/* * Copyright © 2018 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "nir.h" #include "nir_builder.h" static bool assert_ssa_def_is_not_1bit(nir_ssa_def *def, UNUSED void *unused) { assert(def->bit_size > 1); return true; } static bool rewrite_1bit_ssa_def_to_32bit(nir_ssa_def *def, void *_progress) { bool *progress = _progress; if (def->bit_size == 1) { def->bit_size = 32; *progress = true; } return true; } static uint32_t get_bool_convert_opcode(uint32_t dst_bit_size) { switch (dst_bit_size) { case 32: return nir_op_i2i32; case 16: return nir_op_i2i16; case 8: return nir_op_i2i8; default: unreachable("invalid boolean bit-size"); } } static void make_sources_canonical(nir_builder *b, nir_alu_instr *alu, uint32_t start_idx) { /* TODO: for now we take the bit-size of the first source as the canonical * form but we could try to be smarter. */ const nir_op_info *op_info = &nir_op_infos[alu->op]; uint32_t bit_size = nir_src_bit_size(alu->src[start_idx].src); for (uint32_t i = start_idx + 1; i < op_info->num_inputs; i++) { if (nir_src_bit_size(alu->src[i].src) != bit_size) { b->cursor = nir_before_instr(&alu->instr); nir_op convert_op = get_bool_convert_opcode(bit_size); nir_ssa_def *new_src = nir_build_alu(b, convert_op, alu->src[i].src.ssa, NULL, NULL, NULL); /* Retain the write mask and swizzle of the original instruction so * that we don’t unnecessarily create a vectorized instruction. */ nir_alu_instr *conv_instr = nir_instr_as_alu(nir_builder_last_instr(b)); conv_instr->dest.write_mask = alu->dest.write_mask; conv_instr->dest.dest.ssa.num_components = alu->dest.dest.ssa.num_components; memcpy(conv_instr->src[0].swizzle, alu->src[i].swizzle, sizeof(conv_instr->src[0].swizzle)); nir_instr_rewrite_src(&alu->instr, &alu->src[i].src, nir_src_for_ssa(new_src)); /* The swizzle will have been handled by the conversion instruction * so we can reset it back to the default */ for (unsigned j = 0; j < NIR_MAX_VEC_COMPONENTS; j++) alu->src[i].swizzle[j] = j; } } } static bool lower_alu_instr(nir_builder *b, nir_alu_instr *alu) { const nir_op_info *op_info = &nir_op_infos[alu->op]; /* For operations that can take multiple boolean sources we need to ensure * that all booleans have the same bit-size */ switch (alu->op) { case nir_op_mov: case nir_op_vec2: case nir_op_vec3: case nir_op_vec4: case nir_op_vec5: case nir_op_vec8: case nir_op_vec16: case nir_op_inot: case nir_op_iand: case nir_op_ior: case nir_op_ixor: if (nir_dest_bit_size(alu->dest.dest) > 1) return false; /* Not a boolean instruction */ FALLTHROUGH; case nir_op_ball_fequal2: case nir_op_ball_fequal3: case nir_op_ball_fequal4: case nir_op_bany_fnequal2: case nir_op_bany_fnequal3: case nir_op_bany_fnequal4: case nir_op_ball_iequal2: case nir_op_ball_iequal3: case nir_op_ball_iequal4: case nir_op_bany_inequal2: case nir_op_bany_inequal3: case nir_op_bany_inequal4: case nir_op_ieq: case nir_op_ine: make_sources_canonical(b, alu, 0); break; case nir_op_bcsel: /* bcsel may be choosing between boolean sources too */ if (nir_dest_bit_size(alu->dest.dest) == 1) make_sources_canonical(b, alu, 1); break; default: break; } /* Now that we have a canonical boolean bit-size, go on and rewrite the * instruction to match the canonical bit-size. */ uint32_t bit_size = nir_src_bit_size(alu->src[0].src); assert(bit_size > 1); nir_op opcode = alu->op; switch (opcode) { case nir_op_mov: case nir_op_vec2: case nir_op_vec3: case nir_op_vec4: case nir_op_vec5: case nir_op_vec8: case nir_op_vec16: case nir_op_inot: case nir_op_iand: case nir_op_ior: case nir_op_ixor: /* Nothing to do here, we do not specialize these opcodes by bit-size */ break; case nir_op_f2b1: opcode = bit_size == 8 ? nir_op_f2b8 : bit_size == 16 ? nir_op_f2b16 : nir_op_f2b32; break; case nir_op_i2b1: opcode = bit_size == 8 ? nir_op_i2b8 : bit_size == 16 ? nir_op_i2b16 : nir_op_i2b32; break; case nir_op_b2b1: /* Since the canonical bit size is the size of the src, it's a no-op */ opcode = nir_op_mov; break; case nir_op_b2b32: /* For up-converting booleans, sign-extend */ opcode = nir_op_i2i32; break; case nir_op_flt: opcode = bit_size == 8 ? nir_op_flt8 : bit_size == 16 ? nir_op_flt16 : nir_op_flt32; break; case nir_op_fge: opcode = bit_size == 8 ? nir_op_fge8 : bit_size == 16 ? nir_op_fge16 : nir_op_fge32; break; case nir_op_feq: opcode = bit_size == 8 ? nir_op_feq8 : bit_size == 16 ? nir_op_feq16 : nir_op_feq32; break; case nir_op_fneu: opcode = bit_size == 8 ? nir_op_fneu8 : bit_size == 16 ? nir_op_fneu16 : nir_op_fneu32; break; case nir_op_ilt: opcode = bit_size == 8 ? nir_op_ilt8 : bit_size == 16 ? nir_op_ilt16 : nir_op_ilt32; break; case nir_op_ige: opcode = bit_size == 8 ? nir_op_ige8 : bit_size == 16 ? nir_op_ige16 : nir_op_ige32; break; case nir_op_ieq: opcode = bit_size == 8 ? nir_op_ieq8 : bit_size == 16 ? nir_op_ieq16 : nir_op_ieq32; break; case nir_op_ine: opcode = bit_size == 8 ? nir_op_ine8 : bit_size == 16 ? nir_op_ine16 : nir_op_ine32; break; case nir_op_ult: opcode = bit_size == 8 ? nir_op_ult8 : bit_size == 16 ? nir_op_ult16 : nir_op_ult32; break; case nir_op_uge: opcode = bit_size == 8 ? nir_op_uge8 : bit_size == 16 ? nir_op_uge16 : nir_op_uge32; break; case nir_op_ball_fequal2: opcode = bit_size == 8 ? nir_op_b8all_fequal2 : bit_size == 16 ? nir_op_b16all_fequal2 : nir_op_b32all_fequal2; break; case nir_op_ball_fequal3: opcode = bit_size == 8 ? nir_op_b8all_fequal3 : bit_size == 16 ? nir_op_b16all_fequal3 : nir_op_b32all_fequal3; break; case nir_op_ball_fequal4: opcode = bit_size == 8 ? nir_op_b8all_fequal4 : bit_size == 16 ? nir_op_b16all_fequal4 : nir_op_b32all_fequal4; break; case nir_op_bany_fnequal2: opcode = bit_size == 8 ? nir_op_b8any_fnequal2 : bit_size == 16 ? nir_op_b16any_fnequal2 : nir_op_b32any_fnequal2; break; case nir_op_bany_fnequal3: opcode = bit_size == 8 ? nir_op_b8any_fnequal3 : bit_size == 16 ? nir_op_b16any_fnequal3 : nir_op_b32any_fnequal3; break; case nir_op_bany_fnequal4: opcode = bit_size == 8 ? nir_op_b8any_fnequal4 : bit_size == 16 ? nir_op_b16any_fnequal4 : nir_op_b32any_fnequal4; break; case nir_op_ball_iequal2: opcode = bit_size == 8 ? nir_op_b8all_iequal2 : bit_size == 16 ? nir_op_b16all_iequal2 : nir_op_b32all_iequal2; break; case nir_op_ball_iequal3: opcode = bit_size == 8 ? nir_op_b8all_iequal3 : bit_size == 16 ? nir_op_b16all_iequal3 : nir_op_b32all_iequal3; break; case nir_op_ball_iequal4: opcode = bit_size == 8 ? nir_op_b8all_iequal4 : bit_size == 16 ? nir_op_b16all_iequal4 : nir_op_b32all_iequal4; break; case nir_op_bany_inequal2: opcode = bit_size == 8 ? nir_op_b8any_inequal2 : bit_size == 16 ? nir_op_b16any_inequal2 : nir_op_b32any_inequal2; break; case nir_op_bany_inequal3: opcode = bit_size == 8 ? nir_op_b8any_inequal3 : bit_size == 16 ? nir_op_b16any_inequal3 : nir_op_b32any_inequal3; break; case nir_op_bany_inequal4: opcode = bit_size == 8 ? nir_op_b8any_inequal4 : bit_size == 16 ? nir_op_b16any_inequal4 : nir_op_b32any_inequal4; break; case nir_op_bcsel: opcode = bit_size == 8 ? nir_op_b8csel : bit_size == 16 ? nir_op_b16csel : nir_op_b32csel; /* The destination of the selection may have a different bit-size from * the bcsel condition. */ bit_size = nir_src_bit_size(alu->src[1].src); break; default: assert(alu->dest.dest.ssa.bit_size > 1); for (unsigned i = 0; i < op_info->num_inputs; i++) assert(alu->src[i].src.ssa->bit_size > 1); return false; } alu->op = opcode; if (alu->dest.dest.ssa.bit_size == 1) alu->dest.dest.ssa.bit_size = bit_size; return true; } static bool lower_load_const_instr(nir_load_const_instr *load) { bool progress = false; if (load->def.bit_size > 1) return progress; /* TODO: It is not clear if there is any case in which we can ever hit * this path, so for now we just provide a 32-bit default. * * TODO2: after some changed on nir_const_value and other on upstream, we * removed the initialization of a general value like this: * nir_const_value value = load->value * * to initialize per value component. Need to confirm if that is correct, * but look at the TOO before. */ for (unsigned i = 0; i < load->def.num_components; i++) { load->value[i].u32 = load->value[i].b ? NIR_TRUE : NIR_FALSE; load->def.bit_size = 32; progress = true; } return progress; } static bool lower_phi_instr(nir_builder *b, nir_phi_instr *phi) { if (nir_dest_bit_size(phi->dest) != 1) return false; /* Ensure all phi sources have a canonical bit-size. We choose the * bit-size of the first phi source as the canonical form. * * TODO: maybe we can be smarter about how we choose the canonical form. */ uint32_t dst_bit_size = 0; nir_foreach_phi_src(phi_src, phi) { uint32_t src_bit_size = nir_src_bit_size(phi_src->src); if (dst_bit_size == 0) { dst_bit_size = src_bit_size; } else if (src_bit_size != dst_bit_size) { assert(phi_src->src.is_ssa); b->cursor = nir_before_src(&phi_src->src, false); nir_op convert_op = get_bool_convert_opcode(dst_bit_size); nir_ssa_def *new_src = nir_build_alu(b, convert_op, phi_src->src.ssa, NULL, NULL, NULL); nir_instr_rewrite_src(&phi->instr, &phi_src->src, nir_src_for_ssa(new_src)); } } phi->dest.ssa.bit_size = dst_bit_size; return true; } static bool lower_tex_instr(nir_tex_instr *tex) { bool progress = false; rewrite_1bit_ssa_def_to_32bit(&tex->dest.ssa, &progress); if (tex->dest_type == nir_type_bool1) { tex->dest_type = nir_type_bool32; progress = true; } return progress; } static bool nir_lower_bool_to_bitsize_impl(nir_builder *b, nir_function_impl *impl) { bool progress = false; nir_foreach_block(block, impl) { nir_foreach_instr_safe(instr, block) { switch (instr->type) { case nir_instr_type_alu: progress |= lower_alu_instr(b, nir_instr_as_alu(instr)); break; case nir_instr_type_load_const: progress |= lower_load_const_instr(nir_instr_as_load_const(instr)); break; case nir_instr_type_phi: progress |= lower_phi_instr(b, nir_instr_as_phi(instr)); break; case nir_instr_type_ssa_undef: case nir_instr_type_intrinsic: nir_foreach_ssa_def(instr, rewrite_1bit_ssa_def_to_32bit, &progress); break; case nir_instr_type_tex: progress |= lower_tex_instr(nir_instr_as_tex(instr)); break; default: nir_foreach_ssa_def(instr, assert_ssa_def_is_not_1bit, NULL); } } } if (progress) { nir_metadata_preserve(impl, nir_metadata_block_index | nir_metadata_dominance); } return progress; } bool nir_lower_bool_to_bitsize(nir_shader *shader) { nir_builder b; bool progress = false; nir_foreach_function(function, shader) { if (function->impl) { nir_builder_init(&b, function->impl); progress = nir_lower_bool_to_bitsize_impl(&b, function->impl) || progress; } } return progress; }