/* * Copyright © 2016 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #include "radv_meta.h" #include "radv_private.h" #include "sid.h" enum radv_color_op { FAST_CLEAR_ELIMINATE, FMASK_DECOMPRESS, DCC_DECOMPRESS, }; static nir_shader * build_dcc_decompress_compute_shader(struct radv_device *dev) { const struct glsl_type *img_type = glsl_image_type(GLSL_SAMPLER_DIM_2D, false, GLSL_TYPE_FLOAT); nir_builder b = nir_builder_init_simple_shader(MESA_SHADER_COMPUTE, NULL, "dcc_decompress_compute"); /* We need at least 16/16/1 to cover an entire DCC block in a single workgroup. */ b.shader->info.workgroup_size[0] = 16; b.shader->info.workgroup_size[1] = 16; b.shader->info.workgroup_size[2] = 1; nir_variable *input_img = nir_variable_create(b.shader, nir_var_image, img_type, "in_img"); input_img->data.descriptor_set = 0; input_img->data.binding = 0; nir_variable *output_img = nir_variable_create(b.shader, nir_var_image, img_type, "out_img"); output_img->data.descriptor_set = 0; output_img->data.binding = 1; nir_ssa_def *global_id = get_global_ids(&b, 2); nir_ssa_def *img_coord = nir_vec4(&b, nir_channel(&b, global_id, 0), nir_channel(&b, global_id, 1), nir_ssa_undef(&b, 1, 32), nir_ssa_undef(&b, 1, 32)); nir_ssa_def *data = nir_image_deref_load( &b, 4, 32, &nir_build_deref_var(&b, input_img)->dest.ssa, img_coord, nir_ssa_undef(&b, 1, 32), nir_imm_int(&b, 0), .image_dim = GLSL_SAMPLER_DIM_2D); /* We need a NIR_SCOPE_DEVICE memory_scope because ACO will avoid * creating a vmcnt(0) because it expects the L1 cache to keep memory * operations in-order for the same workgroup. The vmcnt(0) seems * necessary however. */ nir_scoped_barrier(&b, .execution_scope = NIR_SCOPE_WORKGROUP, .memory_scope = NIR_SCOPE_DEVICE, .memory_semantics = NIR_MEMORY_ACQ_REL, .memory_modes = nir_var_mem_ssbo); nir_image_deref_store(&b, &nir_build_deref_var(&b, output_img)->dest.ssa, img_coord, nir_ssa_undef(&b, 1, 32), data, nir_imm_int(&b, 0), .image_dim = GLSL_SAMPLER_DIM_2D); return b.shader; } static VkResult create_dcc_compress_compute(struct radv_device *device) { VkResult result = VK_SUCCESS; nir_shader *cs = build_dcc_decompress_compute_shader(device); VkDescriptorSetLayoutCreateInfo ds_create_info = { .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, .flags = VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR, .bindingCount = 2, .pBindings = (VkDescriptorSetLayoutBinding[]){ {.binding = 0, .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, .descriptorCount = 1, .stageFlags = VK_SHADER_STAGE_COMPUTE_BIT, .pImmutableSamplers = NULL}, {.binding = 1, .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, .descriptorCount = 1, .stageFlags = VK_SHADER_STAGE_COMPUTE_BIT, .pImmutableSamplers = NULL}, }}; result = radv_CreateDescriptorSetLayout( radv_device_to_handle(device), &ds_create_info, &device->meta_state.alloc, &device->meta_state.fast_clear_flush.dcc_decompress_compute_ds_layout); if (result != VK_SUCCESS) goto cleanup; VkPipelineLayoutCreateInfo pl_create_info = { .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, .setLayoutCount = 1, .pSetLayouts = &device->meta_state.fast_clear_flush.dcc_decompress_compute_ds_layout, .pushConstantRangeCount = 0, .pPushConstantRanges = NULL, }; result = radv_CreatePipelineLayout( radv_device_to_handle(device), &pl_create_info, &device->meta_state.alloc, &device->meta_state.fast_clear_flush.dcc_decompress_compute_p_layout); if (result != VK_SUCCESS) goto cleanup; /* compute shader */ VkPipelineShaderStageCreateInfo pipeline_shader_stage = { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_COMPUTE_BIT, .module = vk_shader_module_handle_from_nir(cs), .pName = "main", .pSpecializationInfo = NULL, }; VkComputePipelineCreateInfo vk_pipeline_info = { .sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO, .stage = pipeline_shader_stage, .flags = 0, .layout = device->meta_state.fast_clear_flush.dcc_decompress_compute_p_layout, }; result = radv_CreateComputePipelines( radv_device_to_handle(device), radv_pipeline_cache_to_handle(&device->meta_state.cache), 1, &vk_pipeline_info, NULL, &device->meta_state.fast_clear_flush.dcc_decompress_compute_pipeline); if (result != VK_SUCCESS) goto cleanup; cleanup: ralloc_free(cs); return result; } static VkResult create_pass(struct radv_device *device) { VkResult result; VkDevice device_h = radv_device_to_handle(device); const VkAllocationCallbacks *alloc = &device->meta_state.alloc; VkAttachmentDescription2 attachment; attachment.sType = VK_STRUCTURE_TYPE_ATTACHMENT_DESCRIPTION_2; attachment.pNext = NULL; attachment.format = VK_FORMAT_UNDEFINED; attachment.samples = 1; attachment.loadOp = VK_ATTACHMENT_LOAD_OP_LOAD; attachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE; attachment.initialLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; attachment.finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; result = radv_CreateRenderPass2( device_h, &(VkRenderPassCreateInfo2){ .sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO_2, .attachmentCount = 1, .pAttachments = &attachment, .subpassCount = 1, .pSubpasses = &(VkSubpassDescription2){ .sType = VK_STRUCTURE_TYPE_SUBPASS_DESCRIPTION_2, .pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS, .inputAttachmentCount = 0, .colorAttachmentCount = 1, .pColorAttachments = (VkAttachmentReference2[]){ { .sType = VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_2, .attachment = 0, .layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, }, }, .pResolveAttachments = NULL, .pDepthStencilAttachment = &(VkAttachmentReference2){ .sType = VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_2, .attachment = VK_ATTACHMENT_UNUSED, }, .preserveAttachmentCount = 0, .pPreserveAttachments = NULL, }, .dependencyCount = 2, .pDependencies = (VkSubpassDependency2[]){{.sType = VK_STRUCTURE_TYPE_SUBPASS_DEPENDENCY_2, .srcSubpass = VK_SUBPASS_EXTERNAL, .dstSubpass = 0, .srcStageMask = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, .dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, .srcAccessMask = 0, .dstAccessMask = 0, .dependencyFlags = 0}, {.sType = VK_STRUCTURE_TYPE_SUBPASS_DEPENDENCY_2, .srcSubpass = 0, .dstSubpass = VK_SUBPASS_EXTERNAL, .srcStageMask = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, .dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, .srcAccessMask = 0, .dstAccessMask = 0, .dependencyFlags = 0}}, }, alloc, &device->meta_state.fast_clear_flush.pass); return result; } static VkResult create_pipeline_layout(struct radv_device *device, VkPipelineLayout *layout) { VkPipelineLayoutCreateInfo pl_create_info = { .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, .setLayoutCount = 0, .pSetLayouts = NULL, .pushConstantRangeCount = 0, .pPushConstantRanges = NULL, }; return radv_CreatePipelineLayout(radv_device_to_handle(device), &pl_create_info, &device->meta_state.alloc, layout); } static VkResult create_pipeline(struct radv_device *device, VkShaderModule vs_module_h, VkPipelineLayout layout) { VkResult result; VkDevice device_h = radv_device_to_handle(device); nir_shader *fs_module = radv_meta_build_nir_fs_noop(); if (!fs_module) { /* XXX: Need more accurate error */ result = VK_ERROR_OUT_OF_HOST_MEMORY; goto cleanup; } const VkPipelineShaderStageCreateInfo stages[2] = { { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_VERTEX_BIT, .module = vs_module_h, .pName = "main", }, { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_FRAGMENT_BIT, .module = vk_shader_module_handle_from_nir(fs_module), .pName = "main", }, }; const VkPipelineVertexInputStateCreateInfo vi_state = { .sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO, .vertexBindingDescriptionCount = 0, .vertexAttributeDescriptionCount = 0, }; const VkPipelineInputAssemblyStateCreateInfo ia_state = { .sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO, .topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP, .primitiveRestartEnable = false, }; const VkPipelineColorBlendStateCreateInfo blend_state = { .sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO, .logicOpEnable = false, .attachmentCount = 1, .pAttachments = (VkPipelineColorBlendAttachmentState[]){ { .colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT, }, }}; const VkPipelineRasterizationStateCreateInfo rs_state = { .sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO, .depthClampEnable = false, .rasterizerDiscardEnable = false, .polygonMode = VK_POLYGON_MODE_FILL, .cullMode = VK_CULL_MODE_NONE, .frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE, }; result = radv_graphics_pipeline_create( device_h, radv_pipeline_cache_to_handle(&device->meta_state.cache), &(VkGraphicsPipelineCreateInfo){ .sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO, .stageCount = 2, .pStages = stages, .pVertexInputState = &vi_state, .pInputAssemblyState = &ia_state, .pViewportState = &(VkPipelineViewportStateCreateInfo){ .sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO, .viewportCount = 1, .scissorCount = 1, }, .pRasterizationState = &rs_state, .pMultisampleState = &(VkPipelineMultisampleStateCreateInfo){ .sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO, .rasterizationSamples = 1, .sampleShadingEnable = false, .pSampleMask = NULL, .alphaToCoverageEnable = false, .alphaToOneEnable = false, }, .pColorBlendState = &blend_state, .pDynamicState = &(VkPipelineDynamicStateCreateInfo){ .sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO, .dynamicStateCount = 2, .pDynamicStates = (VkDynamicState[]){ VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR, }, }, .layout = layout, .renderPass = device->meta_state.fast_clear_flush.pass, .subpass = 0, }, &(struct radv_graphics_pipeline_create_info){ .use_rectlist = true, .custom_blend_mode = V_028808_CB_ELIMINATE_FAST_CLEAR, }, &device->meta_state.alloc, &device->meta_state.fast_clear_flush.cmask_eliminate_pipeline); if (result != VK_SUCCESS) goto cleanup; result = radv_graphics_pipeline_create( device_h, radv_pipeline_cache_to_handle(&device->meta_state.cache), &(VkGraphicsPipelineCreateInfo){ .sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO, .stageCount = 2, .pStages = stages, .pVertexInputState = &vi_state, .pInputAssemblyState = &ia_state, .pViewportState = &(VkPipelineViewportStateCreateInfo){ .sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO, .viewportCount = 1, .scissorCount = 1, }, .pRasterizationState = &rs_state, .pMultisampleState = &(VkPipelineMultisampleStateCreateInfo){ .sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO, .rasterizationSamples = 1, .sampleShadingEnable = false, .pSampleMask = NULL, .alphaToCoverageEnable = false, .alphaToOneEnable = false, }, .pColorBlendState = &blend_state, .pDynamicState = &(VkPipelineDynamicStateCreateInfo){ .sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO, .dynamicStateCount = 2, .pDynamicStates = (VkDynamicState[]){ VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR, }, }, .layout = layout, .renderPass = device->meta_state.fast_clear_flush.pass, .subpass = 0, }, &(struct radv_graphics_pipeline_create_info){ .use_rectlist = true, .custom_blend_mode = V_028808_CB_FMASK_DECOMPRESS, }, &device->meta_state.alloc, &device->meta_state.fast_clear_flush.fmask_decompress_pipeline); if (result != VK_SUCCESS) goto cleanup; result = radv_graphics_pipeline_create( device_h, radv_pipeline_cache_to_handle(&device->meta_state.cache), &(VkGraphicsPipelineCreateInfo){ .sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO, .stageCount = 2, .pStages = stages, .pVertexInputState = &vi_state, .pInputAssemblyState = &ia_state, .pViewportState = &(VkPipelineViewportStateCreateInfo){ .sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO, .viewportCount = 1, .scissorCount = 1, }, .pRasterizationState = &rs_state, .pMultisampleState = &(VkPipelineMultisampleStateCreateInfo){ .sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO, .rasterizationSamples = 1, .sampleShadingEnable = false, .pSampleMask = NULL, .alphaToCoverageEnable = false, .alphaToOneEnable = false, }, .pColorBlendState = &blend_state, .pDynamicState = &(VkPipelineDynamicStateCreateInfo){ .sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO, .dynamicStateCount = 2, .pDynamicStates = (VkDynamicState[]){ VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR, }, }, .layout = layout, .renderPass = device->meta_state.fast_clear_flush.pass, .subpass = 0, }, &(struct radv_graphics_pipeline_create_info){ .use_rectlist = true, .custom_blend_mode = V_028808_CB_DCC_DECOMPRESS, }, &device->meta_state.alloc, &device->meta_state.fast_clear_flush.dcc_decompress_pipeline); if (result != VK_SUCCESS) goto cleanup; goto cleanup; cleanup: ralloc_free(fs_module); return result; } void radv_device_finish_meta_fast_clear_flush_state(struct radv_device *device) { struct radv_meta_state *state = &device->meta_state; radv_DestroyPipeline(radv_device_to_handle(device), state->fast_clear_flush.dcc_decompress_pipeline, &state->alloc); radv_DestroyPipeline(radv_device_to_handle(device), state->fast_clear_flush.fmask_decompress_pipeline, &state->alloc); radv_DestroyPipeline(radv_device_to_handle(device), state->fast_clear_flush.cmask_eliminate_pipeline, &state->alloc); radv_DestroyRenderPass(radv_device_to_handle(device), state->fast_clear_flush.pass, &state->alloc); radv_DestroyPipelineLayout(radv_device_to_handle(device), state->fast_clear_flush.p_layout, &state->alloc); radv_DestroyPipeline(radv_device_to_handle(device), state->fast_clear_flush.dcc_decompress_compute_pipeline, &state->alloc); radv_DestroyPipelineLayout(radv_device_to_handle(device), state->fast_clear_flush.dcc_decompress_compute_p_layout, &state->alloc); radv_DestroyDescriptorSetLayout(radv_device_to_handle(device), state->fast_clear_flush.dcc_decompress_compute_ds_layout, &state->alloc); } static VkResult radv_device_init_meta_fast_clear_flush_state_internal(struct radv_device *device) { VkResult res = VK_SUCCESS; mtx_lock(&device->meta_state.mtx); if (device->meta_state.fast_clear_flush.cmask_eliminate_pipeline) { mtx_unlock(&device->meta_state.mtx); return VK_SUCCESS; } nir_shader *vs_module = radv_meta_build_nir_vs_generate_vertices(); if (!vs_module) { /* XXX: Need more accurate error */ res = VK_ERROR_OUT_OF_HOST_MEMORY; goto fail; } res = create_pass(device); if (res != VK_SUCCESS) goto fail; res = create_pipeline_layout(device, &device->meta_state.fast_clear_flush.p_layout); if (res != VK_SUCCESS) goto fail; VkShaderModule vs_module_h = vk_shader_module_handle_from_nir(vs_module); res = create_pipeline(device, vs_module_h, device->meta_state.fast_clear_flush.p_layout); if (res != VK_SUCCESS) goto fail; res = create_dcc_compress_compute(device); if (res != VK_SUCCESS) goto fail; goto cleanup; fail: radv_device_finish_meta_fast_clear_flush_state(device); cleanup: ralloc_free(vs_module); mtx_unlock(&device->meta_state.mtx); return res; } VkResult radv_device_init_meta_fast_clear_flush_state(struct radv_device *device, bool on_demand) { if (on_demand) return VK_SUCCESS; return radv_device_init_meta_fast_clear_flush_state_internal(device); } static void radv_emit_set_predication_state_from_image(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, uint64_t pred_offset, bool value) { uint64_t va = 0; if (value) { va = radv_buffer_get_va(image->bo) + image->offset; va += pred_offset; } si_emit_set_predication_state(cmd_buffer, true, PREDICATION_OP_BOOL64, va); } static void radv_process_color_image_layer(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, const VkImageSubresourceRange *range, int level, int layer, bool flush_cb) { struct radv_device *device = cmd_buffer->device; struct radv_image_view iview; uint32_t width, height; width = radv_minify(image->info.width, range->baseMipLevel + level); height = radv_minify(image->info.height, range->baseMipLevel + level); radv_image_view_init(&iview, device, &(VkImageViewCreateInfo){ .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .image = radv_image_to_handle(image), .viewType = radv_meta_get_view_type(image), .format = image->vk_format, .subresourceRange = { .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .baseMipLevel = range->baseMipLevel + level, .levelCount = 1, .baseArrayLayer = range->baseArrayLayer + layer, .layerCount = 1, }, }, NULL); VkFramebuffer fb_h; radv_CreateFramebuffer( radv_device_to_handle(device), &(VkFramebufferCreateInfo){.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO, .attachmentCount = 1, .pAttachments = (VkImageView[]){radv_image_view_to_handle(&iview)}, .width = width, .height = height, .layers = 1}, &cmd_buffer->pool->alloc, &fb_h); radv_cmd_buffer_begin_render_pass(cmd_buffer, &(VkRenderPassBeginInfo){ .sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO, .renderPass = device->meta_state.fast_clear_flush.pass, .framebuffer = fb_h, .renderArea = {.offset = { 0, 0, }, .extent = { width, height, }}, .clearValueCount = 0, .pClearValues = NULL, }, NULL); radv_cmd_buffer_set_subpass(cmd_buffer, &cmd_buffer->state.pass->subpasses[0]); if (flush_cb) cmd_buffer->state.flush_bits |= radv_dst_access_flush(cmd_buffer, VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, image); radv_CmdDraw(radv_cmd_buffer_to_handle(cmd_buffer), 3, 1, 0, 0); if (flush_cb) cmd_buffer->state.flush_bits |= radv_src_access_flush(cmd_buffer, VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, image); radv_cmd_buffer_end_render_pass(cmd_buffer); radv_image_view_finish(&iview); radv_DestroyFramebuffer(radv_device_to_handle(device), fb_h, &cmd_buffer->pool->alloc); } static void radv_process_color_image(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, const VkImageSubresourceRange *subresourceRange, enum radv_color_op op) { struct radv_device *device = cmd_buffer->device; struct radv_meta_saved_state saved_state; bool old_predicating = false; bool flush_cb = false; uint64_t pred_offset; VkPipeline *pipeline; switch (op) { case FAST_CLEAR_ELIMINATE: pipeline = &device->meta_state.fast_clear_flush.cmask_eliminate_pipeline; pred_offset = image->fce_pred_offset; break; case FMASK_DECOMPRESS: pipeline = &device->meta_state.fast_clear_flush.fmask_decompress_pipeline; pred_offset = 0; /* FMASK_DECOMPRESS is never predicated. */ /* Flushing CB is required before and after FMASK_DECOMPRESS. */ flush_cb = true; break; case DCC_DECOMPRESS: pipeline = &device->meta_state.fast_clear_flush.dcc_decompress_pipeline; pred_offset = image->dcc_pred_offset; /* Flushing CB is required before and after DCC_DECOMPRESS. */ flush_cb = true; break; default: unreachable("Invalid color op"); } if (radv_dcc_enabled(image, subresourceRange->baseMipLevel) && (image->info.array_size != radv_get_layerCount(image, subresourceRange) || subresourceRange->baseArrayLayer != 0)) { /* Only use predication if the image has DCC with mipmaps or * if the range of layers covers the whole image because the * predication is based on mip level. */ pred_offset = 0; } if (!*pipeline) { VkResult ret; ret = radv_device_init_meta_fast_clear_flush_state_internal(device); if (ret != VK_SUCCESS) { cmd_buffer->record_result = ret; return; } } radv_meta_save(&saved_state, cmd_buffer, RADV_META_SAVE_GRAPHICS_PIPELINE | RADV_META_SAVE_PASS); if (pred_offset) { pred_offset += 8 * subresourceRange->baseMipLevel; old_predicating = cmd_buffer->state.predicating; radv_emit_set_predication_state_from_image(cmd_buffer, image, pred_offset, true); cmd_buffer->state.predicating = true; } radv_CmdBindPipeline(radv_cmd_buffer_to_handle(cmd_buffer), VK_PIPELINE_BIND_POINT_GRAPHICS, *pipeline); for (uint32_t l = 0; l < radv_get_levelCount(image, subresourceRange); ++l) { uint32_t width, height; /* Do not decompress levels without DCC. */ if (op == DCC_DECOMPRESS && !radv_dcc_enabled(image, subresourceRange->baseMipLevel + l)) continue; width = radv_minify(image->info.width, subresourceRange->baseMipLevel + l); height = radv_minify(image->info.height, subresourceRange->baseMipLevel + l); radv_CmdSetViewport(radv_cmd_buffer_to_handle(cmd_buffer), 0, 1, &(VkViewport){.x = 0, .y = 0, .width = width, .height = height, .minDepth = 0.0f, .maxDepth = 1.0f}); radv_CmdSetScissor(radv_cmd_buffer_to_handle(cmd_buffer), 0, 1, &(VkRect2D){ .offset = {0, 0}, .extent = {width, height}, }); for (uint32_t s = 0; s < radv_get_layerCount(image, subresourceRange); s++) { radv_process_color_image_layer(cmd_buffer, image, subresourceRange, l, s, flush_cb); } } cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_CB_META; if (pred_offset) { pred_offset += 8 * subresourceRange->baseMipLevel; cmd_buffer->state.predicating = old_predicating; radv_emit_set_predication_state_from_image(cmd_buffer, image, pred_offset, false); if (cmd_buffer->state.predication_type != -1) { /* Restore previous conditional rendering user state. */ si_emit_set_predication_state(cmd_buffer, cmd_buffer->state.predication_type, cmd_buffer->state.predication_op, cmd_buffer->state.predication_va); } } radv_meta_restore(&saved_state, cmd_buffer); /* Clear the image's fast-clear eliminate predicate because FMASK_DECOMPRESS and DCC_DECOMPRESS * also perform a fast-clear eliminate. */ radv_update_fce_metadata(cmd_buffer, image, subresourceRange, false); /* Mark the image as being decompressed. */ if (op == DCC_DECOMPRESS) radv_update_dcc_metadata(cmd_buffer, image, subresourceRange, false); } static void radv_fast_clear_eliminate(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, const VkImageSubresourceRange *subresourceRange) { struct radv_barrier_data barrier = {0}; barrier.layout_transitions.fast_clear_eliminate = 1; radv_describe_layout_transition(cmd_buffer, &barrier); radv_process_color_image(cmd_buffer, image, subresourceRange, FAST_CLEAR_ELIMINATE); } static void radv_fmask_decompress(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, const VkImageSubresourceRange *subresourceRange) { struct radv_barrier_data barrier = {0}; barrier.layout_transitions.fmask_decompress = 1; radv_describe_layout_transition(cmd_buffer, &barrier); radv_process_color_image(cmd_buffer, image, subresourceRange, FMASK_DECOMPRESS); } void radv_fast_clear_flush_image_inplace(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, const VkImageSubresourceRange *subresourceRange) { if (radv_image_has_fmask(image) && !image->tc_compatible_cmask) { if (radv_image_has_dcc(image) && radv_image_has_cmask(image)) { /* MSAA images with DCC and CMASK might have been fast-cleared and might require a FCE but * FMASK_DECOMPRESS can't eliminate DCC fast clears. */ radv_fast_clear_eliminate(cmd_buffer, image, subresourceRange); } radv_fmask_decompress(cmd_buffer, image, subresourceRange); } else { /* Skip fast clear eliminate for images that support comp-to-single fast clears. */ if (image->support_comp_to_single) return; radv_fast_clear_eliminate(cmd_buffer, image, subresourceRange); } } static void radv_decompress_dcc_compute(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, const VkImageSubresourceRange *subresourceRange) { struct radv_meta_saved_state saved_state; struct radv_image_view load_iview = {0}; struct radv_image_view store_iview = {0}; struct radv_device *device = cmd_buffer->device; cmd_buffer->state.flush_bits |= radv_dst_access_flush(cmd_buffer, VK_ACCESS_SHADER_WRITE_BIT, image); if (!cmd_buffer->device->meta_state.fast_clear_flush.cmask_eliminate_pipeline) { VkResult ret = radv_device_init_meta_fast_clear_flush_state_internal(cmd_buffer->device); if (ret != VK_SUCCESS) { cmd_buffer->record_result = ret; return; } } radv_meta_save(&saved_state, cmd_buffer, RADV_META_SAVE_DESCRIPTORS | RADV_META_SAVE_COMPUTE_PIPELINE); radv_CmdBindPipeline(radv_cmd_buffer_to_handle(cmd_buffer), VK_PIPELINE_BIND_POINT_COMPUTE, device->meta_state.fast_clear_flush.dcc_decompress_compute_pipeline); for (uint32_t l = 0; l < radv_get_levelCount(image, subresourceRange); l++) { uint32_t width, height; /* Do not decompress levels without DCC. */ if (!radv_dcc_enabled(image, subresourceRange->baseMipLevel + l)) continue; width = radv_minify(image->info.width, subresourceRange->baseMipLevel + l); height = radv_minify(image->info.height, subresourceRange->baseMipLevel + l); for (uint32_t s = 0; s < radv_get_layerCount(image, subresourceRange); s++) { radv_image_view_init( &load_iview, cmd_buffer->device, &(VkImageViewCreateInfo){ .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .image = radv_image_to_handle(image), .viewType = VK_IMAGE_VIEW_TYPE_2D, .format = image->vk_format, .subresourceRange = {.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .baseMipLevel = subresourceRange->baseMipLevel + l, .levelCount = 1, .baseArrayLayer = subresourceRange->baseArrayLayer + s, .layerCount = 1}, }, &(struct radv_image_view_extra_create_info){.enable_compression = true}); radv_image_view_init( &store_iview, cmd_buffer->device, &(VkImageViewCreateInfo){ .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .image = radv_image_to_handle(image), .viewType = VK_IMAGE_VIEW_TYPE_2D, .format = image->vk_format, .subresourceRange = {.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .baseMipLevel = subresourceRange->baseMipLevel + l, .levelCount = 1, .baseArrayLayer = subresourceRange->baseArrayLayer + s, .layerCount = 1}, }, &(struct radv_image_view_extra_create_info){.disable_compression = true}); radv_meta_push_descriptor_set( cmd_buffer, VK_PIPELINE_BIND_POINT_COMPUTE, device->meta_state.fast_clear_flush.dcc_decompress_compute_p_layout, 0, /* set */ 2, /* descriptorWriteCount */ (VkWriteDescriptorSet[]){{.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, .dstBinding = 0, .dstArrayElement = 0, .descriptorCount = 1, .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, .pImageInfo = (VkDescriptorImageInfo[]){ { .sampler = VK_NULL_HANDLE, .imageView = radv_image_view_to_handle(&load_iview), .imageLayout = VK_IMAGE_LAYOUT_GENERAL, }, }}, {.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, .dstBinding = 1, .dstArrayElement = 0, .descriptorCount = 1, .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, .pImageInfo = (VkDescriptorImageInfo[]){ { .sampler = VK_NULL_HANDLE, .imageView = radv_image_view_to_handle(&store_iview), .imageLayout = VK_IMAGE_LAYOUT_GENERAL, }, }}}); radv_unaligned_dispatch(cmd_buffer, width, height, 1); radv_image_view_finish(&load_iview); radv_image_view_finish(&store_iview); } } /* Mark this image as actually being decompressed. */ radv_update_dcc_metadata(cmd_buffer, image, subresourceRange, false); radv_meta_restore(&saved_state, cmd_buffer); cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_CS_PARTIAL_FLUSH | RADV_CMD_FLAG_INV_VCACHE | radv_src_access_flush(cmd_buffer, VK_ACCESS_SHADER_WRITE_BIT, image); /* Initialize the DCC metadata as "fully expanded". */ cmd_buffer->state.flush_bits |= radv_init_dcc(cmd_buffer, image, subresourceRange, 0xffffffff); } void radv_decompress_dcc(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, const VkImageSubresourceRange *subresourceRange) { struct radv_barrier_data barrier = {0}; barrier.layout_transitions.dcc_decompress = 1; radv_describe_layout_transition(cmd_buffer, &barrier); if (cmd_buffer->queue_family_index == RADV_QUEUE_GENERAL) radv_process_color_image(cmd_buffer, image, subresourceRange, DCC_DECOMPRESS); else radv_decompress_dcc_compute(cmd_buffer, image, subresourceRange); }