/* * Copyright 2018 Advanced Micro Devices, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * on the rights to use, copy, modify, merge, publish, distribute, sub * license, and/or sell copies of the Software, and to permit persons to whom * the Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. */ #define AC_SURFACE_INCLUDE_NIR #include "ac_surface.h" #include "si_pipe.h" static void *create_shader_state(struct si_context *sctx, nir_shader *nir) { sctx->b.screen->finalize_nir(sctx->b.screen, (void*)nir); struct pipe_shader_state state = {0}; state.type = PIPE_SHADER_IR_NIR; state.ir.nir = nir; switch (nir->info.stage) { case MESA_SHADER_VERTEX: return sctx->b.create_vs_state(&sctx->b, &state); case MESA_SHADER_TESS_CTRL: return sctx->b.create_tcs_state(&sctx->b, &state); case MESA_SHADER_TESS_EVAL: return sctx->b.create_tes_state(&sctx->b, &state); case MESA_SHADER_FRAGMENT: return sctx->b.create_fs_state(&sctx->b, &state); case MESA_SHADER_COMPUTE: { struct pipe_compute_state cs_state = {0}; cs_state.ir_type = PIPE_SHADER_IR_NIR; cs_state.prog = nir; return sctx->b.create_compute_state(&sctx->b, &cs_state); } default: unreachable("invalid shader stage"); return NULL; } } static nir_ssa_def *get_global_ids(nir_builder *b, unsigned num_components) { unsigned mask = BITFIELD_MASK(num_components); nir_ssa_def *local_ids = nir_channels(b, nir_load_local_invocation_id(b), mask); nir_ssa_def *block_ids = nir_channels(b, nir_load_workgroup_id(b, 32), mask); nir_ssa_def *block_size = nir_channels(b, nir_load_workgroup_size(b), mask); return nir_iadd(b, nir_imul(b, block_ids, block_size), local_ids); } static void unpack_2x16(nir_builder *b, nir_ssa_def *src, nir_ssa_def **x, nir_ssa_def **y) { *x = nir_iand(b, src, nir_imm_int(b, 0xffff)); *y = nir_ushr(b, src, nir_imm_int(b, 16)); } static nir_ssa_def * deref_ssa(nir_builder *b, nir_variable *var) { return &nir_build_deref_var(b, var)->dest.ssa; } /* Create a NIR compute shader implementing copy_image. * * This shader can handle 1D and 2D, linear and non-linear images. * It expects the source and destination (x,y,z) coords as user_data_amd, * packed into 3 SGPRs as 2x16bits per component. */ void *si_create_copy_image_cs(struct si_context *sctx, bool src_is_1d_array, bool dst_is_1d_array) { const nir_shader_compiler_options *options = sctx->b.screen->get_compiler_options(sctx->b.screen, PIPE_SHADER_IR_NIR, PIPE_SHADER_COMPUTE); nir_builder b = nir_builder_init_simple_shader(MESA_SHADER_COMPUTE, options, "copy_image_cs"); b.shader->info.num_images = 2; /* The workgroup size is either 8x8 for normal (non-linear) 2D images, * or 64x1 for 1D and linear-2D images. */ b.shader->info.workgroup_size_variable = true; b.shader->info.cs.user_data_components_amd = 3; nir_ssa_def *ids = get_global_ids(&b, 3); nir_ssa_def *coord_src = NULL, *coord_dst = NULL; unpack_2x16(&b, nir_load_user_data_amd(&b), &coord_src, &coord_dst); coord_src = nir_iadd(&b, coord_src, ids); coord_dst = nir_iadd(&b, coord_dst, ids); static unsigned swizzle_xz[] = {0, 2, 0, 0}; if (src_is_1d_array) coord_src = nir_swizzle(&b, coord_src, swizzle_xz, 4); if (dst_is_1d_array) coord_dst = nir_swizzle(&b, coord_dst, swizzle_xz, 4); const struct glsl_type *src_img_type = glsl_image_type(src_is_1d_array ? GLSL_SAMPLER_DIM_1D : GLSL_SAMPLER_DIM_2D, /*is_array*/ true, GLSL_TYPE_FLOAT); const struct glsl_type *dst_img_type = glsl_image_type(dst_is_1d_array ? GLSL_SAMPLER_DIM_1D : GLSL_SAMPLER_DIM_2D, /*is_array*/ true, GLSL_TYPE_FLOAT); nir_variable *img_src = nir_variable_create(b.shader, nir_var_image, src_img_type, "img_src"); img_src->data.binding = 0; nir_variable *img_dst = nir_variable_create(b.shader, nir_var_image, dst_img_type, "img_dst"); img_dst->data.binding = 1; nir_ssa_def *undef32 = nir_ssa_undef(&b, 1, 32); nir_ssa_def *zero = nir_imm_int(&b, 0); nir_ssa_def *data = nir_image_deref_load(&b, /*num_components*/ 4, /*bit_size*/ 32, deref_ssa(&b, img_src), coord_src, undef32, zero); nir_image_deref_store(&b, deref_ssa(&b, img_dst), coord_dst, undef32, data, zero); return create_shader_state(sctx, b.shader); } void *si_create_dcc_retile_cs(struct si_context *sctx, struct radeon_surf *surf) { const nir_shader_compiler_options *options = sctx->b.screen->get_compiler_options(sctx->b.screen, PIPE_SHADER_IR_NIR, PIPE_SHADER_COMPUTE); nir_builder b = nir_builder_init_simple_shader(MESA_SHADER_COMPUTE, options, "dcc_retile"); b.shader->info.workgroup_size[0] = 8; b.shader->info.workgroup_size[1] = 8; b.shader->info.workgroup_size[2] = 1; b.shader->info.cs.user_data_components_amd = 3; b.shader->info.num_ssbos = 1; /* Get user data SGPRs. */ nir_ssa_def *user_sgprs = nir_load_user_data_amd(&b); /* Relative offset from the displayable DCC to the non-displayable DCC in the same buffer. */ nir_ssa_def *src_dcc_offset = nir_channel(&b, user_sgprs, 0); nir_ssa_def *src_dcc_pitch, *dst_dcc_pitch, *src_dcc_height, *dst_dcc_height; unpack_2x16(&b, nir_channel(&b, user_sgprs, 1), &src_dcc_pitch, &src_dcc_height); unpack_2x16(&b, nir_channel(&b, user_sgprs, 2), &dst_dcc_pitch, &dst_dcc_height); /* Get the 2D coordinates. */ nir_ssa_def *coord = get_global_ids(&b, 2); nir_ssa_def *zero = nir_imm_int(&b, 0); /* Multiply the coordinates by the DCC block size (they are DCC block coordinates). */ coord = nir_imul(&b, coord, nir_imm_ivec2(&b, surf->u.gfx9.color.dcc_block_width, surf->u.gfx9.color.dcc_block_height)); nir_ssa_def *src_offset = ac_nir_dcc_addr_from_coord(&b, &sctx->screen->info, surf->bpe, &surf->u.gfx9.color.dcc_equation, src_dcc_pitch, src_dcc_height, zero, /* DCC slice size */ nir_channel(&b, coord, 0), nir_channel(&b, coord, 1), /* x, y */ zero, zero, zero); /* z, sample, pipe_xor */ src_offset = nir_iadd(&b, src_offset, src_dcc_offset); nir_ssa_def *value = nir_load_ssbo(&b, 1, 8, zero, src_offset, .align_mul=1); nir_ssa_def *dst_offset = ac_nir_dcc_addr_from_coord(&b, &sctx->screen->info, surf->bpe, &surf->u.gfx9.color.display_dcc_equation, dst_dcc_pitch, dst_dcc_height, zero, /* DCC slice size */ nir_channel(&b, coord, 0), nir_channel(&b, coord, 1), /* x, y */ zero, zero, zero); /* z, sample, pipe_xor */ nir_store_ssbo(&b, value, zero, dst_offset, .write_mask=0x1, .align_mul=1); return create_shader_state(sctx, b.shader); } void *gfx9_create_clear_dcc_msaa_cs(struct si_context *sctx, struct si_texture *tex) { const nir_shader_compiler_options *options = sctx->b.screen->get_compiler_options(sctx->b.screen, PIPE_SHADER_IR_NIR, PIPE_SHADER_COMPUTE); nir_builder b = nir_builder_init_simple_shader(MESA_SHADER_COMPUTE, options, "clear_dcc_msaa"); b.shader->info.workgroup_size[0] = 8; b.shader->info.workgroup_size[1] = 8; b.shader->info.workgroup_size[2] = 1; b.shader->info.cs.user_data_components_amd = 2; b.shader->info.num_ssbos = 1; /* Get user data SGPRs. */ nir_ssa_def *user_sgprs = nir_load_user_data_amd(&b); nir_ssa_def *dcc_pitch, *dcc_height, *clear_value, *pipe_xor; unpack_2x16(&b, nir_channel(&b, user_sgprs, 0), &dcc_pitch, &dcc_height); unpack_2x16(&b, nir_channel(&b, user_sgprs, 1), &clear_value, &pipe_xor); clear_value = nir_u2u16(&b, clear_value); /* Get the 2D coordinates. */ nir_ssa_def *coord = get_global_ids(&b, 3); nir_ssa_def *zero = nir_imm_int(&b, 0); /* Multiply the coordinates by the DCC block size (they are DCC block coordinates). */ coord = nir_imul(&b, coord, nir_channels(&b, nir_imm_ivec4(&b, tex->surface.u.gfx9.color.dcc_block_width, tex->surface.u.gfx9.color.dcc_block_height, tex->surface.u.gfx9.color.dcc_block_depth, 0), 0x7)); nir_ssa_def *offset = ac_nir_dcc_addr_from_coord(&b, &sctx->screen->info, tex->surface.bpe, &tex->surface.u.gfx9.color.dcc_equation, dcc_pitch, dcc_height, zero, /* DCC slice size */ nir_channel(&b, coord, 0), nir_channel(&b, coord, 1), /* x, y */ tex->buffer.b.b.array_size > 1 ? nir_channel(&b, coord, 2) : zero, /* z */ zero, pipe_xor); /* sample, pipe_xor */ /* The trick here is that DCC elements for an even and the next odd sample are next to each other * in memory, so we only need to compute the address for sample 0 and the next DCC byte is always * sample 1. That's why the clear value has 2 bytes - we're clearing 2 samples at the same time. */ nir_store_ssbo(&b, clear_value, zero, offset, .write_mask=0x1, .align_mul=2); return create_shader_state(sctx, b.shader); } /* Create a compute shader implementing clear_buffer or copy_buffer. */ void *si_create_clear_buffer_rmw_cs(struct si_context *sctx) { const nir_shader_compiler_options *options = sctx->b.screen->get_compiler_options(sctx->b.screen, PIPE_SHADER_IR_NIR, PIPE_SHADER_COMPUTE); nir_builder b = nir_builder_init_simple_shader(MESA_SHADER_COMPUTE, options, "clear_buffer_rmw_cs"); b.shader->info.workgroup_size[0] = 64; b.shader->info.workgroup_size[1] = 1; b.shader->info.workgroup_size[2] = 1; b.shader->info.cs.user_data_components_amd = 2; b.shader->info.num_ssbos = 1; /* address = blockID * 64 + threadID; */ nir_ssa_def *address = get_global_ids(&b, 1); /* address = address * 16; (byte offset, loading one vec4 per thread) */ address = nir_ishl(&b, address, nir_imm_int(&b, 4)); nir_ssa_def *zero = nir_imm_int(&b, 0); nir_ssa_def *data = nir_load_ssbo(&b, 4, 32, zero, address, .align_mul = 4); /* Get user data SGPRs. */ nir_ssa_def *user_sgprs = nir_load_user_data_amd(&b); /* data &= inverted_writemask; */ data = nir_iand(&b, data, nir_channel(&b, user_sgprs, 1)); /* data |= clear_value_masked; */ data = nir_ior(&b, data, nir_channel(&b, user_sgprs, 0)); nir_store_ssbo(&b, data, zero, address, .access = SI_COMPUTE_DST_CACHE_POLICY != L2_LRU ? ACCESS_STREAM_CACHE_POLICY : 0, .align_mul = 4); return create_shader_state(sctx, b.shader); } /* This is used when TCS is NULL in the VS->TCS->TES chain. In this case, * VS passes its outputs to TES directly, so the fixed-function shader only * has to write TESSOUTER and TESSINNER. */ void *si_create_passthrough_tcs(struct si_context *sctx) { const nir_shader_compiler_options *options = sctx->b.screen->get_compiler_options(sctx->b.screen, PIPE_SHADER_IR_NIR, PIPE_SHADER_TESS_CTRL); nir_builder b = nir_builder_init_simple_shader(MESA_SHADER_TESS_CTRL, options, "tcs passthrough"); unsigned num_inputs = 0; unsigned num_outputs = 0; nir_variable *in_inner = nir_variable_create(b.shader, nir_var_system_value, glsl_vec_type(2), "tess inner default"); in_inner->data.location = SYSTEM_VALUE_TESS_LEVEL_INNER_DEFAULT; nir_variable *out_inner = nir_variable_create(b.shader, nir_var_shader_out, glsl_vec_type(2), "tess inner"); out_inner->data.location = VARYING_SLOT_TESS_LEVEL_INNER; out_inner->data.driver_location = num_outputs++; nir_ssa_def *inner = nir_load_var(&b, in_inner); nir_store_var(&b, out_inner, inner, 0x3); nir_variable *in_outer = nir_variable_create(b.shader, nir_var_system_value, glsl_vec4_type(), "tess outer default"); in_outer->data.location = SYSTEM_VALUE_TESS_LEVEL_OUTER_DEFAULT; nir_variable *out_outer = nir_variable_create(b.shader, nir_var_shader_out, glsl_vec4_type(), "tess outer"); out_outer->data.location = VARYING_SLOT_TESS_LEVEL_OUTER; out_outer->data.driver_location = num_outputs++; nir_ssa_def *outer = nir_load_var(&b, in_outer); nir_store_var(&b, out_outer, outer, 0xf); nir_ssa_def *id = nir_load_invocation_id(&b); struct si_shader_info *info = &sctx->shader.vs.cso->info; for (unsigned i = 0; i < info->num_outputs; i++) { const struct glsl_type *type; unsigned semantic = info->output_semantic[i]; if (semantic < VARYING_SLOT_VAR31 && semantic != VARYING_SLOT_EDGE) type = glsl_array_type(glsl_vec4_type(), 0, 0); else if (semantic >= VARYING_SLOT_VAR0_16BIT) type = glsl_array_type(glsl_vector_type(GLSL_TYPE_FLOAT16, 4), 0, 0); else continue; char name[10]; snprintf(name, sizeof(name), "in_%u", i); nir_variable *in = nir_variable_create(b.shader, nir_var_shader_in, type, name); in->data.location = semantic; in->data.driver_location = num_inputs++; snprintf(name, sizeof(name), "out_%u", i); nir_variable *out = nir_variable_create(b.shader, nir_var_shader_out, type, name); out->data.location = semantic; out->data.driver_location = num_outputs++; /* no need to use copy_var to save a lower pass */ nir_ssa_def *value = nir_load_array_var(&b, in, id); nir_store_array_var(&b, out, id, value, 0xf); } b.shader->num_inputs = num_inputs; b.shader->num_outputs = num_outputs; b.shader->info.tess.tcs_vertices_out = sctx->patch_vertices; return create_shader_state(sctx, b.shader); }