/* * Copyright © 2017 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "nir.h" #include "nir_builder.h" #include "util/u_math.h" /** * \file nir_opt_intrinsics.c */ static nir_intrinsic_instr * lower_subgroups_64bit_split_intrinsic(nir_builder *b, nir_intrinsic_instr *intrin, unsigned int component) { nir_ssa_def *comp; if (component == 0) comp = nir_unpack_64_2x32_split_x(b, intrin->src[0].ssa); else comp = nir_unpack_64_2x32_split_y(b, intrin->src[0].ssa); nir_intrinsic_instr *intr = nir_intrinsic_instr_create(b->shader, intrin->intrinsic); nir_ssa_dest_init(&intr->instr, &intr->dest, 1, 32, NULL); intr->const_index[0] = intrin->const_index[0]; intr->const_index[1] = intrin->const_index[1]; intr->src[0] = nir_src_for_ssa(comp); if (nir_intrinsic_infos[intrin->intrinsic].num_srcs == 2) nir_src_copy(&intr->src[1], &intrin->src[1]); intr->num_components = 1; nir_builder_instr_insert(b, &intr->instr); return intr; } static nir_ssa_def * lower_subgroup_op_to_32bit(nir_builder *b, nir_intrinsic_instr *intrin) { assert(intrin->src[0].ssa->bit_size == 64); nir_intrinsic_instr *intr_x = lower_subgroups_64bit_split_intrinsic(b, intrin, 0); nir_intrinsic_instr *intr_y = lower_subgroups_64bit_split_intrinsic(b, intrin, 1); return nir_pack_64_2x32_split(b, &intr_x->dest.ssa, &intr_y->dest.ssa); } static nir_ssa_def * ballot_type_to_uint(nir_builder *b, nir_ssa_def *value, const nir_lower_subgroups_options *options) { /* Only the new-style SPIR-V subgroup instructions take a ballot result as * an argument, so we only use this on uvec4 types. */ assert(value->num_components == 4 && value->bit_size == 32); return nir_extract_bits(b, &value, 1, 0, options->ballot_components, options->ballot_bit_size); } static nir_ssa_def * uint_to_ballot_type(nir_builder *b, nir_ssa_def *value, unsigned num_components, unsigned bit_size) { assert(util_is_power_of_two_nonzero(num_components)); assert(util_is_power_of_two_nonzero(value->num_components)); unsigned total_bits = bit_size * num_components; /* If the source doesn't have enough bits, zero-pad */ if (total_bits > value->bit_size * value->num_components) value = nir_pad_vector_imm_int(b, value, 0, total_bits / value->bit_size); value = nir_bitcast_vector(b, value, bit_size); /* If the source has too many components, truncate. This can happen if, * for instance, we're implementing GL_ARB_shader_ballot or * VK_EXT_shader_subgroup_ballot which have 64-bit ballot values on an * architecture with a native 128-bit uvec4 ballot. This comes up in Zink * for OpenGL on Vulkan. It's the job of the driver calling this lowering * pass to ensure that it's restricted subgroup sizes sufficiently that we * have enough ballot bits. */ if (value->num_components > num_components) value = nir_trim_vector(b, value, num_components); return value; } static nir_ssa_def * lower_subgroup_op_to_scalar(nir_builder *b, nir_intrinsic_instr *intrin, bool lower_to_32bit) { /* This is safe to call on scalar things but it would be silly */ assert(intrin->dest.ssa.num_components > 1); nir_ssa_def *value = nir_ssa_for_src(b, intrin->src[0], intrin->num_components); nir_ssa_def *reads[NIR_MAX_VEC_COMPONENTS]; for (unsigned i = 0; i < intrin->num_components; i++) { nir_intrinsic_instr *chan_intrin = nir_intrinsic_instr_create(b->shader, intrin->intrinsic); nir_ssa_dest_init(&chan_intrin->instr, &chan_intrin->dest, 1, intrin->dest.ssa.bit_size, NULL); chan_intrin->num_components = 1; /* value */ chan_intrin->src[0] = nir_src_for_ssa(nir_channel(b, value, i)); /* invocation */ if (nir_intrinsic_infos[intrin->intrinsic].num_srcs > 1) { assert(nir_intrinsic_infos[intrin->intrinsic].num_srcs == 2); nir_src_copy(&chan_intrin->src[1], &intrin->src[1]); } chan_intrin->const_index[0] = intrin->const_index[0]; chan_intrin->const_index[1] = intrin->const_index[1]; if (lower_to_32bit && chan_intrin->src[0].ssa->bit_size == 64) { reads[i] = lower_subgroup_op_to_32bit(b, chan_intrin); } else { nir_builder_instr_insert(b, &chan_intrin->instr); reads[i] = &chan_intrin->dest.ssa; } } return nir_vec(b, reads, intrin->num_components); } static nir_ssa_def * lower_vote_eq_to_scalar(nir_builder *b, nir_intrinsic_instr *intrin) { assert(intrin->src[0].is_ssa); nir_ssa_def *value = intrin->src[0].ssa; nir_ssa_def *result = NULL; for (unsigned i = 0; i < intrin->num_components; i++) { nir_intrinsic_instr *chan_intrin = nir_intrinsic_instr_create(b->shader, intrin->intrinsic); nir_ssa_dest_init(&chan_intrin->instr, &chan_intrin->dest, 1, intrin->dest.ssa.bit_size, NULL); chan_intrin->num_components = 1; chan_intrin->src[0] = nir_src_for_ssa(nir_channel(b, value, i)); nir_builder_instr_insert(b, &chan_intrin->instr); if (result) { result = nir_iand(b, result, &chan_intrin->dest.ssa); } else { result = &chan_intrin->dest.ssa; } } return result; } static nir_ssa_def * lower_vote_eq(nir_builder *b, nir_intrinsic_instr *intrin) { assert(intrin->src[0].is_ssa); nir_ssa_def *value = intrin->src[0].ssa; /* We have to implicitly lower to scalar */ nir_ssa_def *all_eq = NULL; for (unsigned i = 0; i < intrin->num_components; i++) { nir_ssa_def *rfi = nir_read_first_invocation(b, nir_channel(b, value, i)); nir_ssa_def *is_eq; if (intrin->intrinsic == nir_intrinsic_vote_feq) { is_eq = nir_feq(b, rfi, nir_channel(b, value, i)); } else { is_eq = nir_ieq(b, rfi, nir_channel(b, value, i)); } if (all_eq == NULL) { all_eq = is_eq; } else { all_eq = nir_iand(b, all_eq, is_eq); } } return nir_vote_all(b, 1, all_eq); } static nir_ssa_def * lower_shuffle_to_swizzle(nir_builder *b, nir_intrinsic_instr *intrin, const nir_lower_subgroups_options *options) { unsigned mask = nir_src_as_uint(intrin->src[1]); if (mask >= 32) return NULL; nir_intrinsic_instr *swizzle = nir_intrinsic_instr_create( b->shader, nir_intrinsic_masked_swizzle_amd); swizzle->num_components = intrin->num_components; nir_src_copy(&swizzle->src[0], &intrin->src[0]); nir_intrinsic_set_swizzle_mask(swizzle, (mask << 10) | 0x1f); nir_ssa_dest_init(&swizzle->instr, &swizzle->dest, intrin->dest.ssa.num_components, intrin->dest.ssa.bit_size, NULL); if (options->lower_to_scalar && swizzle->num_components > 1) { return lower_subgroup_op_to_scalar(b, swizzle, options->lower_shuffle_to_32bit); } else if (options->lower_shuffle_to_32bit && swizzle->src[0].ssa->bit_size == 64) { return lower_subgroup_op_to_32bit(b, swizzle); } else { nir_builder_instr_insert(b, &swizzle->instr); return &swizzle->dest.ssa; } } /* Lowers "specialized" shuffles to a generic nir_intrinsic_shuffle. */ static nir_ssa_def * lower_to_shuffle(nir_builder *b, nir_intrinsic_instr *intrin, const nir_lower_subgroups_options *options) { if (intrin->intrinsic == nir_intrinsic_shuffle_xor && options->lower_shuffle_to_swizzle_amd && nir_src_is_const(intrin->src[1])) { nir_ssa_def *result = lower_shuffle_to_swizzle(b, intrin, options); if (result) return result; } nir_ssa_def *index = nir_load_subgroup_invocation(b); bool is_shuffle = false; switch (intrin->intrinsic) { case nir_intrinsic_shuffle_xor: assert(intrin->src[1].is_ssa); index = nir_ixor(b, index, intrin->src[1].ssa); is_shuffle = true; break; case nir_intrinsic_shuffle_up: assert(intrin->src[1].is_ssa); index = nir_isub(b, index, intrin->src[1].ssa); is_shuffle = true; break; case nir_intrinsic_shuffle_down: assert(intrin->src[1].is_ssa); index = nir_iadd(b, index, intrin->src[1].ssa); is_shuffle = true; break; case nir_intrinsic_quad_broadcast: assert(intrin->src[1].is_ssa); index = nir_ior(b, nir_iand(b, index, nir_imm_int(b, ~0x3)), intrin->src[1].ssa); break; case nir_intrinsic_quad_swap_horizontal: /* For Quad operations, subgroups are divided into quads where * (invocation % 4) is the index to a square arranged as follows: * * +---+---+ * | 0 | 1 | * +---+---+ * | 2 | 3 | * +---+---+ */ index = nir_ixor(b, index, nir_imm_int(b, 0x1)); break; case nir_intrinsic_quad_swap_vertical: index = nir_ixor(b, index, nir_imm_int(b, 0x2)); break; case nir_intrinsic_quad_swap_diagonal: index = nir_ixor(b, index, nir_imm_int(b, 0x3)); break; default: unreachable("Invalid intrinsic"); } nir_intrinsic_instr *shuffle = nir_intrinsic_instr_create(b->shader, nir_intrinsic_shuffle); shuffle->num_components = intrin->num_components; nir_src_copy(&shuffle->src[0], &intrin->src[0]); shuffle->src[1] = nir_src_for_ssa(index); nir_ssa_dest_init(&shuffle->instr, &shuffle->dest, intrin->dest.ssa.num_components, intrin->dest.ssa.bit_size, NULL); bool lower_to_32bit = options->lower_shuffle_to_32bit && is_shuffle; if (options->lower_to_scalar && shuffle->num_components > 1) { return lower_subgroup_op_to_scalar(b, shuffle, lower_to_32bit); } else if (lower_to_32bit && shuffle->src[0].ssa->bit_size == 64) { return lower_subgroup_op_to_32bit(b, shuffle); } else { nir_builder_instr_insert(b, &shuffle->instr); return &shuffle->dest.ssa; } } static const struct glsl_type * glsl_type_for_ssa(nir_ssa_def *def) { const struct glsl_type *comp_type = def->bit_size == 1 ? glsl_bool_type() : glsl_uintN_t_type(def->bit_size); return glsl_replace_vector_type(comp_type, def->num_components); } /* Lower nir_intrinsic_shuffle to a waterfall loop + nir_read_invocation. */ static nir_ssa_def * lower_shuffle(nir_builder *b, nir_intrinsic_instr *intrin) { assert(intrin->src[0].is_ssa); assert(intrin->src[1].is_ssa); nir_ssa_def *val = intrin->src[0].ssa; nir_ssa_def *id = intrin->src[1].ssa; /* The loop is something like: * * while (true) { * first_id = readFirstInvocation(gl_SubgroupInvocationID); * first_val = readFirstInvocation(val); * first_result = readInvocation(val, readFirstInvocation(id)); * if (id == first_id) * result = first_val; * if (elect()) { * if (id > gl_SubgroupInvocationID) { * result = first_result; * } * break; * } * } * * The idea is to guarantee, on each iteration of the loop, that anything * reading from first_id gets the correct value, so that we can then kill * it off by breaking out of the loop. Before doing that we also have to * ensure that first_id invocation gets the correct value. It only won't be * assigned the correct value already if the invocation it's reading from * isn't already killed off, that is, if it's later than its own ID. * Invocations where id <= gl_SubgroupInvocationID will be assigned their * result in the first if, and invocations where id > * gl_SubgroupInvocationID will be assigned their result in the second if. * * We do this more complicated loop rather than looping over all id's * explicitly because at this point we don't know the "actual" subgroup * size and at the moment there's no way to get at it, which means we may * loop over always-inactive invocations. */ nir_ssa_def *subgroup_id = nir_load_subgroup_invocation(b); nir_variable *result = nir_local_variable_create(b->impl, glsl_type_for_ssa(val), "result"); nir_loop *loop = nir_push_loop(b); { nir_ssa_def *first_id = nir_read_first_invocation(b, subgroup_id); nir_ssa_def *first_val = nir_read_first_invocation(b, val); nir_ssa_def *first_result = nir_read_invocation(b, val, nir_read_first_invocation(b, id)); nir_if *nif = nir_push_if(b, nir_ieq(b, id, first_id)); { nir_store_var(b, result, first_val, BITFIELD_MASK(val->num_components)); } nir_pop_if(b, nif); nir_if *nif2 = nir_push_if(b, nir_elect(b, 1)); { nir_if *nif3 = nir_push_if(b, nir_ult(b, subgroup_id, id)); { nir_store_var(b, result, first_result, BITFIELD_MASK(val->num_components)); } nir_pop_if(b, nif3); nir_jump(b, nir_jump_break); } nir_pop_if(b, nif2); } nir_pop_loop(b, loop); return nir_load_var(b, result); } static bool lower_subgroups_filter(const nir_instr *instr, const void *_options) { return instr->type == nir_instr_type_intrinsic; } /* Return a ballot-mask-sized value which represents "val" sign-extended and * then shifted left by "shift". Only particular values for "val" are * supported, see below. */ static nir_ssa_def * build_ballot_imm_ishl(nir_builder *b, int64_t val, nir_ssa_def *shift, const nir_lower_subgroups_options *options) { /* This only works if all the high bits are the same as bit 1. */ assert((val >> 2) == (val & 0x2 ? -1 : 0)); /* First compute the result assuming one ballot component. */ nir_ssa_def *result = nir_ishl(b, nir_imm_intN_t(b, val, options->ballot_bit_size), shift); if (options->ballot_components == 1) return result; /* Fix up the result when there is > 1 component. The idea is that nir_ishl * masks out the high bits of the shift value already, so in case there's * more than one component the component which 1 would be shifted into * already has the right value and all we have to do is fixup the other * components. Components below it should always be 0, and components above * it must be either 0 or ~0 because of the assert above. For example, if * the target ballot size is 2 x uint32, and we're shifting 1 by 33, then * we'll feed 33 into ishl, which will mask it off to get 1, so we'll * compute a single-component result of 2, which is correct for the second * component, but the first component needs to be 0, which we get by * comparing the high bits of the shift with 0 and selecting the original * answer or 0 for the first component (and something similar with the * second component). This idea is generalized here for any component count */ nir_const_value min_shift[4] = { 0 }; for (unsigned i = 0; i < options->ballot_components; i++) min_shift[i].i32 = i * options->ballot_bit_size; nir_ssa_def *min_shift_val = nir_build_imm(b, options->ballot_components, 32, min_shift); nir_const_value max_shift[4] = { 0 }; for (unsigned i = 0; i < options->ballot_components; i++) max_shift[i].i32 = (i + 1) * options->ballot_bit_size; nir_ssa_def *max_shift_val = nir_build_imm(b, options->ballot_components, 32, max_shift); return nir_bcsel(b, nir_ult(b, shift, max_shift_val), nir_bcsel(b, nir_ult(b, shift, min_shift_val), nir_imm_intN_t(b, val >> 63, result->bit_size), result), nir_imm_intN_t(b, 0, result->bit_size)); } static nir_ssa_def * build_subgroup_eq_mask(nir_builder *b, const nir_lower_subgroups_options *options) { nir_ssa_def *subgroup_idx = nir_load_subgroup_invocation(b); return build_ballot_imm_ishl(b, 1, subgroup_idx, options); } static nir_ssa_def * build_subgroup_ge_mask(nir_builder *b, const nir_lower_subgroups_options *options) { nir_ssa_def *subgroup_idx = nir_load_subgroup_invocation(b); return build_ballot_imm_ishl(b, ~0ull, subgroup_idx, options); } static nir_ssa_def * build_subgroup_gt_mask(nir_builder *b, const nir_lower_subgroups_options *options) { nir_ssa_def *subgroup_idx = nir_load_subgroup_invocation(b); return build_ballot_imm_ishl(b, ~1ull, subgroup_idx, options); } /* Return a mask which is 1 for threads up to the run-time subgroup size, i.e. * 1 for the entire subgroup. SPIR-V requires us to return 0 for indices at or * above the subgroup size for the masks, but gt_mask and ge_mask make them 1 * so we have to "and" with this mask. */ static nir_ssa_def * build_subgroup_mask(nir_builder *b, const nir_lower_subgroups_options *options) { nir_ssa_def *subgroup_size = nir_load_subgroup_size(b); /* First compute the result assuming one ballot component. */ nir_ssa_def *result = nir_ushr(b, nir_imm_intN_t(b, ~0ull, options->ballot_bit_size), nir_isub_imm(b, options->ballot_bit_size, subgroup_size)); /* Since the subgroup size and ballot bitsize are both powers of two, there * are two possible cases to consider: * * (1) The subgroup size is less than the ballot bitsize. We need to return * "result" in the first component and 0 in every other component. * (2) The subgroup size is a multiple of the ballot bitsize. We need to * return ~0 if the subgroup size divided by the ballot bitsize is less * than or equal to the index in the vector and 0 otherwise. For example, * with a target ballot type of 4 x uint32 and subgroup_size = 64 we'd need * to return { ~0, ~0, 0, 0 }. * * In case (2) it turns out that "result" will be ~0, because * "ballot_bit_size - subgroup_size" is also a multiple of * "ballot_bit_size" and since nir_ushr masks the shift value it will * shifted by 0. This means that the first component can just be "result" * in all cases. The other components will also get the correct value in * case (1) if we just use the rule in case (2), so we'll get the correct * result if we just follow (2) and then replace the first component with * "result". */ nir_const_value min_idx[4] = { 0 }; for (unsigned i = 0; i < options->ballot_components; i++) min_idx[i].i32 = i * options->ballot_bit_size; nir_ssa_def *min_idx_val = nir_build_imm(b, options->ballot_components, 32, min_idx); nir_ssa_def *result_extended = nir_pad_vector_imm_int(b, result, ~0ull, options->ballot_components); return nir_bcsel(b, nir_ult(b, min_idx_val, subgroup_size), result_extended, nir_imm_intN_t(b, 0, options->ballot_bit_size)); } static nir_ssa_def * vec_bit_count(nir_builder *b, nir_ssa_def *value) { nir_ssa_def *vec_result = nir_bit_count(b, value); nir_ssa_def *result = nir_channel(b, vec_result, 0); for (unsigned i = 1; i < value->num_components; i++) result = nir_iadd(b, result, nir_channel(b, vec_result, i)); return result; } static nir_ssa_def * vec_find_lsb(nir_builder *b, nir_ssa_def *value) { nir_ssa_def *vec_result = nir_find_lsb(b, value); nir_ssa_def *result = nir_imm_int(b, -1); for (int i = value->num_components - 1; i >= 0; i--) { nir_ssa_def *channel = nir_channel(b, vec_result, i); /* result = channel >= 0 ? (i * bitsize + channel) : result */ result = nir_bcsel(b, nir_ige(b, channel, nir_imm_int(b, 0)), nir_iadd_imm(b, channel, i * value->bit_size), result); } return result; } static nir_ssa_def * vec_find_msb(nir_builder *b, nir_ssa_def *value) { nir_ssa_def *vec_result = nir_ufind_msb(b, value); nir_ssa_def *result = nir_imm_int(b, -1); for (unsigned i = 0; i < value->num_components; i++) { nir_ssa_def *channel = nir_channel(b, vec_result, i); /* result = channel >= 0 ? (i * bitsize + channel) : result */ result = nir_bcsel(b, nir_ige(b, channel, nir_imm_int(b, 0)), nir_iadd_imm(b, channel, i * value->bit_size), result); } return result; } static nir_ssa_def * lower_dynamic_quad_broadcast(nir_builder *b, nir_intrinsic_instr *intrin, const nir_lower_subgroups_options *options) { if (!options->lower_quad_broadcast_dynamic_to_const) return lower_to_shuffle(b, intrin, options); nir_ssa_def *dst = NULL; for (unsigned i = 0; i < 4; ++i) { nir_intrinsic_instr *qbcst = nir_intrinsic_instr_create(b->shader, nir_intrinsic_quad_broadcast); qbcst->num_components = intrin->num_components; qbcst->src[1] = nir_src_for_ssa(nir_imm_int(b, i)); nir_src_copy(&qbcst->src[0], &intrin->src[0]); nir_ssa_dest_init(&qbcst->instr, &qbcst->dest, intrin->dest.ssa.num_components, intrin->dest.ssa.bit_size, NULL); nir_ssa_def *qbcst_dst = NULL; if (options->lower_to_scalar && qbcst->num_components > 1) { qbcst_dst = lower_subgroup_op_to_scalar(b, qbcst, false); } else { nir_builder_instr_insert(b, &qbcst->instr); qbcst_dst = &qbcst->dest.ssa; } if (i) dst = nir_bcsel(b, nir_ieq(b, intrin->src[1].ssa, nir_src_for_ssa(nir_imm_int(b, i)).ssa), qbcst_dst, dst); else dst = qbcst_dst; } return dst; } static nir_ssa_def * lower_read_invocation_to_cond(nir_builder *b, nir_intrinsic_instr *intrin) { return nir_read_invocation_cond_ir3(b, intrin->dest.ssa.bit_size, intrin->src[0].ssa, nir_ieq(b, intrin->src[1].ssa, nir_load_subgroup_invocation(b))); } static nir_ssa_def * lower_subgroups_instr(nir_builder *b, nir_instr *instr, void *_options) { const nir_lower_subgroups_options *options = _options; nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr); switch (intrin->intrinsic) { case nir_intrinsic_vote_any: case nir_intrinsic_vote_all: if (options->lower_vote_trivial) return nir_ssa_for_src(b, intrin->src[0], 1); break; case nir_intrinsic_vote_feq: case nir_intrinsic_vote_ieq: if (options->lower_vote_trivial) return nir_imm_true(b); if (options->lower_vote_eq) return lower_vote_eq(b, intrin); if (options->lower_to_scalar && intrin->num_components > 1) return lower_vote_eq_to_scalar(b, intrin); break; case nir_intrinsic_load_subgroup_size: if (options->subgroup_size) return nir_imm_int(b, options->subgroup_size); break; case nir_intrinsic_read_invocation: if (options->lower_to_scalar && intrin->num_components > 1) return lower_subgroup_op_to_scalar(b, intrin, false); if (options->lower_read_invocation_to_cond) return lower_read_invocation_to_cond(b, intrin); break; case nir_intrinsic_read_first_invocation: if (options->lower_to_scalar && intrin->num_components > 1) return lower_subgroup_op_to_scalar(b, intrin, false); break; case nir_intrinsic_load_subgroup_eq_mask: case nir_intrinsic_load_subgroup_ge_mask: case nir_intrinsic_load_subgroup_gt_mask: case nir_intrinsic_load_subgroup_le_mask: case nir_intrinsic_load_subgroup_lt_mask: { if (!options->lower_subgroup_masks) return NULL; nir_ssa_def *val; switch (intrin->intrinsic) { case nir_intrinsic_load_subgroup_eq_mask: val = build_subgroup_eq_mask(b, options); break; case nir_intrinsic_load_subgroup_ge_mask: val = nir_iand(b, build_subgroup_ge_mask(b, options), build_subgroup_mask(b, options)); break; case nir_intrinsic_load_subgroup_gt_mask: val = nir_iand(b, build_subgroup_gt_mask(b, options), build_subgroup_mask(b, options)); break; case nir_intrinsic_load_subgroup_le_mask: val = nir_inot(b, build_subgroup_gt_mask(b, options)); break; case nir_intrinsic_load_subgroup_lt_mask: val = nir_inot(b, build_subgroup_ge_mask(b, options)); break; default: unreachable("you seriously can't tell this is unreachable?"); } return uint_to_ballot_type(b, val, intrin->dest.ssa.num_components, intrin->dest.ssa.bit_size); } case nir_intrinsic_ballot: { if (intrin->dest.ssa.num_components == options->ballot_components && intrin->dest.ssa.bit_size == options->ballot_bit_size) return NULL; nir_ssa_def *ballot = nir_ballot(b, options->ballot_components, options->ballot_bit_size, intrin->src[0].ssa); return uint_to_ballot_type(b, ballot, intrin->dest.ssa.num_components, intrin->dest.ssa.bit_size); } case nir_intrinsic_ballot_bitfield_extract: case nir_intrinsic_ballot_bit_count_reduce: case nir_intrinsic_ballot_find_lsb: case nir_intrinsic_ballot_find_msb: { assert(intrin->src[0].is_ssa); nir_ssa_def *int_val = ballot_type_to_uint(b, intrin->src[0].ssa, options); if (intrin->intrinsic != nir_intrinsic_ballot_bitfield_extract && intrin->intrinsic != nir_intrinsic_ballot_find_lsb) { /* For OpGroupNonUniformBallotFindMSB, the SPIR-V Spec says: * * "Find the most significant bit set to 1 in Value, considering * only the bits in Value required to represent all bits of the * group’s invocations. If none of the considered bits is set to * 1, the result is undefined." * * It has similar text for the other three. This means that, in case * the subgroup size is less than 32, we have to mask off the unused * bits. If the subgroup size is fixed and greater than or equal to * 32, the mask will be 0xffffffff and nir_opt_algebraic will delete * the iand. * * We only have to worry about this for BitCount and FindMSB because * FindLSB counts from the bottom and BitfieldExtract selects * individual bits. In either case, if run outside the range of * valid bits, we hit the undefined results case and we can return * anything we want. */ int_val = nir_iand(b, int_val, build_subgroup_mask(b, options)); } switch (intrin->intrinsic) { case nir_intrinsic_ballot_bitfield_extract: { assert(intrin->src[1].is_ssa); nir_ssa_def *idx = intrin->src[1].ssa; if (int_val->num_components > 1) { /* idx will be truncated by nir_ushr, so we just need to select * the right component using the bits of idx that are truncated in * the shift. */ int_val = nir_vector_extract(b, int_val, nir_udiv_imm(b, idx, int_val->bit_size)); } return nir_test_mask(b, nir_ushr(b, int_val, idx), 1); } case nir_intrinsic_ballot_bit_count_reduce: return vec_bit_count(b, int_val); case nir_intrinsic_ballot_find_lsb: return vec_find_lsb(b, int_val); case nir_intrinsic_ballot_find_msb: return vec_find_msb(b, int_val); default: unreachable("you seriously can't tell this is unreachable?"); } } case nir_intrinsic_ballot_bit_count_exclusive: case nir_intrinsic_ballot_bit_count_inclusive: { nir_ssa_def *mask; if (intrin->intrinsic == nir_intrinsic_ballot_bit_count_inclusive) { mask = nir_inot(b, build_subgroup_gt_mask(b, options)); } else { mask = nir_inot(b, build_subgroup_ge_mask(b, options)); } assert(intrin->src[0].is_ssa); nir_ssa_def *int_val = ballot_type_to_uint(b, intrin->src[0].ssa, options); return vec_bit_count(b, nir_iand(b, int_val, mask)); } case nir_intrinsic_elect: { if (!options->lower_elect) return NULL; return nir_ieq(b, nir_load_subgroup_invocation(b), nir_first_invocation(b)); } case nir_intrinsic_shuffle: if (options->lower_shuffle) return lower_shuffle(b, intrin); else if (options->lower_to_scalar && intrin->num_components > 1) return lower_subgroup_op_to_scalar(b, intrin, options->lower_shuffle_to_32bit); else if (options->lower_shuffle_to_32bit && intrin->src[0].ssa->bit_size == 64) return lower_subgroup_op_to_32bit(b, intrin); break; case nir_intrinsic_shuffle_xor: case nir_intrinsic_shuffle_up: case nir_intrinsic_shuffle_down: if (options->lower_relative_shuffle) return lower_to_shuffle(b, intrin, options); else if (options->lower_to_scalar && intrin->num_components > 1) return lower_subgroup_op_to_scalar(b, intrin, options->lower_shuffle_to_32bit); else if (options->lower_shuffle_to_32bit && intrin->src[0].ssa->bit_size == 64) return lower_subgroup_op_to_32bit(b, intrin); break; case nir_intrinsic_quad_broadcast: case nir_intrinsic_quad_swap_horizontal: case nir_intrinsic_quad_swap_vertical: case nir_intrinsic_quad_swap_diagonal: if (options->lower_quad || (options->lower_quad_broadcast_dynamic && intrin->intrinsic == nir_intrinsic_quad_broadcast && !nir_src_is_const(intrin->src[1]))) return lower_dynamic_quad_broadcast(b, intrin, options); else if (options->lower_to_scalar && intrin->num_components > 1) return lower_subgroup_op_to_scalar(b, intrin, false); break; case nir_intrinsic_reduce: { nir_ssa_def *ret = NULL; /* A cluster size greater than the subgroup size is implemention defined */ if (options->subgroup_size && nir_intrinsic_cluster_size(intrin) >= options->subgroup_size) { nir_intrinsic_set_cluster_size(intrin, 0); ret = NIR_LOWER_INSTR_PROGRESS; } if (options->lower_to_scalar && intrin->num_components > 1) ret = lower_subgroup_op_to_scalar(b, intrin, false); return ret; } case nir_intrinsic_inclusive_scan: case nir_intrinsic_exclusive_scan: if (options->lower_to_scalar && intrin->num_components > 1) return lower_subgroup_op_to_scalar(b, intrin, false); break; default: break; } return NULL; } bool nir_lower_subgroups(nir_shader *shader, const nir_lower_subgroups_options *options) { return nir_shader_lower_instructions(shader, lower_subgroups_filter, lower_subgroups_instr, (void *)options); }