/* * Copyright 2012 Advanced Micro Devices, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * on the rights to use, copy, modify, merge, publish, distribute, sub * license, and/or sell copies of the Software, and to permit persons to whom * the Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "ac_nir.h" #include "ac_rtld.h" #include "nir.h" #include "nir_builder.h" #include "nir_serialize.h" #include "nir/nir_helpers.h" #include "ralloc.h" #include "si_pipe.h" #include "si_shader_internal.h" #include "sid.h" #include "tgsi/tgsi_from_mesa.h" #include "tgsi/tgsi_strings.h" #include "util/u_memory.h" #include "util/mesa-sha1.h" static const char scratch_rsrc_dword0_symbol[] = "SCRATCH_RSRC_DWORD0"; static const char scratch_rsrc_dword1_symbol[] = "SCRATCH_RSRC_DWORD1"; static void si_dump_shader_key(const struct si_shader *shader, FILE *f); /* Get the number of all interpolated inputs */ unsigned si_get_ps_num_interp(struct si_shader *ps) { struct si_shader_info *info = &ps->selector->info; unsigned num_colors = !!(info->colors_read & 0x0f) + !!(info->colors_read & 0xf0); unsigned num_interp = ps->selector->info.num_inputs + (ps->key.ps.part.prolog.color_two_side ? num_colors : 0); assert(num_interp <= 32); return MIN2(num_interp, 32); } /** Whether the shader runs as a combination of multiple API shaders */ bool si_is_multi_part_shader(struct si_shader *shader) { if (shader->selector->screen->info.gfx_level <= GFX8 || shader->selector->stage > MESA_SHADER_GEOMETRY) return false; return shader->key.ge.as_ls || shader->key.ge.as_es || shader->selector->stage == MESA_SHADER_TESS_CTRL || shader->selector->stage == MESA_SHADER_GEOMETRY; } /** Whether the shader runs on a merged HW stage (LSHS or ESGS) */ bool si_is_merged_shader(struct si_shader *shader) { if (shader->selector->stage > MESA_SHADER_GEOMETRY) return false; return shader->key.ge.as_ngg || si_is_multi_part_shader(shader); } /** * Returns a unique index for a per-patch semantic name and index. The index * must be less than 32, so that a 32-bit bitmask of used inputs or outputs * can be calculated. */ unsigned si_shader_io_get_unique_index_patch(unsigned semantic) { switch (semantic) { case VARYING_SLOT_TESS_LEVEL_OUTER: return 0; case VARYING_SLOT_TESS_LEVEL_INNER: return 1; default: if (semantic >= VARYING_SLOT_PATCH0 && semantic < VARYING_SLOT_PATCH0 + 30) return 2 + (semantic - VARYING_SLOT_PATCH0); assert(!"invalid semantic"); return 0; } } /** * Returns a unique index for a semantic name and index. The index must be * less than 64, so that a 64-bit bitmask of used inputs or outputs can be * calculated. */ unsigned si_shader_io_get_unique_index(unsigned semantic, bool is_varying) { switch (semantic) { case VARYING_SLOT_POS: return 0; default: /* Since some shader stages use the highest used IO index * to determine the size to allocate for inputs/outputs * (in LDS, tess and GS rings). GENERIC should be placed right * after POSITION to make that size as small as possible. */ if (semantic >= VARYING_SLOT_VAR0 && semantic <= VARYING_SLOT_VAR31) return 1 + (semantic - VARYING_SLOT_VAR0); /* 1..32 */ /* Put 16-bit GLES varyings after 32-bit varyings. They can use the same indices as * legacy desktop GL varyings because they are mutually exclusive. */ if (semantic >= VARYING_SLOT_VAR0_16BIT && semantic <= VARYING_SLOT_VAR15_16BIT) return 33 + (semantic - VARYING_SLOT_VAR0_16BIT); /* 33..48 */ assert(!"invalid generic index"); return 0; /* Legacy desktop GL varyings. */ case VARYING_SLOT_FOGC: return 33; case VARYING_SLOT_COL0: return 34; case VARYING_SLOT_COL1: return 35; case VARYING_SLOT_BFC0: /* If it's a varying, COLOR and BCOLOR alias. */ if (is_varying) return 34; else return 36; case VARYING_SLOT_BFC1: if (is_varying) return 35; else return 37; case VARYING_SLOT_TEX0: case VARYING_SLOT_TEX1: case VARYING_SLOT_TEX2: case VARYING_SLOT_TEX3: case VARYING_SLOT_TEX4: case VARYING_SLOT_TEX5: case VARYING_SLOT_TEX6: case VARYING_SLOT_TEX7: return 38 + (semantic - VARYING_SLOT_TEX0); case VARYING_SLOT_CLIP_VERTEX: return 46; /* Varyings present in both GLES and desktop GL must start at 49 after 16-bit varyings. */ case VARYING_SLOT_CLIP_DIST0: return 49; case VARYING_SLOT_CLIP_DIST1: return 50; case VARYING_SLOT_PSIZ: return 51; /* These can't be written by LS, HS, and ES. */ case VARYING_SLOT_LAYER: return 52; case VARYING_SLOT_VIEWPORT: return 53; case VARYING_SLOT_PRIMITIVE_ID: return 54; } } static void si_dump_streamout(struct pipe_stream_output_info *so) { unsigned i; if (so->num_outputs) { fprintf(stderr, "STREAMOUT\n"); fprintf(stderr, " STRIDES: {"); for (i = 0; i < PIPE_MAX_SO_BUFFERS; i++) fprintf(stderr, "%u%s", so->stride[i], i < 3 ? ", " : ""); fprintf(stderr, "}\n"); } for (i = 0; i < so->num_outputs; i++) { unsigned mask = ((1 << so->output[i].num_components) - 1) << so->output[i].start_component; fprintf(stderr, " %i: STREAM%u: BUF%i[%i..%i] <- OUT[%i].%s%s%s%s\n", i, so->output[i].stream, so->output[i].output_buffer, so->output[i].dst_offset, so->output[i].dst_offset + so->output[i].num_components - 1, so->output[i].register_index, mask & 1 ? "x" : "", mask & 2 ? "y" : "", mask & 4 ? "z" : "", mask & 8 ? "w" : ""); } } static void declare_streamout_params(struct si_shader_context *ctx, struct pipe_stream_output_info *so) { if (ctx->screen->use_ngg_streamout) { if (ctx->stage == MESA_SHADER_TESS_EVAL) ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); return; } /* Streamout SGPRs. */ if (so->num_outputs) { ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.streamout_config); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.streamout_write_index); } else if (ctx->stage == MESA_SHADER_TESS_EVAL) { ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); } /* A streamout buffer offset is loaded if the stride is non-zero. */ for (int i = 0; i < 4; i++) { if (!so->stride[i]) continue; ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.streamout_offset[i]); } } unsigned si_get_max_workgroup_size(const struct si_shader *shader) { switch (shader->selector->stage) { case MESA_SHADER_VERTEX: case MESA_SHADER_TESS_EVAL: return shader->key.ge.as_ngg ? 128 : 0; case MESA_SHADER_TESS_CTRL: /* Return this so that LLVM doesn't remove s_barrier * instructions on chips where we use s_barrier. */ return shader->selector->screen->info.gfx_level >= GFX7 ? 128 : 0; case MESA_SHADER_GEOMETRY: return shader->selector->screen->info.gfx_level >= GFX9 ? 128 : 0; case MESA_SHADER_COMPUTE: break; /* see below */ default: return 0; } /* Compile a variable block size using the maximum variable size. */ if (shader->selector->info.base.workgroup_size_variable) return SI_MAX_VARIABLE_THREADS_PER_BLOCK; uint16_t *local_size = shader->selector->info.base.workgroup_size; unsigned max_work_group_size = (uint32_t)local_size[0] * (uint32_t)local_size[1] * (uint32_t)local_size[2]; assert(max_work_group_size); return max_work_group_size; } static void declare_const_and_shader_buffers(struct si_shader_context *ctx, bool assign_params) { enum ac_arg_type const_shader_buf_type; if (ctx->shader->selector->info.base.num_ubos == 1 && ctx->shader->selector->info.base.num_ssbos == 0) const_shader_buf_type = AC_ARG_CONST_FLOAT_PTR; else const_shader_buf_type = AC_ARG_CONST_DESC_PTR; ac_add_arg( &ctx->args, AC_ARG_SGPR, 1, const_shader_buf_type, assign_params ? &ctx->const_and_shader_buffers : &ctx->other_const_and_shader_buffers); } static void declare_samplers_and_images(struct si_shader_context *ctx, bool assign_params) { ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_CONST_IMAGE_PTR, assign_params ? &ctx->samplers_and_images : &ctx->other_samplers_and_images); } static void declare_per_stage_desc_pointers(struct si_shader_context *ctx, bool assign_params) { declare_const_and_shader_buffers(ctx, assign_params); declare_samplers_and_images(ctx, assign_params); } static void declare_global_desc_pointers(struct si_shader_context *ctx) { ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_CONST_DESC_PTR, &ctx->internal_bindings); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_CONST_IMAGE_PTR, &ctx->bindless_samplers_and_images); } static void declare_vb_descriptor_input_sgprs(struct si_shader_context *ctx) { ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_CONST_DESC_PTR, &ctx->args.vertex_buffers); unsigned num_vbos_in_user_sgprs = ctx->shader->selector->info.num_vbos_in_user_sgprs; if (num_vbos_in_user_sgprs) { unsigned user_sgprs = ctx->args.num_sgprs_used; if (si_is_merged_shader(ctx->shader)) user_sgprs -= 8; assert(user_sgprs <= SI_SGPR_VS_VB_DESCRIPTOR_FIRST); /* Declare unused SGPRs to align VB descriptors to 4 SGPRs (hw requirement). */ for (unsigned i = user_sgprs; i < SI_SGPR_VS_VB_DESCRIPTOR_FIRST; i++) ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); /* unused */ assert(num_vbos_in_user_sgprs <= ARRAY_SIZE(ctx->vb_descriptors)); for (unsigned i = 0; i < num_vbos_in_user_sgprs; i++) ac_add_arg(&ctx->args, AC_ARG_SGPR, 4, AC_ARG_INT, &ctx->vb_descriptors[i]); } } static void declare_vs_input_vgprs(struct si_shader_context *ctx, unsigned *num_prolog_vgprs) { struct si_shader *shader = ctx->shader; ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.vertex_id); if (shader->key.ge.as_ls) { if (ctx->screen->info.gfx_level >= GFX11) { ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, NULL); /* user VGPR */ ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, NULL); /* user VGPR */ ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.instance_id); } else if (ctx->screen->info.gfx_level >= GFX10) { ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.vs_rel_patch_id); ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, NULL); /* user VGPR */ ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.instance_id); } else { ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.vs_rel_patch_id); ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.instance_id); ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, NULL); /* unused */ } } else if (ctx->screen->info.gfx_level >= GFX10) { ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, NULL); /* user VGPR */ ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.vs_prim_id); /* user vgpr or PrimID (legacy) */ ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.instance_id); } else { ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.instance_id); ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.vs_prim_id); ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, NULL); /* unused */ } if (!shader->is_gs_copy_shader) { /* Vertex load indices. */ if (shader->selector->info.num_inputs) { ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->vertex_index0); for (unsigned i = 1; i < shader->selector->info.num_inputs; i++) ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, NULL); } *num_prolog_vgprs += shader->selector->info.num_inputs; } } static void declare_vs_blit_inputs(struct si_shader_context *ctx, unsigned vs_blit_property) { ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->vs_blit_inputs); /* i16 x1, y1 */ ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); /* i16 x1, y1 */ ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* depth */ if (vs_blit_property == SI_VS_BLIT_SGPRS_POS_COLOR) { ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* color0 */ ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* color1 */ ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* color2 */ ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* color3 */ } else if (vs_blit_property == SI_VS_BLIT_SGPRS_POS_TEXCOORD) { ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* texcoord.x1 */ ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* texcoord.y1 */ ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* texcoord.x2 */ ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* texcoord.y2 */ ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* texcoord.z */ ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* texcoord.w */ } } static void declare_tes_input_vgprs(struct si_shader_context *ctx) { ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, &ctx->args.tes_u); ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, &ctx->args.tes_v); ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.tes_rel_patch_id); ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.tes_patch_id); } enum { /* Convenient merged shader definitions. */ SI_SHADER_MERGED_VERTEX_TESSCTRL = MESA_ALL_SHADER_STAGES, SI_SHADER_MERGED_VERTEX_OR_TESSEVAL_GEOMETRY, }; void si_add_arg_checked(struct ac_shader_args *args, enum ac_arg_regfile file, unsigned registers, enum ac_arg_type type, struct ac_arg *arg, unsigned idx) { assert(args->arg_count == idx); ac_add_arg(args, file, registers, type, arg); } void si_init_shader_args(struct si_shader_context *ctx, bool ngg_cull_shader) { struct si_shader *shader = ctx->shader; unsigned i, num_returns, num_return_sgprs; unsigned num_prolog_vgprs = 0; unsigned stage = ctx->stage; memset(&ctx->args, 0, sizeof(ctx->args)); /* Set MERGED shaders. */ if (ctx->screen->info.gfx_level >= GFX9 && stage <= MESA_SHADER_GEOMETRY) { if (shader->key.ge.as_ls || stage == MESA_SHADER_TESS_CTRL) stage = SI_SHADER_MERGED_VERTEX_TESSCTRL; /* LS or HS */ else if (shader->key.ge.as_es || shader->key.ge.as_ngg || stage == MESA_SHADER_GEOMETRY) stage = SI_SHADER_MERGED_VERTEX_OR_TESSEVAL_GEOMETRY; } switch (stage) { case MESA_SHADER_VERTEX: declare_global_desc_pointers(ctx); if (shader->selector->info.base.vs.blit_sgprs_amd) { declare_vs_blit_inputs(ctx, shader->selector->info.base.vs.blit_sgprs_amd); /* VGPRs */ declare_vs_input_vgprs(ctx, &num_prolog_vgprs); break; } declare_per_stage_desc_pointers(ctx, true); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->vs_state_bits); if (ctx->shader->is_gs_copy_shader) { declare_streamout_params(ctx, &ctx->so); /* VGPRs */ declare_vs_input_vgprs(ctx, &num_prolog_vgprs); break; } ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.base_vertex); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.draw_id); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.start_instance); declare_vb_descriptor_input_sgprs(ctx); if (shader->key.ge.as_es) { ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.es2gs_offset); } else if (shader->key.ge.as_ls) { /* no extra parameters */ } else { declare_streamout_params(ctx, &ctx->so); } /* VGPRs */ declare_vs_input_vgprs(ctx, &num_prolog_vgprs); break; case MESA_SHADER_TESS_CTRL: /* GFX6-GFX8 */ declare_global_desc_pointers(ctx); declare_per_stage_desc_pointers(ctx, true); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_offchip_layout); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_out_lds_offsets); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_out_lds_layout); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->vs_state_bits); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.tess_offchip_offset); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.tcs_factor_offset); /* VGPRs */ ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.tcs_patch_id); ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.tcs_rel_ids); /* param_tcs_offchip_offset and param_tcs_factor_offset are * placed after the user SGPRs. */ for (i = 0; i < GFX6_TCS_NUM_USER_SGPR + 2; i++) ac_add_return(&ctx->args, AC_ARG_SGPR); for (i = 0; i < 11; i++) ac_add_return(&ctx->args, AC_ARG_VGPR); break; case SI_SHADER_MERGED_VERTEX_TESSCTRL: /* Merged stages have 8 system SGPRs at the beginning. */ /* Gfx9-10: SPI_SHADER_USER_DATA_ADDR_LO/HI_HS */ /* Gfx11+: SPI_SHADER_PGM_LO/HI_HS */ declare_per_stage_desc_pointers(ctx, ctx->stage == MESA_SHADER_TESS_CTRL); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.tess_offchip_offset); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.merged_wave_info); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.tcs_factor_offset); if (ctx->screen->info.gfx_level >= GFX11) ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.tcs_wave_id); else ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.scratch_offset); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); /* unused */ ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); /* unused */ declare_global_desc_pointers(ctx); declare_per_stage_desc_pointers(ctx, ctx->stage == MESA_SHADER_VERTEX); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->vs_state_bits); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.base_vertex); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.draw_id); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.start_instance); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_offchip_layout); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_out_lds_offsets); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_out_lds_layout); if (ctx->stage == MESA_SHADER_VERTEX) declare_vb_descriptor_input_sgprs(ctx); /* VGPRs (first TCS, then VS) */ ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.tcs_patch_id); ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.tcs_rel_ids); if (ctx->stage == MESA_SHADER_VERTEX) { declare_vs_input_vgprs(ctx, &num_prolog_vgprs); /* LS return values are inputs to the TCS main shader part. */ for (i = 0; i < 8 + GFX9_TCS_NUM_USER_SGPR; i++) ac_add_return(&ctx->args, AC_ARG_SGPR); for (i = 0; i < 2; i++) ac_add_return(&ctx->args, AC_ARG_VGPR); /* VS outputs passed via VGPRs to TCS. */ if (shader->key.ge.opt.same_patch_vertices) { unsigned num_outputs = util_last_bit64(shader->selector->info.outputs_written); for (i = 0; i < num_outputs * 4; i++) ac_add_return(&ctx->args, AC_ARG_VGPR); } } else { /* TCS inputs are passed via VGPRs from VS. */ if (shader->key.ge.opt.same_patch_vertices) { unsigned num_inputs = util_last_bit64(shader->previous_stage_sel->info.outputs_written); for (i = 0; i < num_inputs * 4; i++) ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, NULL); } /* TCS return values are inputs to the TCS epilog. * * param_tcs_offchip_offset, param_tcs_factor_offset, * param_tcs_offchip_layout, and internal_bindings * should be passed to the epilog. */ for (i = 0; i <= 8 + GFX9_SGPR_TCS_OUT_LAYOUT; i++) ac_add_return(&ctx->args, AC_ARG_SGPR); for (i = 0; i < 11; i++) ac_add_return(&ctx->args, AC_ARG_VGPR); } break; case SI_SHADER_MERGED_VERTEX_OR_TESSEVAL_GEOMETRY: /* Merged stages have 8 system SGPRs at the beginning. */ /* Gfx9-10: SPI_SHADER_USER_DATA_ADDR_LO/HI_GS */ /* Gfx11+: SPI_SHADER_PGM_LO/HI_GS */ declare_per_stage_desc_pointers(ctx, ctx->stage == MESA_SHADER_GEOMETRY); if (ctx->shader->key.ge.as_ngg) ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.gs_tg_info); else ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.gs2vs_offset); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.merged_wave_info); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.tess_offchip_offset); if (ctx->screen->info.gfx_level >= GFX11) ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.gs_attr_offset); else ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.scratch_offset); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); /* unused */ ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); /* unused */ declare_global_desc_pointers(ctx); if (ctx->stage != MESA_SHADER_VERTEX || !shader->selector->info.base.vs.blit_sgprs_amd) { declare_per_stage_desc_pointers( ctx, (ctx->stage == MESA_SHADER_VERTEX || ctx->stage == MESA_SHADER_TESS_EVAL)); } if (ctx->stage == MESA_SHADER_VERTEX && shader->selector->info.base.vs.blit_sgprs_amd) { declare_vs_blit_inputs(ctx, shader->selector->info.base.vs.blit_sgprs_amd); } else { ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->vs_state_bits); if (ctx->stage == MESA_SHADER_VERTEX) { ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.base_vertex); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.draw_id); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.start_instance); } else if (ctx->stage == MESA_SHADER_TESS_EVAL) { ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_offchip_layout); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tes_offchip_addr); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); /* unused */ } else { /* GS */ ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); /* unused */ ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); /* unused */ ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); /* unused */ } ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_CONST_DESC_PTR, &ctx->small_prim_cull_info); if (ctx->screen->info.gfx_level >= GFX11) ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->gs_attr_address); else ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); /* unused */ if (ctx->stage == MESA_SHADER_VERTEX) declare_vb_descriptor_input_sgprs(ctx); } /* VGPRs (first GS, then VS/TES) */ ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.gs_vtx_offset[0]); ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.gs_vtx_offset[1]); ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.gs_prim_id); ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.gs_invocation_id); ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.gs_vtx_offset[2]); if (ctx->stage == MESA_SHADER_VERTEX) { declare_vs_input_vgprs(ctx, &num_prolog_vgprs); } else if (ctx->stage == MESA_SHADER_TESS_EVAL) { declare_tes_input_vgprs(ctx); } if ((ctx->shader->key.ge.as_es || ngg_cull_shader) && (ctx->stage == MESA_SHADER_VERTEX || ctx->stage == MESA_SHADER_TESS_EVAL)) { unsigned num_user_sgprs, num_vgprs; if (ctx->stage == MESA_SHADER_VERTEX && ngg_cull_shader) { /* For the NGG cull shader, add 1 SGPR to hold * the vertex buffer pointer. */ num_user_sgprs = GFX9_GS_NUM_USER_SGPR + 1; if (shader->selector->info.num_vbos_in_user_sgprs) { assert(num_user_sgprs <= SI_SGPR_VS_VB_DESCRIPTOR_FIRST); num_user_sgprs = SI_SGPR_VS_VB_DESCRIPTOR_FIRST + shader->selector->info.num_vbos_in_user_sgprs * 4; } } else { num_user_sgprs = GFX9_GS_NUM_USER_SGPR; } /* The NGG cull shader has to return all 9 VGPRs. * * The normal merged ESGS shader only has to return the 5 VGPRs * for the GS stage. */ num_vgprs = ngg_cull_shader ? 9 : 5; /* ES return values are inputs to GS. */ for (i = 0; i < 8 + num_user_sgprs; i++) ac_add_return(&ctx->args, AC_ARG_SGPR); for (i = 0; i < num_vgprs; i++) ac_add_return(&ctx->args, AC_ARG_VGPR); } break; case MESA_SHADER_TESS_EVAL: declare_global_desc_pointers(ctx); declare_per_stage_desc_pointers(ctx, true); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->vs_state_bits); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_offchip_layout); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tes_offchip_addr); if (shader->key.ge.as_es) { ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.tess_offchip_offset); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.es2gs_offset); } else { declare_streamout_params(ctx, &ctx->so); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.tess_offchip_offset); } /* VGPRs */ declare_tes_input_vgprs(ctx); break; case MESA_SHADER_GEOMETRY: declare_global_desc_pointers(ctx); declare_per_stage_desc_pointers(ctx, true); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.gs2vs_offset); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.gs_wave_id); /* VGPRs */ ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.gs_vtx_offset[0]); ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.gs_vtx_offset[1]); ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.gs_prim_id); ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.gs_vtx_offset[2]); ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.gs_vtx_offset[3]); ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.gs_vtx_offset[4]); ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.gs_vtx_offset[5]); ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.gs_invocation_id); break; case MESA_SHADER_FRAGMENT: declare_global_desc_pointers(ctx); declare_per_stage_desc_pointers(ctx, true); si_add_arg_checked(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL, SI_PARAM_ALPHA_REF); si_add_arg_checked(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.prim_mask, SI_PARAM_PRIM_MASK); si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 2, AC_ARG_INT, &ctx->args.persp_sample, SI_PARAM_PERSP_SAMPLE); si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 2, AC_ARG_INT, &ctx->args.persp_center, SI_PARAM_PERSP_CENTER); si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 2, AC_ARG_INT, &ctx->args.persp_centroid, SI_PARAM_PERSP_CENTROID); si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 3, AC_ARG_INT, NULL, SI_PARAM_PERSP_PULL_MODEL); si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 2, AC_ARG_INT, &ctx->args.linear_sample, SI_PARAM_LINEAR_SAMPLE); si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 2, AC_ARG_INT, &ctx->args.linear_center, SI_PARAM_LINEAR_CENTER); si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 2, AC_ARG_INT, &ctx->args.linear_centroid, SI_PARAM_LINEAR_CENTROID); si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, NULL, SI_PARAM_LINE_STIPPLE_TEX); si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, &ctx->args.frag_pos[0], SI_PARAM_POS_X_FLOAT); si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, &ctx->args.frag_pos[1], SI_PARAM_POS_Y_FLOAT); si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, &ctx->args.frag_pos[2], SI_PARAM_POS_Z_FLOAT); si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, &ctx->args.frag_pos[3], SI_PARAM_POS_W_FLOAT); shader->info.face_vgpr_index = ctx->args.num_vgprs_used; si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.front_face, SI_PARAM_FRONT_FACE); shader->info.ancillary_vgpr_index = ctx->args.num_vgprs_used; si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.ancillary, SI_PARAM_ANCILLARY); shader->info.sample_coverage_vgpr_index = ctx->args.num_vgprs_used; si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, &ctx->args.sample_coverage, SI_PARAM_SAMPLE_COVERAGE); si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->pos_fixed_pt, SI_PARAM_POS_FIXED_PT); /* Color inputs from the prolog. */ if (shader->selector->info.colors_read) { unsigned num_color_elements = util_bitcount(shader->selector->info.colors_read); for (i = 0; i < num_color_elements; i++) ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, NULL); num_prolog_vgprs += num_color_elements; } /* Outputs for the epilog. */ num_return_sgprs = SI_SGPR_ALPHA_REF + 1; num_returns = num_return_sgprs + util_bitcount(shader->selector->info.colors_written) * 4 + shader->selector->info.writes_z + shader->selector->info.writes_stencil + shader->selector->info.writes_samplemask + 1 /* SampleMaskIn */; for (i = 0; i < num_return_sgprs; i++) ac_add_return(&ctx->args, AC_ARG_SGPR); for (; i < num_returns; i++) ac_add_return(&ctx->args, AC_ARG_VGPR); break; case MESA_SHADER_COMPUTE: declare_global_desc_pointers(ctx); declare_per_stage_desc_pointers(ctx, true); if (shader->selector->info.uses_grid_size) ac_add_arg(&ctx->args, AC_ARG_SGPR, 3, AC_ARG_INT, &ctx->args.num_work_groups); if (shader->selector->info.uses_variable_block_size) ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->block_size); unsigned cs_user_data_dwords = shader->selector->info.base.cs.user_data_components_amd; if (cs_user_data_dwords) { ac_add_arg(&ctx->args, AC_ARG_SGPR, cs_user_data_dwords, AC_ARG_INT, &ctx->cs_user_data); } /* Some descriptors can be in user SGPRs. */ /* Shader buffers in user SGPRs. */ for (unsigned i = 0; i < shader->selector->cs_num_shaderbufs_in_user_sgprs; i++) { while (ctx->args.num_sgprs_used % 4 != 0) ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); ac_add_arg(&ctx->args, AC_ARG_SGPR, 4, AC_ARG_INT, &ctx->cs_shaderbuf[i]); } /* Images in user SGPRs. */ for (unsigned i = 0; i < shader->selector->cs_num_images_in_user_sgprs; i++) { unsigned num_sgprs = BITSET_TEST(shader->selector->info.base.image_buffers, i) ? 4 : 8; while (ctx->args.num_sgprs_used % num_sgprs != 0) ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); ac_add_arg(&ctx->args, AC_ARG_SGPR, num_sgprs, AC_ARG_INT, &ctx->cs_image[i]); } /* Hardware SGPRs. */ for (i = 0; i < 3; i++) { if (shader->selector->info.uses_block_id[i]) { ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.workgroup_ids[i]); } } if (shader->selector->info.uses_subgroup_info) ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.tg_size); /* Hardware VGPRs. */ /* Thread IDs are packed in VGPR0, 10 bits per component or stored in 3 separate VGPRs */ if (ctx->screen->info.gfx_level >= GFX11 || (!ctx->screen->info.has_graphics && ctx->screen->info.family >= CHIP_ALDEBARAN)) ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.local_invocation_ids); else ac_add_arg(&ctx->args, AC_ARG_VGPR, 3, AC_ARG_INT, &ctx->args.local_invocation_ids); break; default: assert(0 && "unimplemented shader"); return; } shader->info.num_input_sgprs = ctx->args.num_sgprs_used; shader->info.num_input_vgprs = ctx->args.num_vgprs_used; assert(shader->info.num_input_vgprs >= num_prolog_vgprs); shader->info.num_input_vgprs -= num_prolog_vgprs; } /* For the UMR disassembler. */ #define DEBUGGER_END_OF_CODE_MARKER 0xbf9f0000 /* invalid instruction */ #define DEBUGGER_NUM_MARKERS 5 static unsigned get_lds_granularity(struct si_screen *screen, gl_shader_stage stage) { return screen->info.gfx_level >= GFX11 && stage == MESA_SHADER_FRAGMENT ? 1024 : screen->info.gfx_level >= GFX7 ? 512 : 256; } static bool si_shader_binary_open(struct si_screen *screen, struct si_shader *shader, struct ac_rtld_binary *rtld) { const struct si_shader_selector *sel = shader->selector; const char *part_elfs[5]; size_t part_sizes[5]; unsigned num_parts = 0; #define add_part(shader_or_part) \ if (shader_or_part) { \ part_elfs[num_parts] = (shader_or_part)->binary.elf_buffer; \ part_sizes[num_parts] = (shader_or_part)->binary.elf_size; \ num_parts++; \ } add_part(shader->prolog); add_part(shader->previous_stage); add_part(shader); add_part(shader->epilog); #undef add_part struct ac_rtld_symbol lds_symbols[2]; unsigned num_lds_symbols = 0; if (sel && screen->info.gfx_level >= GFX9 && !shader->is_gs_copy_shader && (sel->stage == MESA_SHADER_GEOMETRY || (sel->stage <= MESA_SHADER_GEOMETRY && shader->key.ge.as_ngg))) { struct ac_rtld_symbol *sym = &lds_symbols[num_lds_symbols++]; sym->name = "esgs_ring"; sym->size = shader->gs_info.esgs_ring_size * 4; sym->align = 64 * 1024; } if (sel->stage == MESA_SHADER_GEOMETRY && shader->key.ge.as_ngg) { struct ac_rtld_symbol *sym = &lds_symbols[num_lds_symbols++]; sym->name = "ngg_emit"; sym->size = shader->ngg.ngg_emit_size * 4; sym->align = 4; } bool ok = ac_rtld_open( rtld, (struct ac_rtld_open_info){.info = &screen->info, .options = { .halt_at_entry = screen->options.halt_shaders, }, .shader_type = sel->stage, .wave_size = shader->wave_size, .num_parts = num_parts, .elf_ptrs = part_elfs, .elf_sizes = part_sizes, .num_shared_lds_symbols = num_lds_symbols, .shared_lds_symbols = lds_symbols}); if (rtld->lds_size > 0) { unsigned alloc_granularity = get_lds_granularity(screen, sel->stage); shader->config.lds_size = DIV_ROUND_UP(rtld->lds_size, alloc_granularity); } return ok; } static unsigned si_get_shader_binary_size(struct si_screen *screen, struct si_shader *shader) { struct ac_rtld_binary rtld; si_shader_binary_open(screen, shader, &rtld); uint64_t size = rtld.exec_size; ac_rtld_close(&rtld); return size; } static bool si_get_external_symbol(enum amd_gfx_level gfx_level, void *data, const char *name, uint64_t *value) { uint64_t *scratch_va = data; if (!strcmp(scratch_rsrc_dword0_symbol, name)) { *value = (uint32_t)*scratch_va; return true; } if (!strcmp(scratch_rsrc_dword1_symbol, name)) { /* Enable scratch coalescing. */ *value = S_008F04_BASE_ADDRESS_HI(*scratch_va >> 32); if (gfx_level >= GFX11) *value |= S_008F04_SWIZZLE_ENABLE_GFX11(1); else *value |= S_008F04_SWIZZLE_ENABLE_GFX6(1); return true; } return false; } bool si_shader_binary_upload(struct si_screen *sscreen, struct si_shader *shader, uint64_t scratch_va) { struct ac_rtld_binary binary; if (!si_shader_binary_open(sscreen, shader, &binary)) return false; si_resource_reference(&shader->bo, NULL); shader->bo = si_aligned_buffer_create( &sscreen->b, (sscreen->info.cpdma_prefetch_writes_memory ? 0 : SI_RESOURCE_FLAG_READ_ONLY) | SI_RESOURCE_FLAG_DRIVER_INTERNAL | SI_RESOURCE_FLAG_32BIT, PIPE_USAGE_IMMUTABLE, align(binary.rx_size, SI_CPDMA_ALIGNMENT), 256); if (!shader->bo) return false; /* Upload. */ struct ac_rtld_upload_info u = {}; u.binary = &binary; u.get_external_symbol = si_get_external_symbol; u.cb_data = &scratch_va; u.rx_va = shader->bo->gpu_address; u.rx_ptr = sscreen->ws->buffer_map(sscreen->ws, shader->bo->buf, NULL, PIPE_MAP_READ_WRITE | PIPE_MAP_UNSYNCHRONIZED | RADEON_MAP_TEMPORARY); if (!u.rx_ptr) return false; int size = ac_rtld_upload(&u); if (sscreen->debug_flags & DBG(SQTT)) { /* Remember the uploaded code */ shader->binary.uploaded_code_size = size; shader->binary.uploaded_code = malloc(size); memcpy(shader->binary.uploaded_code, u.rx_ptr, size); } sscreen->ws->buffer_unmap(sscreen->ws, shader->bo->buf); ac_rtld_close(&binary); return size >= 0; } static void si_shader_dump_disassembly(struct si_screen *screen, const struct si_shader_binary *binary, gl_shader_stage stage, unsigned wave_size, struct util_debug_callback *debug, const char *name, FILE *file) { struct ac_rtld_binary rtld_binary; if (!ac_rtld_open(&rtld_binary, (struct ac_rtld_open_info){ .info = &screen->info, .shader_type = stage, .wave_size = wave_size, .num_parts = 1, .elf_ptrs = &binary->elf_buffer, .elf_sizes = &binary->elf_size})) return; const char *disasm; size_t nbytes; if (!ac_rtld_get_section_by_name(&rtld_binary, ".AMDGPU.disasm", &disasm, &nbytes)) goto out; if (nbytes > INT_MAX) goto out; if (debug && debug->debug_message) { /* Very long debug messages are cut off, so send the * disassembly one line at a time. This causes more * overhead, but on the plus side it simplifies * parsing of resulting logs. */ util_debug_message(debug, SHADER_INFO, "Shader Disassembly Begin"); uint64_t line = 0; while (line < nbytes) { int count = nbytes - line; const char *nl = memchr(disasm + line, '\n', nbytes - line); if (nl) count = nl - (disasm + line); if (count) { util_debug_message(debug, SHADER_INFO, "%.*s", count, disasm + line); } line += count + 1; } util_debug_message(debug, SHADER_INFO, "Shader Disassembly End"); } if (file) { fprintf(file, "Shader %s disassembly:\n", name); fprintf(file, "%*s", (int)nbytes, disasm); } out: ac_rtld_close(&rtld_binary); } static void si_calculate_max_simd_waves(struct si_shader *shader) { struct si_screen *sscreen = shader->selector->screen; struct ac_shader_config *conf = &shader->config; unsigned num_inputs = shader->selector->info.num_inputs; unsigned lds_increment = get_lds_granularity(sscreen, shader->selector->stage); unsigned lds_per_wave = 0; unsigned max_simd_waves; max_simd_waves = sscreen->info.max_wave64_per_simd; /* Compute LDS usage for PS. */ switch (shader->selector->stage) { case MESA_SHADER_FRAGMENT: /* The minimum usage per wave is (num_inputs * 48). The maximum * usage is (num_inputs * 48 * 16). * We can get anything in between and it varies between waves. * * The 48 bytes per input for a single primitive is equal to * 4 bytes/component * 4 components/input * 3 points. * * Other stages don't know the size at compile time or don't * allocate LDS per wave, but instead they do it per thread group. */ lds_per_wave = conf->lds_size * lds_increment + align(num_inputs * 48, lds_increment); break; case MESA_SHADER_COMPUTE: { unsigned max_workgroup_size = si_get_max_workgroup_size(shader); lds_per_wave = (conf->lds_size * lds_increment) / DIV_ROUND_UP(max_workgroup_size, shader->wave_size); } break; default:; } /* Compute the per-SIMD wave counts. */ if (conf->num_sgprs) { max_simd_waves = MIN2(max_simd_waves, sscreen->info.num_physical_sgprs_per_simd / conf->num_sgprs); } if (conf->num_vgprs) { /* Always print wave limits as Wave64, so that we can compare * Wave32 and Wave64 with shader-db fairly. */ unsigned max_vgprs = sscreen->info.num_physical_wave64_vgprs_per_simd; max_simd_waves = MIN2(max_simd_waves, max_vgprs / conf->num_vgprs); } unsigned max_lds_per_simd = sscreen->info.lds_size_per_workgroup / 4; if (lds_per_wave) max_simd_waves = MIN2(max_simd_waves, max_lds_per_simd / lds_per_wave); shader->info.max_simd_waves = max_simd_waves; } void si_shader_dump_stats_for_shader_db(struct si_screen *screen, struct si_shader *shader, struct util_debug_callback *debug) { const struct ac_shader_config *conf = &shader->config; static const char *stages[] = {"VS", "TCS", "TES", "GS", "PS", "CS"}; if (screen->options.debug_disassembly) si_shader_dump_disassembly(screen, &shader->binary, shader->selector->stage, shader->wave_size, debug, "main", NULL); util_debug_message(debug, SHADER_INFO, "Shader Stats: SGPRS: %d VGPRS: %d Code Size: %d " "LDS: %d Scratch: %d Max Waves: %d Spilled SGPRs: %d " "Spilled VGPRs: %d PrivMem VGPRs: %d DivergentLoop: %d, InlineUniforms: %d, " "ParamExports: %u, (%s, W%u)", conf->num_sgprs, conf->num_vgprs, si_get_shader_binary_size(screen, shader), conf->lds_size, conf->scratch_bytes_per_wave, shader->info.max_simd_waves, conf->spilled_sgprs, conf->spilled_vgprs, shader->info.private_mem_vgprs, shader->selector->info.has_divergent_loop, shader->selector->info.base.num_inlinable_uniforms, shader->info.nr_param_exports, stages[shader->selector->stage], shader->wave_size); } static void si_shader_dump_stats(struct si_screen *sscreen, struct si_shader *shader, FILE *file, bool check_debug_option) { const struct ac_shader_config *conf = &shader->config; if (!check_debug_option || si_can_dump_shader(sscreen, shader->selector->stage)) { if (shader->selector->stage == MESA_SHADER_FRAGMENT) { fprintf(file, "*** SHADER CONFIG ***\n" "SPI_PS_INPUT_ADDR = 0x%04x\n" "SPI_PS_INPUT_ENA = 0x%04x\n", conf->spi_ps_input_addr, conf->spi_ps_input_ena); } fprintf(file, "*** SHADER STATS ***\n" "SGPRS: %d\n" "VGPRS: %d\n" "Spilled SGPRs: %d\n" "Spilled VGPRs: %d\n" "Private memory VGPRs: %d\n" "Code Size: %d bytes\n" "LDS: %d bytes\n" "Scratch: %d bytes per wave\n" "Max Waves: %d\n" "********************\n\n\n", conf->num_sgprs, conf->num_vgprs, conf->spilled_sgprs, conf->spilled_vgprs, shader->info.private_mem_vgprs, si_get_shader_binary_size(sscreen, shader), conf->lds_size * get_lds_granularity(sscreen, shader->selector->stage), conf->scratch_bytes_per_wave, shader->info.max_simd_waves); } } const char *si_get_shader_name(const struct si_shader *shader) { switch (shader->selector->stage) { case MESA_SHADER_VERTEX: if (shader->key.ge.as_es) return "Vertex Shader as ES"; else if (shader->key.ge.as_ls) return "Vertex Shader as LS"; else if (shader->key.ge.as_ngg) return "Vertex Shader as ESGS"; else return "Vertex Shader as VS"; case MESA_SHADER_TESS_CTRL: return "Tessellation Control Shader"; case MESA_SHADER_TESS_EVAL: if (shader->key.ge.as_es) return "Tessellation Evaluation Shader as ES"; else if (shader->key.ge.as_ngg) return "Tessellation Evaluation Shader as ESGS"; else return "Tessellation Evaluation Shader as VS"; case MESA_SHADER_GEOMETRY: if (shader->is_gs_copy_shader) return "GS Copy Shader as VS"; else return "Geometry Shader"; case MESA_SHADER_FRAGMENT: return "Pixel Shader"; case MESA_SHADER_COMPUTE: return "Compute Shader"; default: return "Unknown Shader"; } } void si_shader_dump(struct si_screen *sscreen, struct si_shader *shader, struct util_debug_callback *debug, FILE *file, bool check_debug_option) { gl_shader_stage stage = shader->selector->stage; if (!check_debug_option || si_can_dump_shader(sscreen, stage)) si_dump_shader_key(shader, file); if (!check_debug_option && shader->binary.llvm_ir_string) { if (shader->previous_stage && shader->previous_stage->binary.llvm_ir_string) { fprintf(file, "\n%s - previous stage - LLVM IR:\n\n", si_get_shader_name(shader)); fprintf(file, "%s\n", shader->previous_stage->binary.llvm_ir_string); } fprintf(file, "\n%s - main shader part - LLVM IR:\n\n", si_get_shader_name(shader)); fprintf(file, "%s\n", shader->binary.llvm_ir_string); } if (!check_debug_option || (si_can_dump_shader(sscreen, stage) && !(sscreen->debug_flags & DBG(NO_ASM)))) { fprintf(file, "\n%s:\n", si_get_shader_name(shader)); if (shader->prolog) si_shader_dump_disassembly(sscreen, &shader->prolog->binary, stage, shader->wave_size, debug, "prolog", file); if (shader->previous_stage) si_shader_dump_disassembly(sscreen, &shader->previous_stage->binary, stage, shader->wave_size, debug, "previous stage", file); si_shader_dump_disassembly(sscreen, &shader->binary, stage, shader->wave_size, debug, "main", file); if (shader->epilog) si_shader_dump_disassembly(sscreen, &shader->epilog->binary, stage, shader->wave_size, debug, "epilog", file); fprintf(file, "\n"); } si_shader_dump_stats(sscreen, shader, file, check_debug_option); } static void si_dump_shader_key_vs(const union si_shader_key *key, const struct si_vs_prolog_bits *prolog, const char *prefix, FILE *f) { fprintf(f, " %s.instance_divisor_is_one = %u\n", prefix, prolog->instance_divisor_is_one); fprintf(f, " %s.instance_divisor_is_fetched = %u\n", prefix, prolog->instance_divisor_is_fetched); fprintf(f, " %s.ls_vgpr_fix = %u\n", prefix, prolog->ls_vgpr_fix); fprintf(f, " mono.vs.fetch_opencode = %x\n", key->ge.mono.vs_fetch_opencode); fprintf(f, " mono.vs.fix_fetch = {"); for (int i = 0; i < SI_MAX_ATTRIBS; i++) { union si_vs_fix_fetch fix = key->ge.mono.vs_fix_fetch[i]; if (i) fprintf(f, ", "); if (!fix.bits) fprintf(f, "0"); else fprintf(f, "%u.%u.%u.%u", fix.u.reverse, fix.u.log_size, fix.u.num_channels_m1, fix.u.format); } fprintf(f, "}\n"); } static void si_dump_shader_key(const struct si_shader *shader, FILE *f) { const union si_shader_key *key = &shader->key; gl_shader_stage stage = shader->selector->stage; fprintf(f, "SHADER KEY\n"); fprintf(f, " source_sha1 = {"); _mesa_sha1_print(f, shader->selector->info.base.source_sha1); fprintf(f, "}\n"); switch (stage) { case MESA_SHADER_VERTEX: si_dump_shader_key_vs(key, &key->ge.part.vs.prolog, "part.vs.prolog", f); fprintf(f, " as_es = %u\n", key->ge.as_es); fprintf(f, " as_ls = %u\n", key->ge.as_ls); fprintf(f, " as_ngg = %u\n", key->ge.as_ngg); fprintf(f, " mono.u.vs_export_prim_id = %u\n", key->ge.mono.u.vs_export_prim_id); break; case MESA_SHADER_TESS_CTRL: if (shader->selector->screen->info.gfx_level >= GFX9) { si_dump_shader_key_vs(key, &key->ge.part.tcs.ls_prolog, "part.tcs.ls_prolog", f); } fprintf(f, " part.tcs.epilog.prim_mode = %u\n", key->ge.part.tcs.epilog.prim_mode); fprintf(f, " opt.prefer_mono = %u\n", key->ge.opt.prefer_mono); fprintf(f, " opt.same_patch_vertices = %u\n", key->ge.opt.same_patch_vertices); break; case MESA_SHADER_TESS_EVAL: fprintf(f, " as_es = %u\n", key->ge.as_es); fprintf(f, " as_ngg = %u\n", key->ge.as_ngg); fprintf(f, " mono.u.vs_export_prim_id = %u\n", key->ge.mono.u.vs_export_prim_id); break; case MESA_SHADER_GEOMETRY: if (shader->is_gs_copy_shader) break; if (shader->selector->screen->info.gfx_level >= GFX9 && key->ge.part.gs.es->stage == MESA_SHADER_VERTEX) { si_dump_shader_key_vs(key, &key->ge.part.gs.vs_prolog, "part.gs.vs_prolog", f); } fprintf(f, " mono.u.gs_tri_strip_adj_fix = %u\n", key->ge.mono.u.gs_tri_strip_adj_fix); fprintf(f, " as_ngg = %u\n", key->ge.as_ngg); break; case MESA_SHADER_COMPUTE: break; case MESA_SHADER_FRAGMENT: fprintf(f, " prolog.color_two_side = %u\n", key->ps.part.prolog.color_two_side); fprintf(f, " prolog.flatshade_colors = %u\n", key->ps.part.prolog.flatshade_colors); fprintf(f, " prolog.poly_stipple = %u\n", key->ps.part.prolog.poly_stipple); fprintf(f, " prolog.force_persp_sample_interp = %u\n", key->ps.part.prolog.force_persp_sample_interp); fprintf(f, " prolog.force_linear_sample_interp = %u\n", key->ps.part.prolog.force_linear_sample_interp); fprintf(f, " prolog.force_persp_center_interp = %u\n", key->ps.part.prolog.force_persp_center_interp); fprintf(f, " prolog.force_linear_center_interp = %u\n", key->ps.part.prolog.force_linear_center_interp); fprintf(f, " prolog.bc_optimize_for_persp = %u\n", key->ps.part.prolog.bc_optimize_for_persp); fprintf(f, " prolog.bc_optimize_for_linear = %u\n", key->ps.part.prolog.bc_optimize_for_linear); fprintf(f, " prolog.samplemask_log_ps_iter = %u\n", key->ps.part.prolog.samplemask_log_ps_iter); fprintf(f, " epilog.spi_shader_col_format = 0x%x\n", key->ps.part.epilog.spi_shader_col_format); fprintf(f, " epilog.color_is_int8 = 0x%X\n", key->ps.part.epilog.color_is_int8); fprintf(f, " epilog.color_is_int10 = 0x%X\n", key->ps.part.epilog.color_is_int10); fprintf(f, " epilog.last_cbuf = %u\n", key->ps.part.epilog.last_cbuf); fprintf(f, " epilog.alpha_func = %u\n", key->ps.part.epilog.alpha_func); fprintf(f, " epilog.alpha_to_one = %u\n", key->ps.part.epilog.alpha_to_one); fprintf(f, " epilog.alpha_to_coverage_via_mrtz = %u\n", key->ps.part.epilog.alpha_to_coverage_via_mrtz); fprintf(f, " epilog.clamp_color = %u\n", key->ps.part.epilog.clamp_color); fprintf(f, " epilog.dual_src_blend_swizzle = %u\n", key->ps.part.epilog.dual_src_blend_swizzle); fprintf(f, " mono.poly_line_smoothing = %u\n", key->ps.mono.poly_line_smoothing); fprintf(f, " mono.point_smoothing = %u\n", key->ps.mono.point_smoothing); fprintf(f, " mono.interpolate_at_sample_force_center = %u\n", key->ps.mono.interpolate_at_sample_force_center); fprintf(f, " mono.fbfetch_msaa = %u\n", key->ps.mono.fbfetch_msaa); fprintf(f, " mono.fbfetch_is_1D = %u\n", key->ps.mono.fbfetch_is_1D); fprintf(f, " mono.fbfetch_layered = %u\n", key->ps.mono.fbfetch_layered); break; default: assert(0); } if ((stage == MESA_SHADER_GEOMETRY || stage == MESA_SHADER_TESS_EVAL || stage == MESA_SHADER_VERTEX) && !key->ge.as_es && !key->ge.as_ls) { fprintf(f, " opt.kill_outputs = 0x%" PRIx64 "\n", key->ge.opt.kill_outputs); fprintf(f, " opt.kill_pointsize = 0x%x\n", key->ge.opt.kill_pointsize); fprintf(f, " opt.kill_clip_distances = 0x%x\n", key->ge.opt.kill_clip_distances); fprintf(f, " opt.ngg_culling = 0x%x\n", key->ge.opt.ngg_culling); } if (stage <= MESA_SHADER_GEOMETRY) fprintf(f, " opt.prefer_mono = %u\n", key->ge.opt.prefer_mono); else fprintf(f, " opt.prefer_mono = %u\n", key->ps.opt.prefer_mono); if (stage <= MESA_SHADER_GEOMETRY) { if (key->ge.opt.inline_uniforms) { fprintf(f, " opt.inline_uniforms = %u (0x%x, 0x%x, 0x%x, 0x%x)\n", key->ge.opt.inline_uniforms, key->ge.opt.inlined_uniform_values[0], key->ge.opt.inlined_uniform_values[1], key->ge.opt.inlined_uniform_values[2], key->ge.opt.inlined_uniform_values[3]); } else { fprintf(f, " opt.inline_uniforms = 0\n"); } } else { if (key->ps.opt.inline_uniforms) { fprintf(f, " opt.inline_uniforms = %u (0x%x, 0x%x, 0x%x, 0x%x)\n", key->ps.opt.inline_uniforms, key->ps.opt.inlined_uniform_values[0], key->ps.opt.inlined_uniform_values[1], key->ps.opt.inlined_uniform_values[2], key->ps.opt.inlined_uniform_values[3]); } else { fprintf(f, " opt.inline_uniforms = 0\n"); } } } bool si_vs_needs_prolog(const struct si_shader_selector *sel, const struct si_vs_prolog_bits *prolog_key, const union si_shader_key *key, bool ngg_cull_shader, bool is_gs) { assert(sel->stage == MESA_SHADER_VERTEX); /* VGPR initialization fixup for Vega10 and Raven is always done in the * VS prolog. */ return sel->info.vs_needs_prolog || prolog_key->ls_vgpr_fix || /* The 2nd VS prolog loads input VGPRs from LDS */ (key->ge.opt.ngg_culling && !ngg_cull_shader && !is_gs); } /** * Compute the VS prolog key, which contains all the information needed to * build the VS prolog function, and set shader->info bits where needed. * * \param info Shader info of the vertex shader. * \param num_input_sgprs Number of input SGPRs for the vertex shader. * \param has_old_ Whether the preceding shader part is the NGG cull shader. * \param prolog_key Key of the VS prolog * \param shader_out The vertex shader, or the next shader if merging LS+HS or ES+GS. * \param key Output shader part key. */ void si_get_vs_prolog_key(const struct si_shader_info *info, unsigned num_input_sgprs, bool ngg_cull_shader, const struct si_vs_prolog_bits *prolog_key, struct si_shader *shader_out, union si_shader_part_key *key) { memset(key, 0, sizeof(*key)); key->vs_prolog.states = *prolog_key; key->vs_prolog.wave32 = shader_out->wave_size == 32; key->vs_prolog.num_input_sgprs = num_input_sgprs; key->vs_prolog.num_inputs = info->num_inputs; key->vs_prolog.as_ls = shader_out->key.ge.as_ls; key->vs_prolog.as_es = shader_out->key.ge.as_es; key->vs_prolog.as_ngg = shader_out->key.ge.as_ngg; if (shader_out->selector->stage != MESA_SHADER_GEOMETRY && !ngg_cull_shader && shader_out->key.ge.opt.ngg_culling) key->vs_prolog.load_vgprs_after_culling = 1; if (shader_out->selector->stage == MESA_SHADER_TESS_CTRL) { key->vs_prolog.as_ls = 1; key->vs_prolog.num_merged_next_stage_vgprs = 2; } else if (shader_out->selector->stage == MESA_SHADER_GEOMETRY) { key->vs_prolog.as_es = 1; key->vs_prolog.num_merged_next_stage_vgprs = 5; } else if (shader_out->key.ge.as_ngg) { key->vs_prolog.num_merged_next_stage_vgprs = 5; } /* Only one of these combinations can be set. as_ngg can be set with as_es. */ assert(key->vs_prolog.as_ls + key->vs_prolog.as_ngg + (key->vs_prolog.as_es && !key->vs_prolog.as_ngg) <= 1); /* Enable loading the InstanceID VGPR. */ uint16_t input_mask = u_bit_consecutive(0, info->num_inputs); if ((key->vs_prolog.states.instance_divisor_is_one | key->vs_prolog.states.instance_divisor_is_fetched) & input_mask) shader_out->info.uses_instanceid = true; } /* TODO: convert to nir_shader_instructions_pass */ static bool si_nir_kill_outputs(nir_shader *nir, const union si_shader_key *key) { nir_function_impl *impl = nir_shader_get_entrypoint(nir); assert(impl); if (nir->info.stage > MESA_SHADER_GEOMETRY || (!key->ge.opt.kill_outputs && !key->ge.opt.kill_pointsize && !key->ge.opt.kill_clip_distances)) { nir_metadata_preserve(impl, nir_metadata_all); return false; } bool progress = false; nir_builder b; nir_builder_init(&b, impl); nir_foreach_block(block, impl) { nir_foreach_instr_safe(instr, block) { if (instr->type != nir_instr_type_intrinsic) continue; nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr); if (intr->intrinsic != nir_intrinsic_store_output) continue; /* No indirect indexing allowed. */ ASSERTED nir_src offset = *nir_get_io_offset_src(intr); assert(nir_src_is_const(offset) && nir_src_as_uint(offset) == 0); assert(intr->num_components == 1); /* only scalar stores expected */ nir_io_semantics sem = nir_intrinsic_io_semantics(intr); if (nir_slot_is_varying(sem.location) && key->ge.opt.kill_outputs & (1ull << si_shader_io_get_unique_index(sem.location, true))) { nir_remove_varying(intr); progress = true; } if (key->ge.opt.kill_pointsize && sem.location == VARYING_SLOT_PSIZ) { nir_remove_sysval_output(intr); progress = true; } /* TODO: We should only kill specific clip planes as required by kill_clip_distance, * not whole gl_ClipVertex. Lower ClipVertex in NIR. */ if ((key->ge.opt.kill_clip_distances & SI_USER_CLIP_PLANE_MASK) == SI_USER_CLIP_PLANE_MASK && sem.location == VARYING_SLOT_CLIP_VERTEX) { nir_remove_sysval_output(intr); progress = true; } if (key->ge.opt.kill_clip_distances && (sem.location == VARYING_SLOT_CLIP_DIST0 || sem.location == VARYING_SLOT_CLIP_DIST1)) { assert(nir_intrinsic_src_type(intr) == nir_type_float32); unsigned index = (sem.location - VARYING_SLOT_CLIP_DIST0) * 4 + nir_intrinsic_component(intr); if ((key->ge.opt.kill_clip_distances >> index) & 0x1) { nir_remove_sysval_output(intr); progress = true; } } } } if (progress) { nir_metadata_preserve(impl, nir_metadata_dominance | nir_metadata_block_index); } else { nir_metadata_preserve(impl, nir_metadata_all); } return progress; } static unsigned si_map_io_driver_location(unsigned semantic) { if ((semantic >= VARYING_SLOT_PATCH0 && semantic < VARYING_SLOT_TESS_MAX) || semantic == VARYING_SLOT_TESS_LEVEL_INNER || semantic == VARYING_SLOT_TESS_LEVEL_OUTER) return si_shader_io_get_unique_index_patch(semantic); return si_shader_io_get_unique_index(semantic, false); } static bool si_lower_io_to_mem(struct si_shader *shader, nir_shader *nir, uint64_t tcs_vgpr_only_inputs) { struct si_shader_selector *sel = shader->selector; const union si_shader_key *key = &shader->key; if (nir->info.stage == MESA_SHADER_VERTEX) { if (key->ge.as_ls) { NIR_PASS_V(nir, ac_nir_lower_ls_outputs_to_mem, si_map_io_driver_location, key->ge.opt.same_patch_vertices, tcs_vgpr_only_inputs); return true; } else if (key->ge.as_es) { NIR_PASS_V(nir, ac_nir_lower_es_outputs_to_mem, si_map_io_driver_location, sel->screen->info.gfx_level, sel->info.esgs_itemsize); return true; } } else if (nir->info.stage == MESA_SHADER_TESS_CTRL) { NIR_PASS_V(nir, ac_nir_lower_hs_inputs_to_mem, si_map_io_driver_location, key->ge.opt.same_patch_vertices); NIR_PASS_V(nir, ac_nir_lower_hs_outputs_to_mem, si_map_io_driver_location, sel->screen->info.gfx_level, false, /* does not matter as we disabled final tess factor write */ ~0ULL, ~0ULL, /* no TES inputs filter */ util_last_bit64(sel->info.outputs_written), util_last_bit64(sel->info.patch_outputs_written), shader->wave_size, /* ALL TCS inputs are passed by register. */ key->ge.opt.same_patch_vertices && !(sel->info.base.inputs_read & ~sel->info.tcs_vgpr_only_inputs), sel->info.tessfactors_are_def_in_all_invocs, false); return true; } else if (nir->info.stage == MESA_SHADER_TESS_EVAL) { NIR_PASS_V(nir, ac_nir_lower_tes_inputs_to_mem, si_map_io_driver_location); if (key->ge.as_es) { NIR_PASS_V(nir, ac_nir_lower_es_outputs_to_mem, si_map_io_driver_location, sel->screen->info.gfx_level, sel->info.esgs_itemsize); } return true; } else if (nir->info.stage == MESA_SHADER_GEOMETRY) { NIR_PASS_V(nir, ac_nir_lower_gs_inputs_to_mem, si_map_io_driver_location, sel->screen->info.gfx_level, key->ge.mono.u.gs_tri_strip_adj_fix); return true; } return false; } struct nir_shader *si_deserialize_shader(struct si_shader_selector *sel) { struct pipe_screen *screen = &sel->screen->b; const void *options = screen->get_compiler_options(screen, PIPE_SHADER_IR_NIR, pipe_shader_type_from_mesa(sel->stage)); struct blob_reader blob_reader; blob_reader_init(&blob_reader, sel->nir_binary, sel->nir_size); return nir_deserialize(NULL, options, &blob_reader); } struct nir_shader *si_get_nir_shader(struct si_shader *shader, bool *free_nir, uint64_t tcs_vgpr_only_inputs) { struct si_shader_selector *sel = shader->selector; const union si_shader_key *key = &shader->key; nir_shader *nir; *free_nir = false; if (sel->nir) { nir = sel->nir; } else if (sel->nir_binary) { nir = si_deserialize_shader(sel); *free_nir = true; } else { return NULL; } bool progress = false; const char *original_name = NULL; if (unlikely(should_print_nir(nir))) { /* Modify the shader's name so that each variant gets its own name. */ original_name = ralloc_strdup(nir, nir->info.name); ralloc_asprintf_append((char **)&nir->info.name, "-%08x", _mesa_hash_data(key, sizeof(*key))); /* Dummy pass to get the starting point. */ printf("nir_dummy_pass\n"); nir_print_shader(nir, stdout); } /* Kill outputs according to the shader key. */ if (sel->stage <= MESA_SHADER_GEOMETRY) NIR_PASS(progress, nir, si_nir_kill_outputs, key); bool inline_uniforms = false; uint32_t *inlined_uniform_values; si_get_inline_uniform_state((union si_shader_key*)key, sel->pipe_shader_type, &inline_uniforms, &inlined_uniform_values); if (inline_uniforms) { assert(*free_nir); /* Most places use shader information from the default variant, not * the optimized variant. These are the things that the driver looks at * in optimized variants and the list of things that we need to do. * * The driver takes into account these things if they suddenly disappear * from the shader code: * - Register usage and code size decrease (obvious) * - Eliminated PS system values are disabled by LLVM * (FragCoord, FrontFace, barycentrics) * - VS/TES/GS outputs feeding PS are eliminated if outputs are undef. * The storage for eliminated outputs is also not allocated. * - VS/TCS/TES/GS/PS input loads are eliminated (VS relies on DCE in LLVM) * - TCS output stores are eliminated * * TODO: These are things the driver ignores in the final shader code * and relies on the default shader info. * - Other system values are not eliminated * - PS.NUM_INTERP = bitcount64(inputs_read), renumber inputs * to remove holes * - uses_discard - if it changed to false * - writes_memory - if it changed to false * - VS->TCS, VS->GS, TES->GS output stores for the former stage are not * eliminated * - Eliminated VS/TCS/TES outputs are still allocated. (except when feeding PS) * GS outputs are eliminated except for the temporary LDS. * Clip distances, gl_PointSize, and PS outputs are eliminated based * on current states, so we don't care about the shader code. * * TODO: Merged shaders don't inline uniforms for the first stage. * VS-GS: only GS inlines uniforms; VS-TCS: only TCS; TES-GS: only GS. * (key == NULL for the first stage here) * * TODO: Compute shaders don't support inlinable uniforms, because they * don't have shader variants. * * TODO: The driver uses a linear search to find a shader variant. This * can be really slow if we get too many variants due to uniform inlining. */ NIR_PASS_V(nir, nir_inline_uniforms, nir->info.num_inlinable_uniforms, inlined_uniform_values, nir->info.inlinable_uniform_dw_offsets); progress = true; } if (sel->stage == MESA_SHADER_FRAGMENT && key->ps.mono.poly_line_smoothing) NIR_PASS(progress, nir, nir_lower_poly_line_smooth, SI_NUM_SMOOTH_AA_SAMPLES); if (sel->stage == MESA_SHADER_FRAGMENT && key->ps.mono.point_smoothing) NIR_PASS(progress, nir, nir_lower_point_smooth); if (progress) si_nir_opts(sel->screen, nir, true); /* Lower large variables that are always constant with load_constant intrinsics, which * get turned into PC-relative loads from a data section next to the shader. * * Loop unrolling caused by uniform inlining can help eliminate indirect indexing, so * this should be done after that. * * The pass crashes if there are dead temps of lowered IO interface types, so remove * them first. */ bool progress2 = false; NIR_PASS_V(nir, nir_remove_dead_variables, nir_var_function_temp, NULL); NIR_PASS(progress2, nir, nir_opt_large_constants, glsl_get_natural_size_align_bytes, 16); /* Loop unrolling caused by uniform inlining can help eliminate indirect indexing, so * this should be done after that. */ progress2 |= ac_nir_lower_indirect_derefs(nir, sel->screen->info.gfx_level); bool opt_offsets = si_lower_io_to_mem(shader, nir, tcs_vgpr_only_inputs); if (progress2 || opt_offsets) si_nir_opts(sel->screen, nir, false); if (opt_offsets) { static const nir_opt_offsets_options offset_options = { .uniform_max = 0, .buffer_max = ~0, .shared_max = ~0, }; NIR_PASS_V(nir, nir_opt_offsets, &offset_options); } if (progress || progress2 || opt_offsets) si_nir_late_opts(nir); NIR_PASS_V(nir, nir_divergence_analysis); /* This helps LLVM form VMEM clauses and thus get more GPU cache hits. * 200 is tuned for Viewperf. It should be done last. */ NIR_PASS_V(nir, nir_group_loads, nir_group_same_resource_only, 200); if (unlikely(original_name)) { ralloc_free((void*)nir->info.name); nir->info.name = original_name; } return nir; } void si_update_shader_binary_info(struct si_shader *shader, nir_shader *nir) { struct si_shader_info info; si_nir_scan_shader(shader->selector->screen, nir, &info); shader->info.uses_vmem_load_other |= info.uses_vmem_load_other; shader->info.uses_vmem_sampler_or_bvh |= info.uses_vmem_sampler_or_bvh; } static void si_nir_assign_param_offsets(nir_shader *nir, const struct si_shader_info *info, int8_t slot_remap[NUM_TOTAL_VARYING_SLOTS], uint8_t *num_param_exports, uint64_t *output_param_mask, uint8_t vs_output_param_offset[NUM_TOTAL_VARYING_SLOTS]) { nir_function_impl *impl = nir_shader_get_entrypoint(nir); assert(impl); nir_foreach_block(block, impl) { nir_foreach_instr_safe(instr, block) { if (instr->type != nir_instr_type_intrinsic) continue; nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr); if (intr->intrinsic != nir_intrinsic_store_output) continue; /* No indirect indexing allowed. */ ASSERTED nir_src offset = *nir_get_io_offset_src(intr); assert(nir_src_is_const(offset) && nir_src_as_uint(offset) == 0); assert(intr->num_components == 1); /* only scalar stores expected */ nir_io_semantics sem = nir_intrinsic_io_semantics(intr); /* Assign the param index if it's unassigned. */ if (nir_slot_is_varying(sem.location) && !sem.no_varying && (sem.gs_streams & 0x3) == 0 && vs_output_param_offset[sem.location] == AC_EXP_PARAM_DEFAULT_VAL_0000) { /* The semantic and the base should be the same as in si_shader_info. */ assert(sem.location == info->output_semantic[nir_intrinsic_base(intr)]); /* It must not be remapped (duplicated). */ assert(slot_remap[sem.location] == -1); vs_output_param_offset[sem.location] = (*num_param_exports)++; *output_param_mask |= BITFIELD64_BIT(nir_intrinsic_base(intr)); } } } /* Duplicated outputs are redirected here. */ for (unsigned i = 0; i < NUM_TOTAL_VARYING_SLOTS; i++) { if (slot_remap[i] >= 0) vs_output_param_offset[i] = vs_output_param_offset[slot_remap[i]]; } } bool si_compile_shader(struct si_screen *sscreen, struct ac_llvm_compiler *compiler, struct si_shader *shader, struct util_debug_callback *debug) { struct si_shader_selector *sel = shader->selector; bool free_nir; struct nir_shader *nir = si_get_nir_shader(shader, &free_nir, 0); /* Assign param export indices. */ if ((sel->stage == MESA_SHADER_VERTEX || sel->stage == MESA_SHADER_TESS_EVAL || (sel->stage == MESA_SHADER_GEOMETRY && shader->key.ge.as_ngg)) && !shader->key.ge.as_ls && !shader->key.ge.as_es) { /* Initialize this first. */ shader->info.nr_param_exports = 0; shader->info.vs_output_param_mask = 0; STATIC_ASSERT(sizeof(shader->info.vs_output_param_offset[0]) == 1); memset(shader->info.vs_output_param_offset, AC_EXP_PARAM_DEFAULT_VAL_0000, sizeof(shader->info.vs_output_param_offset)); /* A slot remapping table for duplicated outputs, so that 1 vertex shader output can be * mapped to multiple fragment shader inputs. */ int8_t slot_remap[NUM_TOTAL_VARYING_SLOTS]; memset(slot_remap, -1, NUM_TOTAL_VARYING_SLOTS); /* This sets DEFAULT_VAL for constant outputs in vs_output_param_offset. */ /* TODO: This doesn't affect GS. */ NIR_PASS_V(nir, ac_nir_optimize_outputs, false, slot_remap, shader->info.vs_output_param_offset); /* Assign the non-constant outputs. */ /* TODO: Use this for the GS copy shader too. */ si_nir_assign_param_offsets(nir, &sel->info, slot_remap, &shader->info.nr_param_exports, &shader->info.vs_output_param_mask, shader->info.vs_output_param_offset); if (shader->key.ge.mono.u.vs_export_prim_id) { shader->info.vs_output_param_offset[VARYING_SLOT_PRIMITIVE_ID] = shader->info.nr_param_exports++; shader->info.vs_output_param_mask |= BITFIELD64_BIT(sel->info.num_outputs); } } struct pipe_stream_output_info so = {}; if (si_shader_uses_streamout(shader)) nir_gather_stream_output_info(nir, &so); /* Dump NIR before doing NIR->LLVM conversion in case the * conversion fails. */ if (si_can_dump_shader(sscreen, sel->stage) && !(sscreen->debug_flags & DBG(NO_NIR))) { nir_print_shader(nir, stderr); si_dump_streamout(&so); } /* Initialize vs_output_ps_input_cntl to default. */ for (unsigned i = 0; i < ARRAY_SIZE(shader->info.vs_output_ps_input_cntl); i++) shader->info.vs_output_ps_input_cntl[i] = SI_PS_INPUT_CNTL_UNUSED; shader->info.vs_output_ps_input_cntl[VARYING_SLOT_COL0] = SI_PS_INPUT_CNTL_UNUSED_COLOR0; si_update_shader_binary_info(shader, nir); shader->info.uses_instanceid = sel->info.uses_instanceid; shader->info.private_mem_vgprs = DIV_ROUND_UP(nir->scratch_size, 4); /* TODO: ACO could compile non-monolithic shaders here (starting * with PS and NGG VS), but monolithic shaders should be compiled * by LLVM due to more complicated compilation. */ if (!si_llvm_compile_shader(sscreen, compiler, shader, &so, debug, nir, free_nir)) return false; /* The GS copy shader is compiled next. */ if (sel->stage == MESA_SHADER_GEOMETRY && !shader->key.ge.as_ngg) { shader->gs_copy_shader = si_generate_gs_copy_shader(sscreen, compiler, sel, &so, debug); if (!shader->gs_copy_shader) { fprintf(stderr, "radeonsi: can't create GS copy shader\n"); return false; } } /* Compute vs_output_ps_input_cntl. */ if ((sel->stage == MESA_SHADER_VERTEX || sel->stage == MESA_SHADER_TESS_EVAL || sel->stage == MESA_SHADER_GEOMETRY) && !shader->key.ge.as_ls && !shader->key.ge.as_es) { ubyte *vs_output_param_offset = shader->info.vs_output_param_offset; if (sel->stage == MESA_SHADER_GEOMETRY && !shader->key.ge.as_ngg) vs_output_param_offset = shader->gs_copy_shader->info.vs_output_param_offset; /* We must use the original shader info before the removal of duplicated shader outputs. */ /* VS and TES should also set primitive ID output if it's used. */ unsigned num_outputs_with_prim_id = sel->info.num_outputs + shader->key.ge.mono.u.vs_export_prim_id; for (unsigned i = 0; i < num_outputs_with_prim_id; i++) { unsigned semantic = sel->info.output_semantic[i]; unsigned offset = vs_output_param_offset[semantic]; unsigned ps_input_cntl; if (offset <= AC_EXP_PARAM_OFFSET_31) { /* The input is loaded from parameter memory. */ ps_input_cntl = S_028644_OFFSET(offset); } else { /* The input is a DEFAULT_VAL constant. */ assert(offset >= AC_EXP_PARAM_DEFAULT_VAL_0000 && offset <= AC_EXP_PARAM_DEFAULT_VAL_1111); offset -= AC_EXP_PARAM_DEFAULT_VAL_0000; /* OFFSET=0x20 means that DEFAULT_VAL is used. */ ps_input_cntl = S_028644_OFFSET(0x20) | S_028644_DEFAULT_VAL(offset); } shader->info.vs_output_ps_input_cntl[semantic] = ps_input_cntl; } } /* Validate SGPR and VGPR usage for compute to detect compiler bugs. */ if (sel->stage == MESA_SHADER_COMPUTE) { unsigned max_vgprs = sscreen->info.num_physical_wave64_vgprs_per_simd * (shader->wave_size == 32 ? 2 : 1); unsigned max_sgprs = sscreen->info.num_physical_sgprs_per_simd; unsigned max_sgprs_per_wave = 128; unsigned simds_per_tg = 4; /* assuming WGP mode on gfx10 */ unsigned threads_per_tg = si_get_max_workgroup_size(shader); unsigned waves_per_tg = DIV_ROUND_UP(threads_per_tg, shader->wave_size); unsigned waves_per_simd = DIV_ROUND_UP(waves_per_tg, simds_per_tg); max_vgprs = max_vgprs / waves_per_simd; max_sgprs = MIN2(max_sgprs / waves_per_simd, max_sgprs_per_wave); if (shader->config.num_sgprs > max_sgprs || shader->config.num_vgprs > max_vgprs) { fprintf(stderr, "LLVM failed to compile a shader correctly: " "SGPR:VGPR usage is %u:%u, but the hw limit is %u:%u\n", shader->config.num_sgprs, shader->config.num_vgprs, max_sgprs, max_vgprs); /* Just terminate the process, because dependent * shaders can hang due to bad input data, but use * the env var to allow shader-db to work. */ if (!debug_get_bool_option("SI_PASS_BAD_SHADERS", false)) abort(); } } /* Add the scratch offset to input SGPRs. */ if (sel->screen->info.gfx_level < GFX11 && shader->config.scratch_bytes_per_wave && !si_is_merged_shader(shader)) shader->info.num_input_sgprs += 1; /* scratch byte offset */ /* Calculate the number of fragment input VGPRs. */ if (sel->stage == MESA_SHADER_FRAGMENT) { shader->info.num_input_vgprs = ac_get_fs_input_vgpr_cnt( &shader->config, &shader->info.face_vgpr_index, &shader->info.ancillary_vgpr_index, &shader->info.sample_coverage_vgpr_index); } si_calculate_max_simd_waves(shader); si_shader_dump_stats_for_shader_db(sscreen, shader, debug); return true; } /** * Create, compile and return a shader part (prolog or epilog). * * \param sscreen screen * \param list list of shader parts of the same category * \param type shader type * \param key shader part key * \param prolog whether the part being requested is a prolog * \param tm LLVM target machine * \param debug debug callback * \param build the callback responsible for building the main function * \return non-NULL on success */ static struct si_shader_part * si_get_shader_part(struct si_screen *sscreen, struct si_shader_part **list, gl_shader_stage stage, bool prolog, union si_shader_part_key *key, struct ac_llvm_compiler *compiler, struct util_debug_callback *debug, void (*build)(struct si_shader_context *, union si_shader_part_key *), const char *name) { struct si_shader_part *result; simple_mtx_lock(&sscreen->shader_parts_mutex); /* Find existing. */ for (result = *list; result; result = result->next) { if (memcmp(&result->key, key, sizeof(*key)) == 0) { simple_mtx_unlock(&sscreen->shader_parts_mutex); return result; } } /* Compile a new one. */ result = CALLOC_STRUCT(si_shader_part); result->key = *key; struct si_shader_selector sel = {}; sel.screen = sscreen; struct si_shader shader = {}; shader.selector = &sel; bool wave32 = false; switch (stage) { case MESA_SHADER_VERTEX: shader.key.ge.as_ls = key->vs_prolog.as_ls; shader.key.ge.as_es = key->vs_prolog.as_es; shader.key.ge.as_ngg = key->vs_prolog.as_ngg; wave32 = key->vs_prolog.wave32; break; case MESA_SHADER_TESS_CTRL: assert(!prolog); shader.key.ge.part.tcs.epilog = key->tcs_epilog.states; wave32 = key->tcs_epilog.wave32; break; case MESA_SHADER_FRAGMENT: if (prolog) { shader.key.ps.part.prolog = key->ps_prolog.states; wave32 = key->ps_prolog.wave32; } else { shader.key.ps.part.epilog = key->ps_epilog.states; wave32 = key->ps_epilog.wave32; } break; default: unreachable("bad shader part"); } struct si_shader_context ctx; si_llvm_context_init(&ctx, sscreen, compiler, wave32 ? 32 : 64); ctx.shader = &shader; ctx.stage = stage; build(&ctx, key); /* Compile. */ si_llvm_optimize_module(&ctx); if (!si_compile_llvm(sscreen, &result->binary, &result->config, compiler, &ctx.ac, debug, ctx.stage, name, false)) { FREE(result); result = NULL; goto out; } result->next = *list; *list = result; out: si_llvm_dispose(&ctx); simple_mtx_unlock(&sscreen->shader_parts_mutex); return result; } static bool si_get_vs_prolog(struct si_screen *sscreen, struct ac_llvm_compiler *compiler, struct si_shader *shader, struct util_debug_callback *debug, struct si_shader *main_part, const struct si_vs_prolog_bits *key) { struct si_shader_selector *vs = main_part->selector; if (!si_vs_needs_prolog(vs, key, &shader->key, false, shader->selector->stage == MESA_SHADER_GEOMETRY)) return true; /* Get the prolog. */ union si_shader_part_key prolog_key; si_get_vs_prolog_key(&vs->info, main_part->info.num_input_sgprs, false, key, shader, &prolog_key); shader->prolog = si_get_shader_part(sscreen, &sscreen->vs_prologs, MESA_SHADER_VERTEX, true, &prolog_key, compiler, debug, si_llvm_build_vs_prolog, "Vertex Shader Prolog"); return shader->prolog != NULL; } /** * Select and compile (or reuse) vertex shader parts (prolog & epilog). */ static bool si_shader_select_vs_parts(struct si_screen *sscreen, struct ac_llvm_compiler *compiler, struct si_shader *shader, struct util_debug_callback *debug) { return si_get_vs_prolog(sscreen, compiler, shader, debug, shader, &shader->key.ge.part.vs.prolog); } void si_get_tcs_epilog_key(struct si_shader *shader, union si_shader_part_key *key) { memset(key, 0, sizeof(*key)); key->tcs_epilog.wave32 = shader->wave_size == 32; key->tcs_epilog.states = shader->key.ge.part.tcs.epilog; /* If output patches are wholly in one wave, we don't need a barrier. */ key->tcs_epilog.noop_s_barrier = shader->wave_size % shader->selector->info.base.tess.tcs_vertices_out == 0; } /** * Select and compile (or reuse) TCS parts (epilog). */ static bool si_shader_select_tcs_parts(struct si_screen *sscreen, struct ac_llvm_compiler *compiler, struct si_shader *shader, struct util_debug_callback *debug) { if (sscreen->info.gfx_level >= GFX9) { struct si_shader *ls_main_part = shader->key.ge.part.tcs.ls->main_shader_part_ls; if (!si_get_vs_prolog(sscreen, compiler, shader, debug, ls_main_part, &shader->key.ge.part.tcs.ls_prolog)) return false; shader->previous_stage = ls_main_part; } /* Get the epilog. */ union si_shader_part_key epilog_key; si_get_tcs_epilog_key(shader, &epilog_key); shader->epilog = si_get_shader_part(sscreen, &sscreen->tcs_epilogs, MESA_SHADER_TESS_CTRL, false, &epilog_key, compiler, debug, si_llvm_build_tcs_epilog, "Tessellation Control Shader Epilog"); return shader->epilog != NULL; } /** * Select and compile (or reuse) GS parts (prolog). */ static bool si_shader_select_gs_parts(struct si_screen *sscreen, struct ac_llvm_compiler *compiler, struct si_shader *shader, struct util_debug_callback *debug) { if (sscreen->info.gfx_level >= GFX9) { struct si_shader *es_main_part; if (shader->key.ge.as_ngg) es_main_part = shader->key.ge.part.gs.es->main_shader_part_ngg_es; else es_main_part = shader->key.ge.part.gs.es->main_shader_part_es; if (shader->key.ge.part.gs.es->stage == MESA_SHADER_VERTEX && !si_get_vs_prolog(sscreen, compiler, shader, debug, es_main_part, &shader->key.ge.part.gs.vs_prolog)) return false; shader->previous_stage = es_main_part; } return true; } /** * Compute the PS prolog key, which contains all the information needed to * build the PS prolog function, and set related bits in shader->config. */ void si_get_ps_prolog_key(struct si_shader *shader, union si_shader_part_key *key, bool separate_prolog) { struct si_shader_info *info = &shader->selector->info; memset(key, 0, sizeof(*key)); key->ps_prolog.states = shader->key.ps.part.prolog; key->ps_prolog.wave32 = shader->wave_size == 32; key->ps_prolog.colors_read = info->colors_read; key->ps_prolog.num_input_sgprs = shader->info.num_input_sgprs; key->ps_prolog.num_input_vgprs = shader->info.num_input_vgprs; key->ps_prolog.wqm = info->base.fs.needs_quad_helper_invocations && (key->ps_prolog.colors_read || key->ps_prolog.states.force_persp_sample_interp || key->ps_prolog.states.force_linear_sample_interp || key->ps_prolog.states.force_persp_center_interp || key->ps_prolog.states.force_linear_center_interp || key->ps_prolog.states.bc_optimize_for_persp || key->ps_prolog.states.bc_optimize_for_linear); key->ps_prolog.ancillary_vgpr_index = shader->info.ancillary_vgpr_index; key->ps_prolog.sample_coverage_vgpr_index = shader->info.sample_coverage_vgpr_index; if (shader->key.ps.part.prolog.poly_stipple) shader->info.uses_vmem_load_other = true; if (info->colors_read) { ubyte *color = shader->selector->info.color_attr_index; if (shader->key.ps.part.prolog.color_two_side) { /* BCOLORs are stored after the last input. */ key->ps_prolog.num_interp_inputs = info->num_inputs; key->ps_prolog.face_vgpr_index = shader->info.face_vgpr_index; if (separate_prolog) shader->config.spi_ps_input_ena |= S_0286CC_FRONT_FACE_ENA(1); } for (unsigned i = 0; i < 2; i++) { unsigned interp = info->color_interpolate[i]; unsigned location = info->color_interpolate_loc[i]; if (!(info->colors_read & (0xf << i * 4))) continue; key->ps_prolog.color_attr_index[i] = color[i]; if (shader->key.ps.part.prolog.flatshade_colors && interp == INTERP_MODE_COLOR) interp = INTERP_MODE_FLAT; switch (interp) { case INTERP_MODE_FLAT: key->ps_prolog.color_interp_vgpr_index[i] = -1; break; case INTERP_MODE_SMOOTH: case INTERP_MODE_COLOR: /* Force the interpolation location for colors here. */ if (shader->key.ps.part.prolog.force_persp_sample_interp) location = TGSI_INTERPOLATE_LOC_SAMPLE; if (shader->key.ps.part.prolog.force_persp_center_interp) location = TGSI_INTERPOLATE_LOC_CENTER; switch (location) { case TGSI_INTERPOLATE_LOC_SAMPLE: key->ps_prolog.color_interp_vgpr_index[i] = 0; if (separate_prolog) { shader->config.spi_ps_input_ena |= S_0286CC_PERSP_SAMPLE_ENA(1); } break; case TGSI_INTERPOLATE_LOC_CENTER: key->ps_prolog.color_interp_vgpr_index[i] = 2; if (separate_prolog) { shader->config.spi_ps_input_ena |= S_0286CC_PERSP_CENTER_ENA(1); } break; case TGSI_INTERPOLATE_LOC_CENTROID: key->ps_prolog.color_interp_vgpr_index[i] = 4; if (separate_prolog) { shader->config.spi_ps_input_ena |= S_0286CC_PERSP_CENTROID_ENA(1); } break; default: assert(0); } break; case INTERP_MODE_NOPERSPECTIVE: /* Force the interpolation location for colors here. */ if (shader->key.ps.part.prolog.force_linear_sample_interp) location = TGSI_INTERPOLATE_LOC_SAMPLE; if (shader->key.ps.part.prolog.force_linear_center_interp) location = TGSI_INTERPOLATE_LOC_CENTER; /* The VGPR assignment for non-monolithic shaders * works because InitialPSInputAddr is set on the * main shader and PERSP_PULL_MODEL is never used. */ switch (location) { case TGSI_INTERPOLATE_LOC_SAMPLE: key->ps_prolog.color_interp_vgpr_index[i] = separate_prolog ? 6 : 9; if (separate_prolog) { shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_SAMPLE_ENA(1); } break; case TGSI_INTERPOLATE_LOC_CENTER: key->ps_prolog.color_interp_vgpr_index[i] = separate_prolog ? 8 : 11; if (separate_prolog) { shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_CENTER_ENA(1); } break; case TGSI_INTERPOLATE_LOC_CENTROID: key->ps_prolog.color_interp_vgpr_index[i] = separate_prolog ? 10 : 13; if (separate_prolog) { shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_CENTROID_ENA(1); } break; default: assert(0); } break; default: assert(0); } } } } /** * Check whether a PS prolog is required based on the key. */ bool si_need_ps_prolog(const union si_shader_part_key *key) { return key->ps_prolog.colors_read || key->ps_prolog.states.force_persp_sample_interp || key->ps_prolog.states.force_linear_sample_interp || key->ps_prolog.states.force_persp_center_interp || key->ps_prolog.states.force_linear_center_interp || key->ps_prolog.states.bc_optimize_for_persp || key->ps_prolog.states.bc_optimize_for_linear || key->ps_prolog.states.poly_stipple || key->ps_prolog.states.samplemask_log_ps_iter; } /** * Compute the PS epilog key, which contains all the information needed to * build the PS epilog function. */ void si_get_ps_epilog_key(struct si_shader *shader, union si_shader_part_key *key) { struct si_shader_info *info = &shader->selector->info; memset(key, 0, sizeof(*key)); key->ps_epilog.wave32 = shader->wave_size == 32; key->ps_epilog.uses_discard = si_shader_uses_discard(shader); key->ps_epilog.colors_written = info->colors_written; key->ps_epilog.color_types = info->output_color_types; key->ps_epilog.writes_z = info->writes_z; key->ps_epilog.writes_stencil = info->writes_stencil; key->ps_epilog.writes_samplemask = info->writes_samplemask; key->ps_epilog.states = shader->key.ps.part.epilog; } /** * Select and compile (or reuse) pixel shader parts (prolog & epilog). */ static bool si_shader_select_ps_parts(struct si_screen *sscreen, struct ac_llvm_compiler *compiler, struct si_shader *shader, struct util_debug_callback *debug) { union si_shader_part_key prolog_key; union si_shader_part_key epilog_key; /* Get the prolog. */ si_get_ps_prolog_key(shader, &prolog_key, true); /* The prolog is a no-op if these aren't set. */ if (si_need_ps_prolog(&prolog_key)) { shader->prolog = si_get_shader_part(sscreen, &sscreen->ps_prologs, MESA_SHADER_FRAGMENT, true, &prolog_key, compiler, debug, si_llvm_build_ps_prolog, "Fragment Shader Prolog"); if (!shader->prolog) return false; } /* Get the epilog. */ si_get_ps_epilog_key(shader, &epilog_key); shader->epilog = si_get_shader_part(sscreen, &sscreen->ps_epilogs, MESA_SHADER_FRAGMENT, false, &epilog_key, compiler, debug, si_llvm_build_ps_epilog, "Fragment Shader Epilog"); if (!shader->epilog) return false; /* Enable POS_FIXED_PT if polygon stippling is enabled. */ if (shader->key.ps.part.prolog.poly_stipple) { shader->config.spi_ps_input_ena |= S_0286CC_POS_FIXED_PT_ENA(1); assert(G_0286CC_POS_FIXED_PT_ENA(shader->config.spi_ps_input_addr)); } /* Set up the enable bits for per-sample shading if needed. */ if (shader->key.ps.part.prolog.force_persp_sample_interp && (G_0286CC_PERSP_CENTER_ENA(shader->config.spi_ps_input_ena) || G_0286CC_PERSP_CENTROID_ENA(shader->config.spi_ps_input_ena))) { shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTER_ENA; shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTROID_ENA; shader->config.spi_ps_input_ena |= S_0286CC_PERSP_SAMPLE_ENA(1); } if (shader->key.ps.part.prolog.force_linear_sample_interp && (G_0286CC_LINEAR_CENTER_ENA(shader->config.spi_ps_input_ena) || G_0286CC_LINEAR_CENTROID_ENA(shader->config.spi_ps_input_ena))) { shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTER_ENA; shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTROID_ENA; shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_SAMPLE_ENA(1); } if (shader->key.ps.part.prolog.force_persp_center_interp && (G_0286CC_PERSP_SAMPLE_ENA(shader->config.spi_ps_input_ena) || G_0286CC_PERSP_CENTROID_ENA(shader->config.spi_ps_input_ena))) { shader->config.spi_ps_input_ena &= C_0286CC_PERSP_SAMPLE_ENA; shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTROID_ENA; shader->config.spi_ps_input_ena |= S_0286CC_PERSP_CENTER_ENA(1); } if (shader->key.ps.part.prolog.force_linear_center_interp && (G_0286CC_LINEAR_SAMPLE_ENA(shader->config.spi_ps_input_ena) || G_0286CC_LINEAR_CENTROID_ENA(shader->config.spi_ps_input_ena))) { shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_SAMPLE_ENA; shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTROID_ENA; shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_CENTER_ENA(1); } /* POW_W_FLOAT requires that one of the perspective weights is enabled. */ if (G_0286CC_POS_W_FLOAT_ENA(shader->config.spi_ps_input_ena) && !(shader->config.spi_ps_input_ena & 0xf)) { shader->config.spi_ps_input_ena |= S_0286CC_PERSP_CENTER_ENA(1); assert(G_0286CC_PERSP_CENTER_ENA(shader->config.spi_ps_input_addr)); } /* At least one pair of interpolation weights must be enabled. */ if (!(shader->config.spi_ps_input_ena & 0x7f)) { shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_CENTER_ENA(1); assert(G_0286CC_LINEAR_CENTER_ENA(shader->config.spi_ps_input_addr)); } /* Samplemask fixup requires the sample ID. */ if (shader->key.ps.part.prolog.samplemask_log_ps_iter) { shader->config.spi_ps_input_ena |= S_0286CC_ANCILLARY_ENA(1); assert(G_0286CC_ANCILLARY_ENA(shader->config.spi_ps_input_addr)); } return true; } void si_multiwave_lds_size_workaround(struct si_screen *sscreen, unsigned *lds_size) { /* If tessellation is all offchip and on-chip GS isn't used, this * workaround is not needed. */ return; /* SPI barrier management bug: * Make sure we have at least 4k of LDS in use to avoid the bug. * It applies to workgroup sizes of more than one wavefront. */ if (sscreen->info.family == CHIP_BONAIRE || sscreen->info.family == CHIP_KABINI) *lds_size = MAX2(*lds_size, 8); } void si_fix_resource_usage(struct si_screen *sscreen, struct si_shader *shader) { unsigned min_sgprs = shader->info.num_input_sgprs + 2; /* VCC */ shader->config.num_sgprs = MAX2(shader->config.num_sgprs, min_sgprs); if (shader->selector->stage == MESA_SHADER_COMPUTE && si_get_max_workgroup_size(shader) > shader->wave_size) { si_multiwave_lds_size_workaround(sscreen, &shader->config.lds_size); } } bool si_create_shader_variant(struct si_screen *sscreen, struct ac_llvm_compiler *compiler, struct si_shader *shader, struct util_debug_callback *debug) { struct si_shader_selector *sel = shader->selector; struct si_shader *mainp = *si_get_main_shader_part(sel, &shader->key); /* LS, ES, VS are compiled on demand if the main part hasn't been * compiled for that stage. * * GS are compiled on demand if the main part hasn't been compiled * for the chosen NGG-ness. * * Vertex shaders are compiled on demand when a vertex fetch * workaround must be applied. */ if (shader->is_monolithic) { /* Monolithic shader (compiled as a whole, has many variants, * may take a long time to compile). */ if (!si_compile_shader(sscreen, compiler, shader, debug)) return false; } else { /* The shader consists of several parts: * * - the middle part is the user shader, it has 1 variant only * and it was compiled during the creation of the shader * selector * - the prolog part is inserted at the beginning * - the epilog part is inserted at the end * * The prolog and epilog have many (but simple) variants. * * Starting with gfx9, geometry and tessellation control * shaders also contain the prolog and user shader parts of * the previous shader stage. */ if (!mainp) return false; /* Copy the compiled shader data over. */ shader->is_binary_shared = true; shader->binary = mainp->binary; shader->config = mainp->config; shader->info = mainp->info; /* Select prologs and/or epilogs. */ switch (sel->stage) { case MESA_SHADER_VERTEX: if (!si_shader_select_vs_parts(sscreen, compiler, shader, debug)) return false; break; case MESA_SHADER_TESS_CTRL: if (!si_shader_select_tcs_parts(sscreen, compiler, shader, debug)) return false; break; case MESA_SHADER_TESS_EVAL: break; case MESA_SHADER_GEOMETRY: if (!si_shader_select_gs_parts(sscreen, compiler, shader, debug)) return false; /* Clone the GS copy shader for the shader variant. * We can't just copy the pointer because we change the pm4 state and * si_shader_selector::gs_copy_shader must be immutable because it's shared * by multiple contexts. */ if (!shader->key.ge.as_ngg) { assert(sel->main_shader_part == mainp); assert(sel->main_shader_part->gs_copy_shader); assert(sel->main_shader_part->gs_copy_shader->bo); assert(!sel->main_shader_part->gs_copy_shader->previous_stage_sel); assert(!sel->main_shader_part->gs_copy_shader->scratch_bo); shader->gs_copy_shader = CALLOC_STRUCT(si_shader); memcpy(shader->gs_copy_shader, sel->main_shader_part->gs_copy_shader, sizeof(*shader->gs_copy_shader)); /* Increase the reference count. */ pipe_reference(NULL, &shader->gs_copy_shader->bo->b.b.reference); /* Initialize some fields differently. */ shader->gs_copy_shader->shader_log = NULL; shader->gs_copy_shader->is_binary_shared = true; util_queue_fence_init(&shader->gs_copy_shader->ready); } break; case MESA_SHADER_FRAGMENT: if (!si_shader_select_ps_parts(sscreen, compiler, shader, debug)) return false; /* Make sure we have at least as many VGPRs as there * are allocated inputs. */ shader->config.num_vgprs = MAX2(shader->config.num_vgprs, shader->info.num_input_vgprs); break; default:; } assert(shader->wave_size == mainp->wave_size); assert(!shader->previous_stage || shader->wave_size == shader->previous_stage->wave_size); /* Update SGPR and VGPR counts. */ if (shader->prolog) { shader->config.num_sgprs = MAX2(shader->config.num_sgprs, shader->prolog->config.num_sgprs); shader->config.num_vgprs = MAX2(shader->config.num_vgprs, shader->prolog->config.num_vgprs); } if (shader->previous_stage) { shader->config.num_sgprs = MAX2(shader->config.num_sgprs, shader->previous_stage->config.num_sgprs); shader->config.num_vgprs = MAX2(shader->config.num_vgprs, shader->previous_stage->config.num_vgprs); shader->config.spilled_sgprs = MAX2(shader->config.spilled_sgprs, shader->previous_stage->config.spilled_sgprs); shader->config.spilled_vgprs = MAX2(shader->config.spilled_vgprs, shader->previous_stage->config.spilled_vgprs); shader->info.private_mem_vgprs = MAX2(shader->info.private_mem_vgprs, shader->previous_stage->info.private_mem_vgprs); shader->config.scratch_bytes_per_wave = MAX2(shader->config.scratch_bytes_per_wave, shader->previous_stage->config.scratch_bytes_per_wave); shader->info.uses_instanceid |= shader->previous_stage->info.uses_instanceid; shader->info.uses_vmem_load_other |= shader->previous_stage->info.uses_vmem_load_other; shader->info.uses_vmem_sampler_or_bvh |= shader->previous_stage->info.uses_vmem_sampler_or_bvh; } if (shader->epilog) { shader->config.num_sgprs = MAX2(shader->config.num_sgprs, shader->epilog->config.num_sgprs); shader->config.num_vgprs = MAX2(shader->config.num_vgprs, shader->epilog->config.num_vgprs); } si_calculate_max_simd_waves(shader); } if (sel->stage <= MESA_SHADER_GEOMETRY && shader->key.ge.as_ngg) { assert(!shader->key.ge.as_es && !shader->key.ge.as_ls); if (!gfx10_ngg_calculate_subgroup_info(shader)) { fprintf(stderr, "Failed to compute subgroup info\n"); return false; } } else if (sscreen->info.gfx_level >= GFX9 && sel->stage == MESA_SHADER_GEOMETRY) { gfx9_get_gs_info(shader->previous_stage_sel, sel, &shader->gs_info); } shader->uses_vs_state_provoking_vertex = sscreen->use_ngg && /* Used to convert triangle strips from GS to triangles. */ ((sel->stage == MESA_SHADER_GEOMETRY && util_rast_prim_is_triangles(sel->info.base.gs.output_primitive)) || (sel->stage == MESA_SHADER_VERTEX && /* Used to export PrimitiveID from the correct vertex. */ shader->key.ge.mono.u.vs_export_prim_id)); shader->uses_gs_state_outprim = sscreen->use_ngg && /* Only used by streamout in vertex shaders. */ sel->stage == MESA_SHADER_VERTEX && si_shader_uses_streamout(shader); if (sel->stage == MESA_SHADER_VERTEX) { shader->uses_base_instance = sel->info.uses_base_instance || shader->key.ge.part.vs.prolog.instance_divisor_is_one || shader->key.ge.part.vs.prolog.instance_divisor_is_fetched; } else if (sel->stage == MESA_SHADER_TESS_CTRL) { shader->uses_base_instance = shader->previous_stage_sel && (shader->previous_stage_sel->info.uses_base_instance || shader->key.ge.part.tcs.ls_prolog.instance_divisor_is_one || shader->key.ge.part.tcs.ls_prolog.instance_divisor_is_fetched); } else if (sel->stage == MESA_SHADER_GEOMETRY) { shader->uses_base_instance = shader->previous_stage_sel && (shader->previous_stage_sel->info.uses_base_instance || shader->key.ge.part.gs.vs_prolog.instance_divisor_is_one || shader->key.ge.part.gs.vs_prolog.instance_divisor_is_fetched); } si_fix_resource_usage(sscreen, shader); /* Upload. */ bool ok = si_shader_binary_upload(sscreen, shader, 0); si_shader_dump(sscreen, shader, debug, stderr, true); if (!ok) fprintf(stderr, "LLVM failed to upload shader\n"); return ok; } void si_shader_binary_clean(struct si_shader_binary *binary) { free((void *)binary->elf_buffer); binary->elf_buffer = NULL; free(binary->llvm_ir_string); binary->llvm_ir_string = NULL; free(binary->uploaded_code); binary->uploaded_code = NULL; binary->uploaded_code_size = 0; } void si_shader_destroy(struct si_shader *shader) { if (shader->scratch_bo) si_resource_reference(&shader->scratch_bo, NULL); si_resource_reference(&shader->bo, NULL); if (!shader->is_binary_shared) si_shader_binary_clean(&shader->binary); free(shader->shader_log); }