/* * Copyright (C) 2021 Alyssa Rosenzweig * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "agx_compiler.h" #include "agx_minifloat.h" /* AGX peephole optimizer responsible for instruction combining. It operates in * a forward direction and a backward direction, in each case traversing in * source order. SSA means the forward pass satisfies the invariant: * * Every def is visited before any of its uses. * * Dually, the backend pass satisfies the invariant: * * Every use of a def is visited before the def. * * This means the forward pass can propagate modifiers forward, whereas the * backwards pass propagates modifiers backward. Consider an example: * * 1 = fabs 0 * 2 = fround 1 * 3 = fsat 1 * * The forwards pass would propagate the fabs to the fround (since we can * lookup the fabs from the fround source and do the replacement). By contrast * the backwards pass would propagate the fsat back to the fround (since when * we see the fround we know it has only a single user, fsat). Propagatable * instruction have natural directions (like pushforwards and pullbacks). * * We are careful to update the tracked state whenever we modify an instruction * to ensure the passes are linear-time and converge in a single iteration. * * Size conversions are worth special discussion. Consider the snippet: * * 2 = fadd 0, 1 * 3 = f2f16 2 * 4 = fround 3 * * A priori, we can move the f2f16 in either direction. But it's not equal -- * if we move it up to the fadd, we get FP16 for two instructions, whereas if * we push it into the fround, we effectively get FP32 for two instructions. So * f2f16 is backwards. Likewise, consider * * 2 = fadd 0, 1 * 3 = f2f32 1 * 4 = fround 3 * * This time if we move f2f32 up to the fadd, we get FP32 for two, but if we * move it down to the fround, we get FP16 to too. So f2f32 is backwards. */ static bool agx_is_fmov(agx_instr *def) { return (def->op == AGX_OPCODE_FADD) && agx_is_equiv(def->src[1], agx_negzero()); } /* Compose floating-point modifiers with floating-point sources */ static agx_index agx_compose_float_src(agx_index to, agx_index from) { if (to.abs) from.neg = false; from.abs |= to.abs; from.neg |= to.neg; return from; } static void agx_optimizer_fmov(agx_instr **defs, agx_instr *ins) { agx_foreach_src(ins, s) { agx_index src = ins->src[s]; if (src.type != AGX_INDEX_NORMAL) continue; agx_instr *def = defs[src.value]; if (def == NULL) continue; /* happens for phis in loops */ if (!agx_is_fmov(def)) continue; if (def->saturate) continue; ins->src[s] = agx_compose_float_src(src, def->src[0]); } } static void agx_optimizer_inline_imm(agx_instr **defs, agx_instr *I, unsigned srcs, bool is_float) { for (unsigned s = 0; s < srcs; ++s) { agx_index src = I->src[s]; if (src.type != AGX_INDEX_NORMAL) continue; agx_instr *def = defs[src.value]; if (def->op != AGX_OPCODE_MOV_IMM) continue; uint8_t value = def->imm; bool float_src = is_float; /* cmpselsrc takes integer immediates only */ if (s >= 2 && I->op == AGX_OPCODE_FCMPSEL) float_src = false; if (float_src) { bool fp16 = (def->dest[0].size == AGX_SIZE_16); assert(fp16 || (def->dest[0].size == AGX_SIZE_32)); float f = fp16 ? _mesa_half_to_float(def->imm) : uif(def->imm); if (!agx_minifloat_exact(f)) continue; value = agx_minifloat_encode(f); } else if (value != def->imm) { continue; } I->src[s].type = AGX_INDEX_IMMEDIATE; I->src[s].value = value; } } static bool agx_optimizer_fmov_rev(agx_instr *I, agx_instr *use) { if (!agx_is_fmov(use)) return false; if (use->src[0].neg || use->src[0].abs) return false; /* saturate(saturate(x)) = saturate(x) */ I->saturate |= use->saturate; I->dest[0] = use->dest[0]; return true; } static void agx_optimizer_copyprop(agx_instr **defs, agx_instr *I) { agx_foreach_src(I, s) { agx_index src = I->src[s]; if (src.type != AGX_INDEX_NORMAL) continue; agx_instr *def = defs[src.value]; if (def == NULL) continue; /* happens for phis in loops */ if (def->op != AGX_OPCODE_MOV) continue; /* At the moment, not all instructions support size conversions. Notably * RA pseudo instructions don't handle size conversions. This should be * refined in the future. */ if (def->src[0].size != src.size) continue; /* Immediate inlining happens elsewhere */ if (def->src[0].type == AGX_INDEX_IMMEDIATE) continue; I->src[s] = agx_replace_index(src, def->src[0]); } } static void agx_optimizer_forward(agx_context *ctx) { agx_instr **defs = calloc(ctx->alloc, sizeof(*defs)); agx_foreach_instr_global(ctx, I) { struct agx_opcode_info info = agx_opcodes_info[I->op]; agx_foreach_dest(I, d) { if (I->dest[d].type == AGX_INDEX_NORMAL) defs[I->dest[d].value] = I; } /* Optimize moves */ agx_optimizer_copyprop(defs, I); /* Propagate fmov down */ if (info.is_float) agx_optimizer_fmov(defs, I); /* Inline immediates if we can. TODO: systematic */ if (I->op != AGX_OPCODE_ST_VARY && I->op != AGX_OPCODE_ST_TILE && I->op != AGX_OPCODE_P_EXTRACT && I->op != AGX_OPCODE_P_COMBINE) agx_optimizer_inline_imm(defs, I, info.nr_srcs, info.is_float); } free(defs); } static void agx_optimizer_backward(agx_context *ctx) { agx_instr **uses = calloc(ctx->alloc, sizeof(*uses)); BITSET_WORD *multiple = calloc(BITSET_WORDS(ctx->alloc), sizeof(*multiple)); agx_foreach_instr_global_rev(ctx, I) { struct agx_opcode_info info = agx_opcodes_info[I->op]; for (unsigned s = 0; s < info.nr_srcs; ++s) { if (I->src[s].type == AGX_INDEX_NORMAL) { unsigned v = I->src[s].value; if (uses[v]) BITSET_SET(multiple, v); else uses[v] = I; } } if (info.nr_dests != 1) continue; if (I->dest[0].type != AGX_INDEX_NORMAL) continue; agx_instr *use = uses[I->dest[0].value]; if (!use || BITSET_TEST(multiple, I->dest[0].value)) continue; /* Destination has a single use, try to propagate */ if (info.is_float && agx_optimizer_fmov_rev(I, use)) { agx_remove_instruction(use); continue; } } free(uses); free(multiple); } void agx_optimizer(agx_context *ctx) { agx_optimizer_backward(ctx); agx_optimizer_forward(ctx); }