->channel[0].size == 16) { if (value.us[0] == 0x0000 && value.us[1] == 0x0000 && value.us[2] == 0x0000 && value.us[3] == 0xffff) { *clear_value = GFX11_DCC_CLEAR_0001_UNORM; return true; } else if (value.us[0] == 0xffff && value.us[1] == 0xffff && value.us[2] == 0xffff && value.us[3] == 0x0000) { *clear_value = GFX11_DCC_CLEAR_1110_UNORM; return true; } } } return false; } bool vi_dcc_get_clear_info(struct si_context *sctx, struct si_texture *tex, unsigned level, unsigned clear_value, struct si_clear_info *out) { struct pipe_resource *dcc_buffer = &tex->buffer.b.b; uint64_t dcc_offset = tex->surface.meta_offset; uint32_t clear_size; assert(vi_dcc_enabled(tex, level)); if (sctx->gfx_level >= GFX10) { /* 4x and 8x MSAA needs a sophisticated compute shader for * the clear. GFX11 doesn't need that. */ if (sctx->gfx_level < GFX11 && tex->buffer.b.b.nr_storage_samples >= 4) return false; unsigned num_layers = util_num_layers(&tex->buffer.b.b, level); if (num_layers == 1) { /* Clear a specific level. */ dcc_offset += tex->surface.u.gfx9.meta_levels[level].offset; clear_size = tex->surface.u.gfx9.meta_levels[level].size; } else if (tex->buffer.b.b.last_level == 0) { /* Clear all layers having only 1 level. */ clear_size = tex->surface.meta_size; } else { /* Clearing DCC with both multiple levels and multiple layers is not * implemented. */ return false; } } else if (sctx->gfx_level == GFX9) { /* TODO: Implement DCC fast clear for level 0 of mipmapped textures. Mipmapped * DCC has to clear a rectangular area of DCC for level 0 (because the whole miptree * is organized in a 2D plane). */ if (tex->buffer.b.b.last_level > 0) return false; /* 4x and 8x MSAA need to clear only sample 0 and 1 in a compute shader and leave other * samples untouched. (only the first 2 samples are compressed) */ if (tex->buffer.b.b.nr_storage_samples >= 4) { si_init_buffer_clear(out, dcc_buffer, 0, 0, clear_value); out->is_dcc_msaa = true; return true; } clear_size = tex->surface.meta_size; } else { unsigned num_layers = util_num_layers(&tex->buffer.b.b, level); /* If this is 0, fast clear isn't possible. (can occur with MSAA) */ if (!tex->surface.u.legacy.color.dcc_level[level].dcc_fast_clear_size) return false; /* Layered 4x and 8x MSAA DCC fast clears need to clear * dcc_fast_clear_size bytes for each layer. A compute shader * would be more efficient than separate per-layer clear operations. */ if (tex->buffer.b.b.nr_storage_samples >= 4 && num_layers > 1) return false; dcc_offset += tex->surface.u.legacy.color.dcc_level[level].dcc_offset; clear_size = tex->surface.u.legacy.color.dcc_level[level].dcc_fast_clear_size; } si_init_buffer_clear(out, dcc_buffer, dcc_offset, clear_size, clear_value); return true; } /* Set the same micro tile mode as the destination of the last MSAA resolve. * This allows hitting the MSAA resolve fast path, which requires that both * src and dst micro tile modes match. */ static void si_set_optimal_micro_tile_mode(struct si_screen *sscreen, struct si_texture *tex) { if (sscreen->info.gfx_level >= GFX10 || tex->buffer.b.is_shared || tex->buffer.b.b.nr_samples <= 1 || tex->surface.micro_tile_mode == tex->last_msaa_resolve_target_micro_mode) return; assert(sscreen->info.gfx_level >= GFX9 || tex->surface.u.legacy.level[0].mode == RADEON_SURF_MODE_2D); assert(tex->buffer.b.b.last_level == 0); if (sscreen->info.gfx_level >= GFX9) { /* 4K or larger tiles only. 0 is linear. 1-3 are 256B tiles. */ assert(tex->surface.u.gfx9.swizzle_mode >= 4); /* If you do swizzle_mode % 4, you'll get: * 0 = Depth * 1 = Standard, * 2 = Displayable * 3 = Rotated * * Depth-sample order isn't allowed: */ assert(tex->surface.u.gfx9.swizzle_mode % 4 != 0); switch (tex->last_msaa_resolve_target_micro_mode) { case RADEON_MICRO_MODE_DISPLAY: tex->surface.u.gfx9.swizzle_mode &= ~0x3; tex->surface.u.gfx9.swizzle_mode += 2; /* D */ break; case RADEON_MICRO_MODE_STANDARD: tex->surface.u.gfx9.swizzle_mode &= ~0x3; tex->surface.u.gfx9.swizzle_mode += 1; /* S */ break; case RADEON_MICRO_MODE_RENDER: tex->surface.u.gfx9.swizzle_mode &= ~0x3; tex->surface.u.gfx9.swizzle_mode += 3; /* R */ break; default: /* depth */ assert(!"unexpected micro mode"); return; } } else if (sscreen->info.gfx_level >= GFX7) { /* These magic numbers were copied from addrlib. It doesn't use * any definitions for them either. They are all 2D_TILED_THIN1 * modes with different bpp and micro tile mode. */ switch (tex->last_msaa_resolve_target_micro_mode) { case RADEON_MICRO_MODE_DISPLAY: tex->surface.u.legacy.tiling_index[0] = 10; break; case RADEON_MICRO_MODE_STANDARD: tex->surface.u.legacy.tiling_index[0] = 14; break; case RADEON_MICRO_MODE_RENDER: tex->surface.u.legacy.tiling_index[0] = 28; break; default: /* depth, thick */ assert(!"unexpected micro mode"); return; } } else { /* GFX6 */ switch (tex->last_msaa_resolve_target_micro_mode) { case RADEON_MICRO_MODE_DISPLAY: switch (tex->surface.bpe) { case 1: tex->surface.u.legacy.tiling_index[0] = 10; break; case 2: tex->surface.u.legacy.tiling_index[0] = 11; break; default: /* 4, 8 */ tex->surface.u.legacy.tiling_index[0] = 12; break; } break; case RADEON_MICRO_MODE_STANDARD: switch (tex->surface.bpe) { case 1: tex->surface.u.legacy.tiling_index[0] = 14; break; case 2: tex->surface.u.legacy.tiling_index[0] = 15; break; case 4: tex->surface.u.legacy.tiling_index[0] = 16; break; default: /* 8, 16 */ tex->surface.u.legacy.tiling_index[0] = 17; break; } break; default: /* depth, thick */ assert(!"unexpected micro mode"); return; } } tex->surface.micro_tile_mode = tex->last_msaa_resolve_target_micro_mode; p_atomic_inc(&sscreen->dirty_tex_counter); } static uint32_t si_get_htile_clear_value(struct si_texture *tex, float depth) { /* Maximum 14-bit UINT value. */ const uint32_t max_z_value = 0x3FFF; /* For clears, Zmask and Smem will always be set to zero. */ const uint32_t zmask = 0; const uint32_t smem = 0; /* Convert depthValue to 14-bit zmin/zmax uint values. */ const uint32_t zmin = lroundf(depth * max_z_value); const uint32_t zmax = zmin; if (tex->htile_stencil_disabled) { /* Z-only HTILE is laid out as follows: * |31 18|17 4|3 0| * +---------+---------+-------+ * | Max Z | Min Z | ZMask | */ return ((zmax & 0x3FFF) << 18) | ((zmin & 0x3FFF) << 4) | ((zmask & 0xF) << 0); } else { /* Z+S HTILE is laid out as-follows: * |31 12|11 10|9 8|7 6|5 4|3 0| * +-----------+-----+------+-----+-----+-------+ * | Z Range | | SMem | SR1 | SR0 | ZMask | * * The base value for zRange is either zMax or zMin, depending on ZRANGE_PRECISION. * For a fast clear, zMin == zMax == clearValue. This means that the base will * always be the clear value (converted to 14-bit UINT). * * When abs(zMax-zMin) < 16, the delta is equal to the difference. In the case of * fast clears, where zMax == zMin, the delta is always zero. */ const uint32_t delta = 0; const uint32_t zrange = (zmax << 6) | delta; /* SResults 0 & 1 are set based on the stencil compare state. * For fast-clear, the default value of sr0 and sr1 are both 0x3. */ const uint32_t sresults = 0xf; return ((zrange & 0xFFFFF) << 12) | ((smem & 0x3) << 8) | ((sresults & 0xF) << 4) | ((zmask & 0xF) << 0); } } static bool si_can_fast_clear_depth(struct si_texture *zstex, unsigned level, float depth, unsigned buffers) { /* TC-compatible HTILE only supports depth clears to 0 or 1. */ return buffers & PIPE_CLEAR_DEPTH && si_htile_enabled(zstex, level, PIPE_MASK_Z) && (!zstex->tc_compatible_htile || depth == 0 || depth == 1); } static bool si_can_fast_clear_stencil(struct si_texture *zstex, unsigned level, uint8_t stencil, unsigned buffers) { /* TC-compatible HTILE only supports stencil clears to 0. */ return buffers & PIPE_CLEAR_STENCIL && si_htile_enabled(zstex, level, PIPE_MASK_S) && (!zstex->tc_compatible_htile || stencil == 0); } static void si_fast_clear(struct si_context *sctx, unsigned *buffers, const union pipe_color_union *color, float depth, uint8_t stencil) { struct pipe_framebuffer_state *fb = &sctx->framebuffer.state; struct si_clear_info info[8 * 2 + 1]; /* MRTs * (CMASK + DCC) + ZS */ unsigned num_clears = 0; unsigned clear_types = 0; unsigned num_pixels = fb->width * fb->height; /* This function is broken in BE, so just disable this path for now */ #if UTIL_ARCH_BIG_ENDIAN return; #endif if (sctx->render_cond) return; /* Gather information about what to clear. */ unsigned color_buffer_mask = (*buffers & PIPE_CLEAR_COLOR) >> util_logbase2(PIPE_CLEAR_COLOR0); while (color_buffer_mask) { unsigned i = u_bit_scan(&color_buffer_mask); struct si_texture *tex = (struct si_texture *)fb->cbufs[i]->texture; unsigned level = fb->cbufs[i]->u.tex.level; unsigned num_layers = util_num_layers(&tex->buffer.b.b, level); /* the clear is allowed if all layers are bound */ if (fb->cbufs[i]->u.tex.first_layer != 0 || fb->cbufs[i]->u.tex.last_layer != num_layers - 1) { continue; } /* We can change the micro tile mode before a full clear. */ /* This is only used for MSAA textures when clearing all layers. */ si_set_optimal_micro_tile_mode(sctx->screen, tex); if (tex->swap_rgb_to_bgr_on_next_clear) { assert(!tex->swap_rgb_to_bgr); assert(tex->buffer.b.b.nr_samples >= 2); tex->swap_rgb_to_bgr = true; tex->swap_rgb_to_bgr_on_next_clear = false; /* Update all sampler views and images. */ p_atomic_inc(&sctx->screen->dirty_tex_counter); } /* only supported on tiled surfaces */ if (tex->surface.is_linear) { continue; } if (sctx->gfx_level <= GFX8 && tex->surface.u.legacy.level[0].mode == RADEON_SURF_MODE_1D && !sctx->screen->info.htile_cmask_support_1d_tiling) continue; /* Use a slow clear for small surfaces where the cost of * the eliminate pass can be higher than the benefit of fast * clear. The closed driver does this, but the numbers may differ. * * This helps on both dGPUs and APUs, even small APUs like Mullins. */ bool fb_too_small = num_pixels * num_layers <= 512 * 512; bool too_small = tex->buffer.b.b.nr_samples <= 1 && fb_too_small; bool eliminate_needed = false; bool fmask_decompress_needed = false; /* Try to clear DCC first, otherwise try CMASK. */ if (vi_dcc_enabled(tex, level)) { uint32_t reset_value; if (sctx->screen->debug_flags & DBG(NO_DCC_CLEAR)) continue; if (sctx->gfx_level >= GFX11) { if (!gfx11_get_dcc_clear_parameters(sctx->screen, fb->cbufs[i]->format, color, &reset_value)) continue; } else { if (!gfx8_get_dcc_clear_parameters(sctx->screen, tex->buffer.b.b.format, fb->cbufs[i]->format, color, &reset_value, &eliminate_needed)) continue; } /* Shared textures can't use fast clear without an explicit flush * because the clear color is not exported. * * Chips without DCC constant encoding must set the clear color registers * correctly even if the fast clear eliminate pass is not needed. */ if ((eliminate_needed || !sctx->screen->info.has_dcc_constant_encode) && tex->buffer.b.is_shared && !(tex->buffer.external_usage & PIPE_HANDLE_USAGE_EXPLICIT_FLUSH)) continue; if (eliminate_needed && too_small) continue; /* We can clear any level, but we only set up the clear value registers for the first * level. Therefore, all other levels can be cleared only if the clear value registers * are not used, which is only the case with DCC constant encoding and 0/1 clear values. */ if (level > 0 && (eliminate_needed || !sctx->screen->info.has_dcc_constant_encode)) continue; if (tex->buffer.b.b.nr_samples >= 2 && eliminate_needed && !sctx->screen->allow_dcc_msaa_clear_to_reg_for_bpp[util_logbase2(tex->surface.bpe)]) continue; assert(num_clears < ARRAY_SIZE(info)); if (!vi_dcc_get_clear_info(sctx, tex, level, reset_value, &info[num_clears])) continue; num_clears++; clear_types |= SI_CLEAR_TYPE_DCC; si_mark_display_dcc_dirty(sctx, tex); /* DCC fast clear with MSAA should clear CMASK to 0xC. */ if (tex->buffer.b.b.nr_samples >= 2 && tex->cmask_buffer) { assert(sctx->gfx_level < GFX11); /* no FMASK/CMASK on GFX11 */ assert(num_clears < ARRAY_SIZE(info)); si_init_buffer_clear(&info[num_clears++], &tex->cmask_buffer->b.b, tex->surface.cmask_offset, tex->surface.cmask_size, 0xCCCCCCCC); clear_types |= SI_CLEAR_TYPE_CMASK; fmask_decompress_needed = true; } } else { /* No CMASK on GFX11. */ if (sctx->gfx_level >= GFX11) continue; if (level > 0) continue; /* Shared textures can't use fast clear without an explicit flush * because the clear color is not exported. */ if (tex->buffer.b.is_shared && !(tex->buffer.external_usage & PIPE_HANDLE_USAGE_EXPLICIT_FLUSH)) continue; if (too_small) continue; /* 128-bit formats are unsupported */ if (tex->surface.bpe > 8) { continue; } /* RB+ doesn't work with CMASK fast clear on Stoney. */ if (sctx->family == CHIP_STONEY) continue; /* Disable fast clear if tex is encrypted */ if (tex->buffer.flags & RADEON_FLAG_ENCRYPTED) continue; uint64_t cmask_offset = 0; unsigned clear_size = 0; if (sctx->gfx_level >= GFX10) { assert(level == 0); /* Clearing CMASK with both multiple levels and multiple layers is not * implemented. */ if (num_layers > 1 && tex->buffer.b.b.last_level > 0) continue; if (!si_alloc_separate_cmask(sctx->screen, tex)) continue; if (num_layers == 1) { /* Clear level 0. */ cmask_offset = tex->surface.cmask_offset + tex->surface.u.gfx9.color.cmask_level0.offset; clear_size = tex->surface.u.gfx9.color.cmask_level0.size; } else if (tex->buffer.b.b.last_level == 0) { /* Clear all layers having only 1 level. */ cmask_offset = tex->surface.cmask_offset; clear_size = tex->surface.cmask_size; } else { assert(0); /* this is prevented above */ } } else if (sctx->gfx_level == GFX9) { /* TODO: Implement CMASK fast clear for level 0 of mipmapped textures. Mipmapped * CMASK has to clear a rectangular area of CMASK for level 0 (because the whole * miptree is organized in a 2D plane). */ if (tex->buffer.b.b.last_level > 0) continue; if (!si_alloc_separate_cmask(sctx->screen, tex)) continue; cmask_offset = tex->surface.cmask_offset; clear_size = tex->surface.cmask_size; } else { if (!si_alloc_separate_cmask(sctx->screen, tex)) continue; /* GFX6-8: This only covers mipmap level 0. */ cmask_offset = tex->surface.cmask_offset; clear_size = tex->surface.cmask_size; } /* Do the fast clear. */ assert(num_clears < ARRAY_SIZE(info)); si_init_buffer_clear(&info[num_clears++], &tex->cmask_buffer->b.b, cmask_offset, clear_size, 0); clear_types |= SI_CLEAR_TYPE_CMASK; eliminate_needed = true; } if ((eliminate_needed || fmask_decompress_needed) && !(tex->dirty_level_mask & (1 << level))) { assert(sctx->gfx_level < GFX11); /* no decompression needed on GFX11 */ tex->dirty_level_mask |= 1 << level; si_set_sampler_depth_decompress_mask(sctx, tex); p_atomic_inc(&sctx->screen->compressed_colortex_counter); } *buffers &= ~(PIPE_CLEAR_COLOR0 << i); /* Chips with DCC constant encoding don't need to set the clear * color registers for DCC clear values 0 and 1. */ if (sctx->screen->info.has_dcc_constant_encode && !eliminate_needed) continue; /* There are no clear color registers on GFX11. */ assert(sctx->gfx_level < GFX11); if (si_set_clear_color(tex, fb->cbufs[i]->format, color)) { sctx->framebuffer.dirty_cbufs |= 1 << i; si_mark_atom_dirty(sctx, &sctx->atoms.s.framebuffer); } } /* Depth/stencil clears. */ struct pipe_surface *zsbuf = fb->zsbuf; struct si_texture *zstex = zsbuf ? (struct si_texture *)zsbuf->texture : NULL; unsigned zs_num_layers = zstex ? util_num_layers(&zstex->buffer.b.b, zsbuf->u.tex.level) : 0; if (zstex && zsbuf->u.tex.first_layer == 0 && zsbuf->u.tex.last_layer == zs_num_layers - 1 && si_htile_enabled(zstex, zsbuf->u.tex.level, PIPE_MASK_ZS)) { unsigned level = zsbuf->u.tex.level; bool update_db_depth_clear = false; bool update_db_stencil_clear = false; bool fb_too_small = num_pixels * zs_num_layers <= 512 * 512; /* Transition from TC-incompatible to TC-compatible HTILE if requested. */ if (zstex->enable_tc_compatible_htile_next_clear) { /* If both depth and stencil are present, they must be cleared together. */ if ((*buffers & PIPE_CLEAR_DEPTHSTENCIL) == PIPE_CLEAR_DEPTHSTENCIL || (*buffers & PIPE_CLEAR_DEPTH && (!zstex->surface.has_stencil || zstex->htile_stencil_disabled))) { /* The conversion from TC-incompatible to TC-compatible can only be done in one clear. */ assert(zstex->buffer.b.b.last_level == 0); assert(!zstex->tc_compatible_htile); /* Enable TC-compatible HTILE. */ zstex->enable_tc_compatible_htile_next_clear = false; zstex->tc_compatible_htile = true; /* Update the framebuffer state to reflect the change. */ sctx->framebuffer.DB_has_shader_readable_metadata = true; sctx->framebuffer.dirty_zsbuf = true; si_mark_atom_dirty(sctx, &sctx->atoms.s.framebuffer); /* Update all sampler views and shader images in all contexts. */ p_atomic_inc(&sctx->screen->dirty_tex_counter); /* Perform the clear here if possible, else clear to uncompressed. */ uint32_t clear_value; if (zstex->htile_stencil_disabled || !zstex->surface.has_stencil) { if (si_can_fast_clear_depth(zstex, level, depth, *buffers)) { /* Z-only clear. */ clear_value = si_get_htile_clear_value(zstex, depth); *buffers &= ~PIPE_CLEAR_DEPTH; zstex->depth_cleared_level_mask_once |= BITFIELD_BIT(level); zstex->depth_cleared_level_mask |= BITFIELD_BIT(level); update_db_depth_clear = true; } } else if ((*buffers & PIPE_CLEAR_DEPTHSTENCIL) == PIPE_CLEAR_DEPTHSTENCIL) { if (si_can_fast_clear_depth(zstex, level, depth, *buffers) && si_can_fast_clear_stencil(zstex, level, stencil, *buffers)) { /* Combined Z+S clear. */ clear_value = si_get_htile_clear_value(zstex, depth); *buffers &= ~PIPE_CLEAR_DEPTHSTENCIL; zstex->depth_cleared_level_mask_once |= BITFIELD_BIT(level); zstex->depth_cleared_level_mask |= BITFIELD_BIT(level); zstex->stencil_cleared_level_mask_once |= BITFIELD_BIT(level); update_db_depth_clear = true; update_db_stencil_clear = true; } } if (!update_db_depth_clear) { /* Clear to uncompressed, so that it doesn't contain values incompatible * with the new TC-compatible HTILE setting. * * 0xfffff30f = uncompressed Z + S * 0xfffc000f = uncompressed Z only */ clear_value = !zstex->htile_stencil_disabled ? 0xfffff30f : 0xfffc000f; } zstex->need_flush_after_depth_decompression = sctx->gfx_level == GFX10_3; assert(num_clears < ARRAY_SIZE(info)); si_init_buffer_clear(&info[num_clears++], &zstex->buffer.b.b, zstex->surface.meta_offset, zstex->surface.meta_size, clear_value); clear_types |= SI_CLEAR_TYPE_HTILE; } } else if (num_clears || !fb_too_small) { /* This is where the HTILE buffer clear is done. * * If there is no clear scheduled and the framebuffer size is too small, we should use * the draw-based clear that is without waits. If there is some other clear scheduled, * we will have to wait anyway, so add the HTILE buffer clear to the batch here. * If the framebuffer size is large enough, use this codepath too. */ uint64_t htile_offset = zstex->surface.meta_offset; unsigned htile_size = 0; /* Determine the HTILE subset to clear. */ if (sctx->gfx_level >= GFX10) { /* This can only clear a layered texture with 1 level or a mipmap texture * with 1 layer. Other cases are unimplemented. */ if (zs_num_layers == 1) { /* Clear a specific level. */ htile_offset += zstex->surface.u.gfx9.meta_levels[level].offset; htile_size = zstex->surface.u.gfx9.meta_levels[level].size; } else if (zstex->buffer.b.b.last_level == 0) { /* Clear all layers having only 1 level. */ htile_size = zstex->surface.meta_size; } } else { /* This can only clear a layered texture with 1 level. Other cases are * unimplemented. */ if (zstex->buffer.b.b.last_level == 0) htile_size = zstex->surface.meta_size; } /* Perform the clear if it's possible. */ if (zstex->htile_stencil_disabled || !zstex->surface.has_stencil) { if (htile_size && si_can_fast_clear_depth(zstex, level, depth, *buffers)) { /* Z-only clear. */ assert(num_clears < ARRAY_SIZE(info)); si_init_buffer_clear(&info[num_clears++], &zstex->buffer.b.b, htile_offset, htile_size, si_get_htile_clear_value(zstex, depth)); clear_types |= SI_CLEAR_TYPE_HTILE; *buffers &= ~PIPE_CLEAR_DEPTH; zstex->depth_cleared_level_mask_once |= BITFIELD_BIT(level); zstex->depth_cleared_level_mask |= BITFIELD_BIT(level); update_db_depth_clear = true; } } else if ((*buffers & PIPE_CLEAR_DEPTHSTENCIL) == PIPE_CLEAR_DEPTHSTENCIL) { if (htile_size && si_can_fast_clear_depth(zstex, level, depth, *buffers) && si_can_fast_clear_stencil(zstex, level, stencil, *buffers)) { /* Combined Z+S clear. */ assert(num_clears < ARRAY_SIZE(info)); si_init_buffer_clear(&info[num_clears++], &zstex->buffer.b.b, htile_offset, htile_size, si_get_htile_clear_value(zstex, depth)); clear_types |= SI_CLEAR_TYPE_HTILE; *buffers &= ~PIPE_CLEAR_DEPTHSTENCIL; zstex->depth_cleared_level_mask_once |= BITFIELD_BIT(level); zstex->depth_cleared_level_mask |= BITFIELD_BIT(level); zstex->stencil_cleared_level_mask_once |= BITFIELD_BIT(level); update_db_depth_clear = true; update_db_stencil_clear = true; } } else { /* Z-only or S-only clear when both Z/S are present using a read-modify-write * compute shader. * * If we get both clears but only one of them can be fast-cleared, we use * the draw-based fast clear to do both at the same time. */ const uint32_t htile_depth_writemask = 0xfffffc0f; const uint32_t htile_stencil_writemask = 0x000003f0; if (htile_size && !(*buffers & PIPE_CLEAR_STENCIL) && si_can_fast_clear_depth(zstex, level, depth, *buffers)) { /* Z-only clear with stencil left intact. */ assert(num_clears < ARRAY_SIZE(info)); si_init_buffer_clear_rmw(&info[num_clears++], &zstex->buffer.b.b, htile_offset, htile_size, si_get_htile_clear_value(zstex, depth), htile_depth_writemask); clear_types |= SI_CLEAR_TYPE_HTILE; *buffers &= ~PIPE_CLEAR_DEPTH; zstex->depth_cleared_level_mask_once |= BITFIELD_BIT(level); zstex->depth_cleared_level_mask |= BITFIELD_BIT(level); update_db_depth_clear = true; } else if (htile_size && !(*buffers & PIPE_CLEAR_DEPTH) && si_can_fast_clear_stencil(zstex, level, stencil, *buffers)) { /* Stencil-only clear with depth left intact. */ assert(num_clears < ARRAY_SIZE(info)); si_init_buffer_clear_rmw(&info[num_clears++], &zstex->buffer.b.b, htile_offset, htile_size, si_get_htile_clear_value(zstex, depth), htile_stencil_writemask); clear_types |= SI_CLEAR_TYPE_HTILE; *buffers &= ~PIPE_CLEAR_STENCIL; zstex->stencil_cleared_level_mask_once |= BITFIELD_BIT(level); update_db_stencil_clear = true; } } zstex->need_flush_after_depth_decompression = update_db_depth_clear && sctx->gfx_level == GFX10_3; /* Update DB_DEPTH_CLEAR. */ if (update_db_depth_clear && zstex->depth_clear_value[level] != (float)depth) { zstex->depth_clear_value[level] = depth; sctx->framebuffer.dirty_zsbuf = true; si_mark_atom_dirty(sctx, &sctx->atoms.s.framebuffer); } /* Update DB_STENCIL_CLEAR. */ if (update_db_stencil_clear && zstex->stencil_clear_value[level] != stencil) { zstex->stencil_clear_value[level] = stencil; sctx->framebuffer.dirty_zsbuf = true; si_mark_atom_dirty(sctx, &sctx->atoms.s.framebuffer); } } } si_execute_clears(sctx, info, num_clears, clear_types); } static void si_clear(struct pipe_context *ctx, unsigned buffers, const struct pipe_scissor_state *scissor_state, const union pipe_color_union *color, double depth, unsigned stencil) { struct si_context *sctx = (struct si_context *)ctx; struct pipe_framebuffer_state *fb = &sctx->framebuffer.state; struct pipe_surface *zsbuf = fb->zsbuf; struct si_texture *zstex = zsbuf ? (struct si_texture *)zsbuf->texture : NULL; bool needs_db_flush = false; /* Unset clear flags for non-existent buffers. */ for (unsigned i = 0; i < 8; i++) { if (i >= fb->nr_cbufs || !fb->cbufs[i]) buffers &= ~(PIPE_CLEAR_COLOR0 << i); } if (!zsbuf) buffers &= ~PIPE_CLEAR_DEPTHSTENCIL; else if (!util_format_has_stencil(util_format_description(zsbuf->format))) buffers &= ~PIPE_CLEAR_STENCIL; si_fast_clear(sctx, &buffers, color, depth, stencil); if (!buffers) return; /* all buffers have been cleared */ if (buffers & PIPE_CLEAR_COLOR) { /* These buffers cannot use fast clear, make sure to disable expansion. */ unsigned color_buffer_mask = (buffers & PIPE_CLEAR_COLOR) >> util_logbase2(PIPE_CLEAR_COLOR0); while (color_buffer_mask) { unsigned i = u_bit_scan(&color_buffer_mask); struct si_texture *tex = (struct si_texture *)fb->cbufs[i]->texture; if (tex->surface.fmask_size == 0) tex->dirty_level_mask &= ~(1 << fb->cbufs[i]->u.tex.level); } } if (zstex && zsbuf->u.tex.first_layer == 0 && zsbuf->u.tex.last_layer == util_max_layer(&zstex->buffer.b.b, 0)) { unsigned level = zsbuf->u.tex.level; if (si_can_fast_clear_depth(zstex, level, depth, buffers)) { /* Need to disable EXPCLEAR temporarily if clearing * to a new value. */ if (!(zstex->depth_cleared_level_mask_once & BITFIELD_BIT(level)) || zstex->depth_clear_value[level] != depth) { sctx->db_depth_disable_expclear = true; } if (zstex->depth_clear_value[level] != (float)depth) { if ((zstex->depth_clear_value[level] != 0) != (depth != 0)) { /* ZRANGE_PRECISION register of a bound surface will change so we * must flush the DB caches. */ needs_db_flush = true; } /* Update DB_DEPTH_CLEAR. */ zstex->depth_clear_value[level] = depth; sctx->framebuffer.dirty_zsbuf = true; si_mark_atom_dirty(sctx, &sctx->atoms.s.framebuffer); } sctx->db_depth_clear = true; si_mark_atom_dirty(sctx, &sctx->atoms.s.db_render_state); } if (si_can_fast_clear_stencil(zstex, level, stencil, buffers)) { stencil &= 0xff; /* Need to disable EXPCLEAR temporarily if clearing * to a new value. */ if (!(zstex->stencil_cleared_level_mask_once & BITFIELD_BIT(level)) || zstex->stencil_clear_value[level] != stencil) { sctx->db_stencil_disable_expclear = true; } if (zstex->stencil_clear_value[level] != (uint8_t)stencil) { /* Update DB_STENCIL_CLEAR. */ zstex->stencil_clear_value[level] = stencil; sctx->framebuffer.dirty_zsbuf = true; si_mark_atom_dirty(sctx, &sctx->atoms.s.framebuffer); } sctx->db_stencil_clear = true; si_mark_atom_dirty(sctx, &sctx->atoms.s.db_render_state); } if (needs_db_flush) sctx->flags |= SI_CONTEXT_FLUSH_AND_INV_DB; } if (unlikely(sctx->thread_trace_enabled)) { if (buffers & PIPE_CLEAR_COLOR) sctx->sqtt_next_event = EventCmdClearColorImage; else if (buffers & PIPE_CLEAR_DEPTHSTENCIL) sctx->sqtt_next_event = EventCmdClearDepthStencilImage; } si_blitter_begin(sctx, SI_CLEAR); util_blitter_clear(sctx->blitter, fb->width, fb->height, util_framebuffer_get_num_layers(fb), buffers, color, depth, stencil, sctx->framebuffer.nr_samples > 1); si_blitter_end(sctx); if (sctx->db_depth_clear) { sctx->db_depth_clear = false; sctx->db_depth_disable_expclear = false; zstex->depth_cleared_level_mask_once |= BITFIELD_BIT(zsbuf->u.tex.level); zstex->depth_cleared_level_mask |= BITFIELD_BIT(zsbuf->u.tex.level); si_mark_atom_dirty(sctx, &sctx->atoms.s.db_render_state); } if (sctx->db_stencil_clear) { sctx->db_stencil_clear = false; sctx->db_stencil_disable_expclear = false; zstex->stencil_cleared_level_mask_once |= BITFIELD_BIT(zsbuf->u.tex.level); si_mark_atom_dirty(sctx, &sctx->atoms.s.db_render_state); } } static bool si_try_normal_clear(struct si_context *sctx, struct pipe_surface *dst, unsigned dstx, unsigned dsty, unsigned width, unsigned height, bool render_condition_enabled, unsigned buffers, const union pipe_color_union *color, float depth, unsigned stencil) { /* This is worth it only if it's a whole image clear, so that we just clear DCC/HTILE. */ if (dstx == 0 && dsty == 0 && width == dst->width && height == dst->height && dst->u.tex.first_layer == 0 && dst->u.tex.last_layer == util_max_layer(dst->texture, dst->u.tex.level) && /* pipe->clear honors render_condition, so only use it if it's unset or if it's set and enabled. */ (!sctx->render_cond || render_condition_enabled) && sctx->has_graphics) { struct pipe_context *ctx = &sctx->b; struct pipe_framebuffer_state saved_fb = {}, fb = {}; util_copy_framebuffer_state(&saved_fb, &sctx->framebuffer.state); if (buffers & PIPE_CLEAR_COLOR) { fb.cbufs[0] = dst; fb.nr_cbufs = 1; } else { fb.zsbuf = dst; } fb.width = dst->width; fb.height = dst->height; ctx->set_framebuffer_state(ctx, &fb); ctx->clear(ctx, buffers, NULL, color, depth, stencil); ctx->set_framebuffer_state(ctx, &saved_fb); util_copy_framebuffer_state(&saved_fb, NULL); return true; } return false; } static void si_clear_render_target(struct pipe_context *ctx, struct pipe_surface *dst, const union pipe_color_union *color, unsigned dstx, unsigned dsty, unsigned width, unsigned height, bool render_condition_enabled) { struct si_context *sctx = (struct si_context *)ctx; struct si_texture *sdst = (struct si_texture *)dst->texture; /* Fast path that just clears DCC. */ if (si_try_normal_clear(sctx, dst, dstx, dsty, width, height, render_condition_enabled, PIPE_CLEAR_COLOR0, color, 0, 0)) return; if (dst->texture->nr_samples <= 1 && (sctx->gfx_level >= GFX10 || !vi_dcc_enabled(sdst, dst->u.tex.level))) { si_compute_clear_render_target(ctx, dst, color, dstx, dsty, width, height, render_condition_enabled); return; } si_blitter_begin(sctx, SI_CLEAR_SURFACE | (render_condition_enabled ? 0 : SI_DISABLE_RENDER_COND)); util_blitter_clear_render_target(sctx->blitter, dst, color, dstx, dsty, width, height); si_blitter_end(sctx); } static void si_clear_depth_stencil(struct pipe_context *ctx, struct pipe_surface *dst, unsigned clear_flags, double depth, unsigned stencil, unsigned dstx, unsigned dsty, unsigned width, unsigned height, bool render_condition_enabled) { struct si_context *sctx = (struct si_context *)ctx; union pipe_color_union unused = {}; /* Fast path that just clears HTILE. */ if (si_try_normal_clear(sctx, dst, dstx, dsty, width, height, render_condition_enabled, clear_flags, &unused, depth, stencil)) return; si_blitter_begin(sctx, SI_CLEAR_SURFACE | (render_condition_enabled ? 0 : SI_DISABLE_RENDER_COND)); util_blitter_clear_depth_stencil(sctx->blitter, dst, clear_flags, depth, stencil, dstx, dsty, width, height); si_blitter_end(sctx); } static void si_clear_texture(struct pipe_context *pipe, struct pipe_resource *tex, unsigned level, const struct pipe_box *box, const void *data) { struct pipe_screen *screen = pipe->screen; struct si_texture *stex = (struct si_texture *)tex; struct pipe_surface tmpl = {{0}}; struct pipe_surface *sf; tmpl.format = tex->format; tmpl.u.tex.first_layer = box->z; tmpl.u.tex.last_layer = box->z + box->depth - 1; tmpl.u.tex.level = level; sf = pipe->create_surface(pipe, tex, &tmpl); if (!sf) return; if (stex->is_depth) { unsigned clear; float depth; uint8_t stencil = 0; /* Depth is always present. */ clear = PIPE_CLEAR_DEPTH; util_format_unpack_z_float(tex->format, &depth, data, 1); if (stex->surface.has_stencil) { clear |= PIPE_CLEAR_STENCIL; util_format_unpack_s_8uint(tex->format, &stencil, data, 1); } si_clear_depth_stencil(pipe, sf, clear, depth, stencil, box->x, box->y, box->width, box->height, false); } else { union pipe_color_union color; util_format_unpack_rgba(tex->format, color.ui, data, 1); if (screen->is_format_supported(screen, tex->format, tex->target, 0, 0, PIPE_BIND_RENDER_TARGET)) { si_clear_render_target(pipe, sf, &color, box->x, box->y, box->width, box->height, false); } else { /* Software fallback - just for R9G9B9E5_FLOAT */ util_clear_render_target(pipe, sf, &color, box->x, box->y, box->width, box->height); } } pipe_surface_reference(&sf, NULL); } void si_init_clear_functions(struct si_context *sctx) { sctx->b.clear_render_target = si_clear_render_target; sctx->b.clear_texture = si_clear_texture; if (sctx->has_graphics) { sctx->b.clear = si_clear; sctx->b.clear_depth_stencil = si_clear_depth_stencil; } }