/* * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "nir.h" #include "nir_builder.h" #include "nir_xfb_info.h" /** * \file nir_lower_gs_intrinsics.c * * Geometry Shaders can call EmitVertex()/EmitStreamVertex() to output an * arbitrary number of vertices. However, the shader must declare the maximum * number of vertices that it will ever output - further attempts to emit * vertices result in undefined behavior according to the GLSL specification. * * Drivers might use this maximum number of vertices to allocate enough space * to hold the geometry shader's output. Some drivers (such as i965) need to * implement "safety checks" which ensure that the shader hasn't emitted too * many vertices, to avoid overflowing that space and trashing other memory. * * The count of emitted vertices can also be useful in buffer offset * calculations, so drivers know where to write the GS output. * * However, for simple geometry shaders that emit a statically determinable * number of vertices, this extra bookkeeping is unnecessary and inefficient. * By tracking the vertex count in NIR, we allow constant folding/propagation * and dead control flow optimizations to eliminate most of it where possible. * * This pass introduces a new global variable which stores the current vertex * count (initialized to 0), and converts emit_vertex/end_primitive intrinsics * to their *_with_counter variants. emit_vertex is also wrapped in a safety * check to avoid buffer overflows. Finally, it adds a set_vertex_count * intrinsic at the end of the program, informing the driver of the final * vertex count. */ struct state { nir_builder *builder; nir_variable *vertex_count_vars[NIR_MAX_XFB_STREAMS]; nir_variable *vtxcnt_per_prim_vars[NIR_MAX_XFB_STREAMS]; nir_variable *primitive_count_vars[NIR_MAX_XFB_STREAMS]; bool per_stream; bool count_prims; bool count_vtx_per_prim; bool overwrite_incomplete; bool progress; }; /** * Replace emit_vertex intrinsics with: * * if (vertex_count < max_vertices) { * emit_vertex_with_counter vertex_count, vertex_count_per_primitive (optional) ... * vertex_count += 1 * vertex_count_per_primitive += 1 * } */ static void rewrite_emit_vertex(nir_intrinsic_instr *intrin, struct state *state) { nir_builder *b = state->builder; unsigned stream = nir_intrinsic_stream_id(intrin); /* Load the vertex count */ b->cursor = nir_before_instr(&intrin->instr); assert(state->vertex_count_vars[stream] != NULL); nir_ssa_def *count = nir_load_var(b, state->vertex_count_vars[stream]); nir_ssa_def *count_per_primitive; if (state->count_vtx_per_prim) count_per_primitive = nir_load_var(b, state->vtxcnt_per_prim_vars[stream]); else count_per_primitive = nir_ssa_undef(b, 1, 32); nir_ssa_def *max_vertices = nir_imm_int(b, b->shader->info.gs.vertices_out); /* Create: if (vertex_count < max_vertices) and insert it. * * The new if statement needs to be hooked up to the control flow graph * before we start inserting instructions into it. */ nir_push_if(b, nir_ilt(b, count, max_vertices)); nir_emit_vertex_with_counter(b, count, count_per_primitive, stream); /* Increment the vertex count by 1 */ nir_store_var(b, state->vertex_count_vars[stream], nir_iadd_imm(b, count, 1), 0x1); /* .x */ if (state->count_vtx_per_prim) { /* Increment the per-primitive vertex count by 1 */ nir_variable *var = state->vtxcnt_per_prim_vars[stream]; nir_ssa_def *vtx_per_prim_cnt = nir_load_var(b, var); nir_store_var(b, var, nir_iadd_imm(b, vtx_per_prim_cnt, 1), 0x1); /* .x */ } nir_pop_if(b, NULL); nir_instr_remove(&intrin->instr); state->progress = true; } /** * Emits code that overwrites incomplete primitives and their vertices. * * A primitive is considered incomplete when it doesn't have enough vertices. * For example, a triangle strip that has 2 or fewer vertices, or a line strip * with 1 vertex are considered incomplete. * * After each end_primitive and at the end of the shader before emitting * set_vertex_and_primitive_count, we check if the primitive that is being * emitted has enough vertices or not, and we adjust the vertex and primitive * counters accordingly. * * This means that the following emit_vertex can reuse the vertex index of * a previous vertex, if the previous primitive was incomplete, so the compiler * backend is expected to simply overwrite any data that belonged to those. */ static void overwrite_incomplete_primitives(struct state *state, unsigned stream) { assert(state->count_vtx_per_prim); nir_builder *b = state->builder; enum shader_prim outprim = b->shader->info.gs.output_primitive; unsigned outprim_min_vertices; if (outprim == SHADER_PRIM_POINTS) outprim_min_vertices = 1; else if (outprim == SHADER_PRIM_LINE_STRIP) outprim_min_vertices = 2; else if (outprim == SHADER_PRIM_TRIANGLE_STRIP) outprim_min_vertices = 3; else unreachable("Invalid GS output primitive type."); /* Total count of vertices emitted so far. */ nir_ssa_def *vtxcnt_total = nir_load_var(b, state->vertex_count_vars[stream]); /* Number of vertices emitted for the last primitive */ nir_ssa_def *vtxcnt_per_primitive = nir_load_var(b, state->vtxcnt_per_prim_vars[stream]); /* See if the current primitive is a incomplete */ nir_ssa_def *is_inc_prim = nir_ilt(b, vtxcnt_per_primitive, nir_imm_int(b, outprim_min_vertices)); /* Number of vertices in the incomplete primitive */ nir_ssa_def *num_inc_vtx = nir_bcsel(b, is_inc_prim, vtxcnt_per_primitive, nir_imm_int(b, 0)); /* Store corrected total vertex count */ nir_store_var(b, state->vertex_count_vars[stream], nir_isub(b, vtxcnt_total, num_inc_vtx), 0x1); /* .x */ if (state->count_prims) { /* Number of incomplete primitives (0 or 1) */ nir_ssa_def *num_inc_prim = nir_b2i32(b, is_inc_prim); /* Store corrected primitive count */ nir_ssa_def *prim_cnt = nir_load_var(b, state->primitive_count_vars[stream]); nir_store_var(b, state->primitive_count_vars[stream], nir_isub(b, prim_cnt, num_inc_prim), 0x1); /* .x */ } } /** * Replace end_primitive with end_primitive_with_counter. */ static void rewrite_end_primitive(nir_intrinsic_instr *intrin, struct state *state) { nir_builder *b = state->builder; unsigned stream = nir_intrinsic_stream_id(intrin); b->cursor = nir_before_instr(&intrin->instr); assert(state->vertex_count_vars[stream] != NULL); nir_ssa_def *count = nir_load_var(b, state->vertex_count_vars[stream]); nir_ssa_def *count_per_primitive; if (state->count_vtx_per_prim) count_per_primitive = nir_load_var(b, state->vtxcnt_per_prim_vars[stream]); else count_per_primitive = nir_ssa_undef(b, count->num_components, count->bit_size); nir_end_primitive_with_counter(b, count, count_per_primitive, stream); if (state->count_prims) { /* Increment the primitive count by 1 */ nir_ssa_def *prim_cnt = nir_load_var(b, state->primitive_count_vars[stream]); nir_store_var(b, state->primitive_count_vars[stream], nir_iadd_imm(b, prim_cnt, 1), 0x1); /* .x */ } if (state->count_vtx_per_prim) { if (state->overwrite_incomplete) overwrite_incomplete_primitives(state, stream); /* Store 0 to per-primitive vertex count */ nir_store_var(b, state->vtxcnt_per_prim_vars[stream], nir_imm_int(b, 0), 0x1); /* .x */ } nir_instr_remove(&intrin->instr); state->progress = true; } static bool rewrite_intrinsics(nir_block *block, struct state *state) { nir_foreach_instr_safe(instr, block) { if (instr->type != nir_instr_type_intrinsic) continue; nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr); switch (intrin->intrinsic) { case nir_intrinsic_emit_vertex: case nir_intrinsic_emit_vertex_with_counter: rewrite_emit_vertex(intrin, state); break; case nir_intrinsic_end_primitive: case nir_intrinsic_end_primitive_with_counter: rewrite_end_primitive(intrin, state); break; default: /* not interesting; skip this */ break; } } return true; } /** * Add a set_vertex_and_primitive_count intrinsic at the end of the program * (representing the final total vertex and primitive count). */ static void append_set_vertex_and_primitive_count(nir_block *end_block, struct state *state) { nir_builder *b = state->builder; nir_shader *shader = state->builder->shader; /* Insert the new intrinsic in all of the predecessors of the end block, * but before any jump instructions (return). */ set_foreach(end_block->predecessors, entry) { nir_block *pred = (nir_block *) entry->key; b->cursor = nir_after_block_before_jump(pred); for (unsigned stream = 0; stream < NIR_MAX_XFB_STREAMS; ++stream) { /* When it's not per-stream, we only need to write one variable. */ if (!state->per_stream && stream != 0) continue; nir_ssa_def *vtx_cnt; nir_ssa_def *prim_cnt; if (state->per_stream && !(shader->info.gs.active_stream_mask & (1 << stream))) { /* Inactive stream: vertex count is 0, primitive count is 0 or undef. */ vtx_cnt = nir_imm_int(b, 0); prim_cnt = state->count_prims ? nir_imm_int(b, 0) : nir_ssa_undef(b, 1, 32); } else { if (state->overwrite_incomplete) overwrite_incomplete_primitives(state, stream); vtx_cnt = nir_load_var(b, state->vertex_count_vars[stream]); prim_cnt = state->count_prims ? nir_load_var(b, state->primitive_count_vars[stream]) : nir_ssa_undef(b, 1, 32); } nir_set_vertex_and_primitive_count(b, vtx_cnt, prim_cnt, stream); state->progress = true; } } } /** * Check to see if there are any blocks that need set_vertex_and_primitive_count * * If every block that could need the set_vertex_and_primitive_count intrinsic * already has one, there is nothing for this pass to do. */ static bool a_block_needs_set_vertex_and_primitive_count(nir_block *end_block, bool per_stream) { set_foreach(end_block->predecessors, entry) { nir_block *pred = (nir_block *) entry->key; for (unsigned stream = 0; stream < NIR_MAX_XFB_STREAMS; ++stream) { /* When it's not per-stream, we only need to write one variable. */ if (!per_stream && stream != 0) continue; bool found = false; nir_foreach_instr_reverse(instr, pred) { if (instr->type != nir_instr_type_intrinsic) continue; const nir_intrinsic_instr *const intrin = nir_instr_as_intrinsic(instr); if (intrin->intrinsic == nir_intrinsic_set_vertex_and_primitive_count && intrin->const_index[0] == stream) { found = true; break; } } if (!found) return true; } } return false; } bool nir_lower_gs_intrinsics(nir_shader *shader, nir_lower_gs_intrinsics_flags options) { bool per_stream = options & nir_lower_gs_intrinsics_per_stream; bool count_primitives = options & nir_lower_gs_intrinsics_count_primitives; bool overwrite_incomplete = options & nir_lower_gs_intrinsics_overwrite_incomplete; bool count_vtx_per_prim = overwrite_incomplete || (options & nir_lower_gs_intrinsics_count_vertices_per_primitive); struct state state; state.progress = false; state.count_prims = count_primitives; state.count_vtx_per_prim = count_vtx_per_prim; state.overwrite_incomplete = overwrite_incomplete; state.per_stream = per_stream; nir_function_impl *impl = nir_shader_get_entrypoint(shader); assert(impl); if (!a_block_needs_set_vertex_and_primitive_count(impl->end_block, per_stream)) return false; nir_builder b; nir_builder_init(&b, impl); state.builder = &b; b.cursor = nir_before_cf_list(&impl->body); for (unsigned i = 0; i < NIR_MAX_XFB_STREAMS; i++) { if (per_stream && !(shader->info.gs.active_stream_mask & (1 << i))) continue; if (i == 0 || per_stream) { state.vertex_count_vars[i] = nir_local_variable_create(impl, glsl_uint_type(), "vertex_count"); /* initialize to 0 */ nir_store_var(&b, state.vertex_count_vars[i], nir_imm_int(&b, 0), 0x1); if (count_primitives) { state.primitive_count_vars[i] = nir_local_variable_create(impl, glsl_uint_type(), "primitive_count"); /* initialize to 1 */ nir_store_var(&b, state.primitive_count_vars[i], nir_imm_int(&b, 1), 0x1); } if (count_vtx_per_prim) { state.vtxcnt_per_prim_vars[i] = nir_local_variable_create(impl, glsl_uint_type(), "vertices_per_primitive"); /* initialize to 0 */ nir_store_var(&b, state.vtxcnt_per_prim_vars[i], nir_imm_int(&b, 0), 0x1); } } else { /* If per_stream is false, we only have one counter of each kind which we * want to use for all streams. Duplicate the counter pointers so all * streams use the same counters. */ state.vertex_count_vars[i] = state.vertex_count_vars[0]; if (count_primitives) state.primitive_count_vars[i] = state.primitive_count_vars[0]; if (count_vtx_per_prim) state.vtxcnt_per_prim_vars[i] = state.vtxcnt_per_prim_vars[0]; } } nir_foreach_block_safe(block, impl) rewrite_intrinsics(block, &state); /* This only works because we have a single main() function. */ append_set_vertex_and_primitive_count(impl->end_block, &state); nir_metadata_preserve(impl, 0); return state.progress; }