/* * Copyright © 2019 Broadcom * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "util/set.h" #include "util/dag.h" static void append_edge(struct dag_node *parent, struct dag_node *child, uintptr_t data) { /* Remove the child as a DAG head. */ list_delinit(&child->link); struct dag_edge edge = { .child = child, .data = data, }; util_dynarray_append(&parent->edges, struct dag_edge, edge); child->parent_count++; } /** * Adds a directed edge from the parent node to the child. * * Both nodes should have been initialized with dag_init_node(). The edge * list may contain multiple edges to the same child with different data. */ void dag_add_edge(struct dag_node *parent, struct dag_node *child, uintptr_t data) { util_dynarray_foreach(&parent->edges, struct dag_edge, edge) { if (edge->child == child && edge->data == data) return; } append_edge(parent, child, data); } /** * Adds a directed edge from the parent node to the child. * * Both nodes should have been initialized with dag_init_node(). If there is * already an existing edge, the data is updated to the maximum of the * previous data and the new data. This is useful if the data represents a * delay. */ void dag_add_edge_max_data(struct dag_node *parent, struct dag_node *child, uintptr_t data) { util_dynarray_foreach(&parent->edges, struct dag_edge, edge) { if (edge->child == child) { edge->data = MAX2(edge->data, data); return; } } append_edge(parent, child, data); } /* Removes a single edge from the graph, promoting the child to a DAG head. * * Note that calling this other than through dag_prune_head() means that you * need to be careful when iterating the edges of remaining nodes for NULL * children. */ void dag_remove_edge(struct dag *dag, struct dag_edge *edge) { if (!edge->child) return; struct dag_node *child = edge->child; child->parent_count--; if (child->parent_count == 0) list_addtail(&child->link, &dag->heads); edge->child = NULL; edge->data = 0; } /** * Removes a DAG head from the graph, and moves any new dag heads into the * heads list. */ void dag_prune_head(struct dag *dag, struct dag_node *node) { assert(!node->parent_count); list_delinit(&node->link); util_dynarray_foreach(&node->edges, struct dag_edge, edge) { dag_remove_edge(dag, edge); } } /** * Initializes DAG node (probably embedded in some other datastructure in the * user). */ void dag_init_node(struct dag *dag, struct dag_node *node) { util_dynarray_init(&node->edges, dag); list_addtail(&node->link, &dag->heads); } struct dag_traverse_bottom_up_state { struct set *seen; void *data; }; static void dag_traverse_bottom_up_node(struct dag_node *node, void (*cb)(struct dag_node *node, void *data), struct dag_traverse_bottom_up_state *state) { if (_mesa_set_search(state->seen, node)) return; struct util_dynarray stack; util_dynarray_init(&stack, NULL); do { assert(node); while (node->edges.size != 0) { util_dynarray_append(&stack, struct dag_node *, node); /* Push unprocessed children onto stack in reverse order. Note that * it's possible for any of the children nodes to already be on the * stack. */ util_dynarray_foreach_reverse(&node->edges, struct dag_edge, edge) { if (!_mesa_set_search(state->seen, edge->child)) { util_dynarray_append(&stack, struct dag_node *, edge->child); } } /* Get last element pushed: either left-most child or current node. * If it's the current node, that means that we've processed all its * children already. */ struct dag_node *top = util_dynarray_pop(&stack, struct dag_node *); if (top == node) break; node = top; } /* Process the node */ cb(node, state->data); _mesa_set_add(state->seen, node); /* Find the next unprocessed node in the stack */ do { node = NULL; if (stack.size == 0) break; node = util_dynarray_pop(&stack, struct dag_node *); } while (_mesa_set_search(state->seen, node)); } while (node); util_dynarray_fini(&stack); } /** * Walks the DAG from leaves to the root, ensuring that each node is only seen * once its children have been, and each node is only traversed once. */ void dag_traverse_bottom_up(struct dag *dag, void (*cb)(struct dag_node *node, void *data), void *data) { struct dag_traverse_bottom_up_state state = { .seen = _mesa_pointer_set_create(NULL), .data = data, }; list_for_each_entry(struct dag_node, node, &dag->heads, link) { dag_traverse_bottom_up_node(node, cb, &state); } ralloc_free(state.seen); } /** * Creates an empty DAG datastructure. */ struct dag * dag_create(void *mem_ctx) { struct dag *dag = rzalloc(mem_ctx, struct dag); list_inithead(&dag->heads); return dag; }