/* * Copyright © 2016 Dave Airlie * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #include "nir/nir_builder.h" #include "radv_meta.h" #include "radv_private.h" #include "sid.h" #include "vk_format.h" static nir_shader * build_resolve_fragment_shader(struct radv_device *dev, bool is_integer, int samples) { const struct glsl_type *vec4 = glsl_vec4_type(); const struct glsl_type *sampler_type = glsl_sampler_type(GLSL_SAMPLER_DIM_MS, false, false, GLSL_TYPE_FLOAT); nir_builder b = radv_meta_init_shader(dev, MESA_SHADER_FRAGMENT, "meta_resolve_fs-%d-%s", samples, is_integer ? "int" : "float"); nir_variable *input_img = nir_variable_create(b.shader, nir_var_uniform, sampler_type, "s_tex"); input_img->data.descriptor_set = 0; input_img->data.binding = 0; nir_variable *color_out = nir_variable_create(b.shader, nir_var_shader_out, vec4, "f_color"); color_out->data.location = FRAG_RESULT_DATA0; nir_ssa_def *pos_in = nir_channels(&b, nir_load_frag_coord(&b), 0x3); nir_ssa_def *src_offset = nir_load_push_constant(&b, 2, 32, nir_imm_int(&b, 0), .range = 8); nir_ssa_def *pos_int = nir_f2i32(&b, pos_in); nir_ssa_def *img_coord = nir_channels(&b, nir_iadd(&b, pos_int, src_offset), 0x3); nir_variable *color = nir_local_variable_create(b.impl, glsl_vec4_type(), "color"); radv_meta_build_resolve_shader_core(&b, is_integer, samples, input_img, color, img_coord); nir_ssa_def *outval = nir_load_var(&b, color); nir_store_var(&b, color_out, outval, 0xf); return b.shader; } static VkResult create_layout(struct radv_device *device) { VkResult result; /* * one descriptors for the image being sampled */ VkDescriptorSetLayoutCreateInfo ds_create_info = { .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, .flags = VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR, .bindingCount = 1, .pBindings = (VkDescriptorSetLayoutBinding[]){ {.binding = 0, .descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, .descriptorCount = 1, .stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT, .pImmutableSamplers = NULL}, }}; result = radv_CreateDescriptorSetLayout(radv_device_to_handle(device), &ds_create_info, &device->meta_state.alloc, &device->meta_state.resolve_fragment.ds_layout); if (result != VK_SUCCESS) goto fail; VkPipelineLayoutCreateInfo pl_create_info = { .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, .setLayoutCount = 1, .pSetLayouts = &device->meta_state.resolve_fragment.ds_layout, .pushConstantRangeCount = 1, .pPushConstantRanges = &(VkPushConstantRange){VK_SHADER_STAGE_FRAGMENT_BIT, 0, 8}, }; result = radv_CreatePipelineLayout(radv_device_to_handle(device), &pl_create_info, &device->meta_state.alloc, &device->meta_state.resolve_fragment.p_layout); if (result != VK_SUCCESS) goto fail; return VK_SUCCESS; fail: return result; } static const VkPipelineVertexInputStateCreateInfo normal_vi_create_info = { .sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO, .vertexBindingDescriptionCount = 0, .vertexAttributeDescriptionCount = 0, }; static VkResult create_resolve_pipeline(struct radv_device *device, int samples_log2, VkFormat format) { mtx_lock(&device->meta_state.mtx); unsigned fs_key = radv_format_meta_fs_key(device, format); VkPipeline *pipeline = &device->meta_state.resolve_fragment.rc[samples_log2].pipeline[fs_key]; if (*pipeline) { mtx_unlock(&device->meta_state.mtx); return VK_SUCCESS; } VkResult result; bool is_integer = false; uint32_t samples = 1 << samples_log2; const VkPipelineVertexInputStateCreateInfo *vi_create_info; vi_create_info = &normal_vi_create_info; if (vk_format_is_int(format)) is_integer = true; nir_shader *fs = build_resolve_fragment_shader(device, is_integer, samples); nir_shader *vs = radv_meta_build_nir_vs_generate_vertices(device); VkPipelineShaderStageCreateInfo pipeline_shader_stages[] = { {.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_VERTEX_BIT, .module = vk_shader_module_handle_from_nir(vs), .pName = "main", .pSpecializationInfo = NULL}, {.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_FRAGMENT_BIT, .module = vk_shader_module_handle_from_nir(fs), .pName = "main", .pSpecializationInfo = NULL}, }; const VkPipelineRenderingCreateInfo rendering_create_info = { .sType = VK_STRUCTURE_TYPE_PIPELINE_RENDERING_CREATE_INFO, .colorAttachmentCount = 1, .pColorAttachmentFormats = &format, }; const VkGraphicsPipelineCreateInfo vk_pipeline_info = { .sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO, .pNext = &rendering_create_info, .stageCount = ARRAY_SIZE(pipeline_shader_stages), .pStages = pipeline_shader_stages, .pVertexInputState = vi_create_info, .pInputAssemblyState = &(VkPipelineInputAssemblyStateCreateInfo){ .sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO, .topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP, .primitiveRestartEnable = false, }, .pViewportState = &(VkPipelineViewportStateCreateInfo){ .sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO, .viewportCount = 1, .scissorCount = 1, }, .pRasterizationState = &(VkPipelineRasterizationStateCreateInfo){ .sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO, .rasterizerDiscardEnable = false, .polygonMode = VK_POLYGON_MODE_FILL, .cullMode = VK_CULL_MODE_NONE, .frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE, .depthBiasConstantFactor = 0.0f, .depthBiasClamp = 0.0f, .depthBiasSlopeFactor = 0.0f, .lineWidth = 1.0f}, .pMultisampleState = &(VkPipelineMultisampleStateCreateInfo){ .sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO, .rasterizationSamples = 1, .sampleShadingEnable = false, .pSampleMask = (VkSampleMask[]){UINT32_MAX}, }, .pColorBlendState = &(VkPipelineColorBlendStateCreateInfo){ .sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO, .attachmentCount = 1, .pAttachments = (VkPipelineColorBlendAttachmentState[]){ {.colorWriteMask = VK_COLOR_COMPONENT_A_BIT | VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT}, }, .blendConstants = { 0.0f, 0.0f, 0.0f, 0.0f }}, .pDynamicState = &(VkPipelineDynamicStateCreateInfo){ .sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO, .dynamicStateCount = 2, .pDynamicStates = (VkDynamicState[]){ VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR, }, }, .flags = 0, .layout = device->meta_state.resolve_fragment.p_layout, .renderPass = VK_NULL_HANDLE, .subpass = 0, }; const struct radv_graphics_pipeline_create_info radv_pipeline_info = {.use_rectlist = true}; result = radv_graphics_pipeline_create( radv_device_to_handle(device), radv_pipeline_cache_to_handle(&device->meta_state.cache), &vk_pipeline_info, &radv_pipeline_info, &device->meta_state.alloc, pipeline); ralloc_free(vs); ralloc_free(fs); mtx_unlock(&device->meta_state.mtx); return result; } enum { DEPTH_RESOLVE, STENCIL_RESOLVE }; static const char * get_resolve_mode_str(VkResolveModeFlagBits resolve_mode) { switch (resolve_mode) { case VK_RESOLVE_MODE_SAMPLE_ZERO_BIT: return "zero"; case VK_RESOLVE_MODE_AVERAGE_BIT: return "average"; case VK_RESOLVE_MODE_MIN_BIT: return "min"; case VK_RESOLVE_MODE_MAX_BIT: return "max"; default: unreachable("invalid resolve mode"); } } static nir_shader * build_depth_stencil_resolve_fragment_shader(struct radv_device *dev, int samples, int index, VkResolveModeFlagBits resolve_mode) { const struct glsl_type *vec4 = glsl_vec4_type(); const struct glsl_type *sampler_type = glsl_sampler_type(GLSL_SAMPLER_DIM_2D, false, false, GLSL_TYPE_FLOAT); nir_builder b = radv_meta_init_shader(dev, MESA_SHADER_FRAGMENT, "meta_resolve_fs_%s-%s-%d", index == DEPTH_RESOLVE ? "depth" : "stencil", get_resolve_mode_str(resolve_mode), samples); nir_variable *input_img = nir_variable_create(b.shader, nir_var_uniform, sampler_type, "s_tex"); input_img->data.descriptor_set = 0; input_img->data.binding = 0; nir_variable *fs_out = nir_variable_create(b.shader, nir_var_shader_out, vec4, "f_out"); fs_out->data.location = index == DEPTH_RESOLVE ? FRAG_RESULT_DEPTH : FRAG_RESULT_STENCIL; nir_ssa_def *pos_in = nir_channels(&b, nir_load_frag_coord(&b), 0x3); nir_ssa_def *pos_int = nir_f2i32(&b, pos_in); nir_ssa_def *img_coord = nir_channels(&b, pos_int, 0x3); nir_ssa_def *input_img_deref = &nir_build_deref_var(&b, input_img)->dest.ssa; nir_alu_type type = index == DEPTH_RESOLVE ? nir_type_float32 : nir_type_uint32; nir_tex_instr *tex = nir_tex_instr_create(b.shader, 3); tex->sampler_dim = GLSL_SAMPLER_DIM_MS; tex->op = nir_texop_txf_ms; tex->src[0].src_type = nir_tex_src_coord; tex->src[0].src = nir_src_for_ssa(img_coord); tex->src[1].src_type = nir_tex_src_ms_index; tex->src[1].src = nir_src_for_ssa(nir_imm_int(&b, 0)); tex->src[2].src_type = nir_tex_src_texture_deref; tex->src[2].src = nir_src_for_ssa(input_img_deref); tex->dest_type = type; tex->is_array = false; tex->coord_components = 2; nir_ssa_dest_init(&tex->instr, &tex->dest, 4, 32, "tex"); nir_builder_instr_insert(&b, &tex->instr); nir_ssa_def *outval = &tex->dest.ssa; if (resolve_mode != VK_RESOLVE_MODE_SAMPLE_ZERO_BIT) { for (int i = 1; i < samples; i++) { nir_tex_instr *tex_add = nir_tex_instr_create(b.shader, 3); tex_add->sampler_dim = GLSL_SAMPLER_DIM_MS; tex_add->op = nir_texop_txf_ms; tex_add->src[0].src_type = nir_tex_src_coord; tex_add->src[0].src = nir_src_for_ssa(img_coord); tex_add->src[1].src_type = nir_tex_src_ms_index; tex_add->src[1].src = nir_src_for_ssa(nir_imm_int(&b, i)); tex_add->src[2].src_type = nir_tex_src_texture_deref; tex_add->src[2].src = nir_src_for_ssa(input_img_deref); tex_add->dest_type = type; tex_add->is_array = false; tex_add->coord_components = 2; nir_ssa_dest_init(&tex_add->instr, &tex_add->dest, 4, 32, "tex"); nir_builder_instr_insert(&b, &tex_add->instr); switch (resolve_mode) { case VK_RESOLVE_MODE_AVERAGE_BIT: assert(index == DEPTH_RESOLVE); outval = nir_fadd(&b, outval, &tex_add->dest.ssa); break; case VK_RESOLVE_MODE_MIN_BIT: if (index == DEPTH_RESOLVE) outval = nir_fmin(&b, outval, &tex_add->dest.ssa); else outval = nir_umin(&b, outval, &tex_add->dest.ssa); break; case VK_RESOLVE_MODE_MAX_BIT: if (index == DEPTH_RESOLVE) outval = nir_fmax(&b, outval, &tex_add->dest.ssa); else outval = nir_umax(&b, outval, &tex_add->dest.ssa); break; default: unreachable("invalid resolve mode"); } } if (resolve_mode == VK_RESOLVE_MODE_AVERAGE_BIT) outval = nir_fdiv(&b, outval, nir_imm_float(&b, samples)); } nir_store_var(&b, fs_out, outval, 0x1); return b.shader; } static VkResult create_depth_stencil_resolve_pipeline(struct radv_device *device, int samples_log2, int index, VkResolveModeFlagBits resolve_mode) { VkPipeline *pipeline; VkResult result; mtx_lock(&device->meta_state.mtx); switch (resolve_mode) { case VK_RESOLVE_MODE_SAMPLE_ZERO_BIT: if (index == DEPTH_RESOLVE) pipeline = &device->meta_state.resolve_fragment.depth_zero_pipeline; else pipeline = &device->meta_state.resolve_fragment.stencil_zero_pipeline; break; case VK_RESOLVE_MODE_AVERAGE_BIT: assert(index == DEPTH_RESOLVE); pipeline = &device->meta_state.resolve_fragment.depth[samples_log2].average_pipeline; break; case VK_RESOLVE_MODE_MIN_BIT: if (index == DEPTH_RESOLVE) pipeline = &device->meta_state.resolve_fragment.depth[samples_log2].min_pipeline; else pipeline = &device->meta_state.resolve_fragment.stencil[samples_log2].min_pipeline; break; case VK_RESOLVE_MODE_MAX_BIT: if (index == DEPTH_RESOLVE) pipeline = &device->meta_state.resolve_fragment.depth[samples_log2].max_pipeline; else pipeline = &device->meta_state.resolve_fragment.stencil[samples_log2].max_pipeline; break; default: unreachable("invalid resolve mode"); } if (*pipeline) { mtx_unlock(&device->meta_state.mtx); return VK_SUCCESS; } uint32_t samples = 1 << samples_log2; nir_shader *fs = build_depth_stencil_resolve_fragment_shader(device, samples, index, resolve_mode); nir_shader *vs = radv_meta_build_nir_vs_generate_vertices(device); VkPipelineShaderStageCreateInfo pipeline_shader_stages[] = { {.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_VERTEX_BIT, .module = vk_shader_module_handle_from_nir(vs), .pName = "main", .pSpecializationInfo = NULL}, {.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_FRAGMENT_BIT, .module = vk_shader_module_handle_from_nir(fs), .pName = "main", .pSpecializationInfo = NULL}, }; VkStencilOp stencil_op = index == DEPTH_RESOLVE ? VK_STENCIL_OP_KEEP : VK_STENCIL_OP_REPLACE; VkPipelineDepthStencilStateCreateInfo depth_stencil_state = { .sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO, .depthTestEnable = true, .depthWriteEnable = index == DEPTH_RESOLVE, .stencilTestEnable = index == STENCIL_RESOLVE, .depthCompareOp = VK_COMPARE_OP_ALWAYS, .front = { .failOp = stencil_op, .passOp = stencil_op, .depthFailOp = stencil_op, .compareOp = VK_COMPARE_OP_ALWAYS, .compareMask = UINT32_MAX, .writeMask = UINT32_MAX, .reference = 0u, }, .back = { .failOp = stencil_op, .passOp = stencil_op, .depthFailOp = stencil_op, .compareOp = VK_COMPARE_OP_ALWAYS, .compareMask = UINT32_MAX, .writeMask = UINT32_MAX, .reference = 0u, }, .minDepthBounds = 0.0f, .maxDepthBounds = 1.0f}; const VkPipelineVertexInputStateCreateInfo *vi_create_info; vi_create_info = &normal_vi_create_info; const VkPipelineRenderingCreateInfo rendering_create_info = { .sType = VK_STRUCTURE_TYPE_PIPELINE_RENDERING_CREATE_INFO, .depthAttachmentFormat = index == DEPTH_RESOLVE ? VK_FORMAT_D32_SFLOAT : VK_FORMAT_UNDEFINED, .stencilAttachmentFormat = index == STENCIL_RESOLVE ? VK_FORMAT_S8_UINT : VK_FORMAT_UNDEFINED, }; const VkGraphicsPipelineCreateInfo vk_pipeline_info = { .sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO, .pNext = &rendering_create_info, .stageCount = ARRAY_SIZE(pipeline_shader_stages), .pStages = pipeline_shader_stages, .pVertexInputState = vi_create_info, .pInputAssemblyState = &(VkPipelineInputAssemblyStateCreateInfo){ .sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO, .topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP, .primitiveRestartEnable = false, }, .pViewportState = &(VkPipelineViewportStateCreateInfo){ .sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO, .viewportCount = 1, .scissorCount = 1, }, .pDepthStencilState = &depth_stencil_state, .pRasterizationState = &(VkPipelineRasterizationStateCreateInfo){ .sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO, .rasterizerDiscardEnable = false, .polygonMode = VK_POLYGON_MODE_FILL, .cullMode = VK_CULL_MODE_NONE, .frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE, .depthBiasConstantFactor = 0.0f, .depthBiasClamp = 0.0f, .depthBiasSlopeFactor = 0.0f, .lineWidth = 1.0f}, .pMultisampleState = &(VkPipelineMultisampleStateCreateInfo){ .sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO, .rasterizationSamples = 1, .sampleShadingEnable = false, .pSampleMask = (VkSampleMask[]){UINT32_MAX}, }, .pColorBlendState = &(VkPipelineColorBlendStateCreateInfo){ .sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO, .attachmentCount = 0, .pAttachments = (VkPipelineColorBlendAttachmentState[]){ {.colorWriteMask = VK_COLOR_COMPONENT_A_BIT | VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT}, }, .blendConstants = { 0.0f, 0.0f, 0.0f, 0.0f }}, .pDynamicState = &(VkPipelineDynamicStateCreateInfo){ .sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO, .dynamicStateCount = 2, .pDynamicStates = (VkDynamicState[]){ VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR, }, }, .flags = 0, .layout = device->meta_state.resolve_fragment.p_layout, .renderPass = VK_NULL_HANDLE, .subpass = 0, }; const struct radv_graphics_pipeline_create_info radv_pipeline_info = {.use_rectlist = true}; result = radv_graphics_pipeline_create( radv_device_to_handle(device), radv_pipeline_cache_to_handle(&device->meta_state.cache), &vk_pipeline_info, &radv_pipeline_info, &device->meta_state.alloc, pipeline); ralloc_free(vs); ralloc_free(fs); mtx_unlock(&device->meta_state.mtx); return result; } VkResult radv_device_init_meta_resolve_fragment_state(struct radv_device *device, bool on_demand) { VkResult res; res = create_layout(device); if (res != VK_SUCCESS) return res; if (on_demand) return VK_SUCCESS; for (uint32_t i = 0; i < MAX_SAMPLES_LOG2; ++i) { for (unsigned j = 0; j < NUM_META_FS_KEYS; ++j) { res = create_resolve_pipeline(device, i, radv_fs_key_format_exemplars[j]); if (res != VK_SUCCESS) return res; } res = create_depth_stencil_resolve_pipeline(device, i, DEPTH_RESOLVE, VK_RESOLVE_MODE_AVERAGE_BIT); if (res != VK_SUCCESS) return res; res = create_depth_stencil_resolve_pipeline(device, i, DEPTH_RESOLVE, VK_RESOLVE_MODE_MIN_BIT); if (res != VK_SUCCESS) return res; res = create_depth_stencil_resolve_pipeline(device, i, DEPTH_RESOLVE, VK_RESOLVE_MODE_MAX_BIT); if (res != VK_SUCCESS) return res; res = create_depth_stencil_resolve_pipeline(device, i, STENCIL_RESOLVE, VK_RESOLVE_MODE_MIN_BIT); if (res != VK_SUCCESS) return res; res = create_depth_stencil_resolve_pipeline(device, i, STENCIL_RESOLVE, VK_RESOLVE_MODE_MAX_BIT); if (res != VK_SUCCESS) return res; } res = create_depth_stencil_resolve_pipeline(device, 0, DEPTH_RESOLVE, VK_RESOLVE_MODE_SAMPLE_ZERO_BIT); if (res != VK_SUCCESS) return res; return create_depth_stencil_resolve_pipeline(device, 0, STENCIL_RESOLVE, VK_RESOLVE_MODE_SAMPLE_ZERO_BIT); } void radv_device_finish_meta_resolve_fragment_state(struct radv_device *device) { struct radv_meta_state *state = &device->meta_state; for (uint32_t i = 0; i < MAX_SAMPLES_LOG2; ++i) { for (unsigned j = 0; j < NUM_META_FS_KEYS; ++j) { radv_DestroyPipeline(radv_device_to_handle(device), state->resolve_fragment.rc[i].pipeline[j], &state->alloc); } radv_DestroyPipeline(radv_device_to_handle(device), state->resolve_fragment.depth[i].average_pipeline, &state->alloc); radv_DestroyPipeline(radv_device_to_handle(device), state->resolve_fragment.depth[i].max_pipeline, &state->alloc); radv_DestroyPipeline(radv_device_to_handle(device), state->resolve_fragment.depth[i].min_pipeline, &state->alloc); radv_DestroyPipeline(radv_device_to_handle(device), state->resolve_fragment.stencil[i].max_pipeline, &state->alloc); radv_DestroyPipeline(radv_device_to_handle(device), state->resolve_fragment.stencil[i].min_pipeline, &state->alloc); } radv_DestroyPipeline(radv_device_to_handle(device), state->resolve_fragment.depth_zero_pipeline, &state->alloc); radv_DestroyPipeline(radv_device_to_handle(device), state->resolve_fragment.stencil_zero_pipeline, &state->alloc); radv_DestroyDescriptorSetLayout(radv_device_to_handle(device), state->resolve_fragment.ds_layout, &state->alloc); radv_DestroyPipelineLayout(radv_device_to_handle(device), state->resolve_fragment.p_layout, &state->alloc); } static VkPipeline * radv_get_resolve_pipeline(struct radv_cmd_buffer *cmd_buffer, struct radv_image_view *src_iview, struct radv_image_view *dst_iview) { struct radv_device *device = cmd_buffer->device; unsigned fs_key = radv_format_meta_fs_key(cmd_buffer->device, dst_iview->vk.format); const uint32_t samples = src_iview->image->info.samples; const uint32_t samples_log2 = ffs(samples) - 1; VkPipeline *pipeline; pipeline = &device->meta_state.resolve_fragment.rc[samples_log2].pipeline[fs_key]; if (!*pipeline) { VkResult ret; ret = create_resolve_pipeline(device, samples_log2, radv_fs_key_format_exemplars[fs_key]); if (ret != VK_SUCCESS) { cmd_buffer->record_result = ret; return NULL; } } return pipeline; } static void emit_resolve(struct radv_cmd_buffer *cmd_buffer, struct radv_image_view *src_iview, struct radv_image_view *dest_iview, const VkOffset2D *src_offset, const VkOffset2D *dest_offset, const VkExtent2D *resolve_extent) { struct radv_device *device = cmd_buffer->device; VkCommandBuffer cmd_buffer_h = radv_cmd_buffer_to_handle(cmd_buffer); VkPipeline *pipeline; radv_meta_push_descriptor_set(cmd_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, cmd_buffer->device->meta_state.resolve_fragment.p_layout, 0, /* set */ 1, /* descriptorWriteCount */ (VkWriteDescriptorSet[]){ {.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, .dstBinding = 0, .dstArrayElement = 0, .descriptorCount = 1, .descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, .pImageInfo = (VkDescriptorImageInfo[]){ { .sampler = VK_NULL_HANDLE, .imageView = radv_image_view_to_handle(src_iview), .imageLayout = VK_IMAGE_LAYOUT_GENERAL, }, }}, }); cmd_buffer->state.flush_bits |= radv_dst_access_flush(cmd_buffer, VK_ACCESS_2_SHADER_READ_BIT, src_iview->image) | radv_dst_access_flush(cmd_buffer, VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT, dest_iview->image); unsigned push_constants[2] = { src_offset->x - dest_offset->x, src_offset->y - dest_offset->y, }; radv_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer), device->meta_state.resolve_fragment.p_layout, VK_SHADER_STAGE_FRAGMENT_BIT, 0, 8, push_constants); pipeline = radv_get_resolve_pipeline(cmd_buffer, src_iview, dest_iview); radv_CmdBindPipeline(cmd_buffer_h, VK_PIPELINE_BIND_POINT_GRAPHICS, *pipeline); radv_CmdSetViewport(radv_cmd_buffer_to_handle(cmd_buffer), 0, 1, &(VkViewport){.x = dest_offset->x, .y = dest_offset->y, .width = resolve_extent->width, .height = resolve_extent->height, .minDepth = 0.0f, .maxDepth = 1.0f}); radv_CmdSetScissor(radv_cmd_buffer_to_handle(cmd_buffer), 0, 1, &(VkRect2D){ .offset = *dest_offset, .extent = *resolve_extent, }); radv_CmdDraw(cmd_buffer_h, 3, 1, 0, 0); cmd_buffer->state.flush_bits |= radv_src_access_flush(cmd_buffer, VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT, dest_iview->image); } static void emit_depth_stencil_resolve(struct radv_cmd_buffer *cmd_buffer, struct radv_image_view *src_iview, struct radv_image_view *dst_iview, const VkExtent2D *resolve_extent, VkImageAspectFlags aspects, VkResolveModeFlagBits resolve_mode) { struct radv_device *device = cmd_buffer->device; const uint32_t samples = src_iview->image->info.samples; const uint32_t samples_log2 = ffs(samples) - 1; VkPipeline *pipeline; radv_meta_push_descriptor_set(cmd_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, cmd_buffer->device->meta_state.resolve_fragment.p_layout, 0, /* set */ 1, /* descriptorWriteCount */ (VkWriteDescriptorSet[]){ {.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, .dstBinding = 0, .dstArrayElement = 0, .descriptorCount = 1, .descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, .pImageInfo = (VkDescriptorImageInfo[]){ { .sampler = VK_NULL_HANDLE, .imageView = radv_image_view_to_handle(src_iview), .imageLayout = VK_IMAGE_LAYOUT_GENERAL, }, }}, }); switch (resolve_mode) { case VK_RESOLVE_MODE_SAMPLE_ZERO_BIT: if (aspects == VK_IMAGE_ASPECT_DEPTH_BIT) pipeline = &device->meta_state.resolve_fragment.depth_zero_pipeline; else pipeline = &device->meta_state.resolve_fragment.stencil_zero_pipeline; break; case VK_RESOLVE_MODE_AVERAGE_BIT: assert(aspects == VK_IMAGE_ASPECT_DEPTH_BIT); pipeline = &device->meta_state.resolve_fragment.depth[samples_log2].average_pipeline; break; case VK_RESOLVE_MODE_MIN_BIT: if (aspects == VK_IMAGE_ASPECT_DEPTH_BIT) pipeline = &device->meta_state.resolve_fragment.depth[samples_log2].min_pipeline; else pipeline = &device->meta_state.resolve_fragment.stencil[samples_log2].min_pipeline; break; case VK_RESOLVE_MODE_MAX_BIT: if (aspects == VK_IMAGE_ASPECT_DEPTH_BIT) pipeline = &device->meta_state.resolve_fragment.depth[samples_log2].max_pipeline; else pipeline = &device->meta_state.resolve_fragment.stencil[samples_log2].max_pipeline; break; default: unreachable("invalid resolve mode"); } if (!*pipeline) { int index = aspects == VK_IMAGE_ASPECT_DEPTH_BIT ? DEPTH_RESOLVE : STENCIL_RESOLVE; VkResult ret; ret = create_depth_stencil_resolve_pipeline(device, samples_log2, index, resolve_mode); if (ret != VK_SUCCESS) { cmd_buffer->record_result = ret; return; } } radv_CmdBindPipeline(radv_cmd_buffer_to_handle(cmd_buffer), VK_PIPELINE_BIND_POINT_GRAPHICS, *pipeline); radv_CmdSetViewport(radv_cmd_buffer_to_handle(cmd_buffer), 0, 1, &(VkViewport){.x = 0, .y = 0, .width = resolve_extent->width, .height = resolve_extent->height, .minDepth = 0.0f, .maxDepth = 1.0f}); radv_CmdSetScissor(radv_cmd_buffer_to_handle(cmd_buffer), 0, 1, &(VkRect2D){ .offset = (VkOffset2D){0, 0}, .extent = *resolve_extent, }); radv_CmdDraw(radv_cmd_buffer_to_handle(cmd_buffer), 3, 1, 0, 0); } void radv_meta_resolve_fragment_image(struct radv_cmd_buffer *cmd_buffer, struct radv_image *src_image, VkImageLayout src_image_layout, struct radv_image *dest_image, VkImageLayout dest_image_layout, const VkImageResolve2 *region) { struct radv_meta_saved_state saved_state; unsigned dst_layout = radv_meta_dst_layout_from_layout(dest_image_layout); VkImageLayout layout = radv_meta_dst_layout_to_layout(dst_layout); radv_decompress_resolve_src(cmd_buffer, src_image, src_image_layout, region); radv_meta_save( &saved_state, cmd_buffer, RADV_META_SAVE_GRAPHICS_PIPELINE | RADV_META_SAVE_CONSTANTS | RADV_META_SAVE_DESCRIPTORS); assert(region->srcSubresource.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT); assert(region->dstSubresource.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT); assert(region->srcSubresource.layerCount == region->dstSubresource.layerCount); const uint32_t src_base_layer = radv_meta_get_iview_layer(src_image, ®ion->srcSubresource, ®ion->srcOffset); const uint32_t dest_base_layer = radv_meta_get_iview_layer(dest_image, ®ion->dstSubresource, ®ion->dstOffset); const struct VkExtent3D extent = vk_image_sanitize_extent(&src_image->vk, region->extent); const struct VkOffset3D srcOffset = vk_image_sanitize_offset(&src_image->vk, region->srcOffset); const struct VkOffset3D dstOffset = vk_image_sanitize_offset(&dest_image->vk, region->dstOffset); for (uint32_t layer = 0; layer < region->srcSubresource.layerCount; ++layer) { struct radv_image_view src_iview; radv_image_view_init(&src_iview, cmd_buffer->device, &(VkImageViewCreateInfo){ .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .image = radv_image_to_handle(src_image), .viewType = radv_meta_get_view_type(src_image), .format = src_image->vk.format, .subresourceRange = { .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .baseMipLevel = region->srcSubresource.mipLevel, .levelCount = 1, .baseArrayLayer = src_base_layer + layer, .layerCount = 1, }, }, 0, NULL); struct radv_image_view dest_iview; radv_image_view_init(&dest_iview, cmd_buffer->device, &(VkImageViewCreateInfo){ .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .image = radv_image_to_handle(dest_image), .viewType = radv_meta_get_view_type(dest_image), .format = dest_image->vk.format, .subresourceRange = { .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .baseMipLevel = region->dstSubresource.mipLevel, .levelCount = 1, .baseArrayLayer = dest_base_layer + layer, .layerCount = 1, }, }, 0, NULL); const VkRenderingAttachmentInfo color_att = { .sType = VK_STRUCTURE_TYPE_RENDERING_ATTACHMENT_INFO, .imageView = radv_image_view_to_handle(&dest_iview), .imageLayout = layout, .loadOp = VK_ATTACHMENT_LOAD_OP_LOAD, .storeOp = VK_ATTACHMENT_STORE_OP_STORE, }; const VkRenderingInfo rendering_info = { .sType = VK_STRUCTURE_TYPE_RENDERING_INFO, .renderArea = { .offset = { dstOffset.x, dstOffset.y }, .extent = { extent.width, extent.height } }, .layerCount = 1, .colorAttachmentCount = 1, .pColorAttachments = &color_att, }; radv_CmdBeginRendering(radv_cmd_buffer_to_handle(cmd_buffer), &rendering_info); emit_resolve(cmd_buffer, &src_iview, &dest_iview, &(VkOffset2D){srcOffset.x, srcOffset.y}, &(VkOffset2D){dstOffset.x, dstOffset.y}, &(VkExtent2D){extent.width, extent.height}); radv_CmdEndRendering(radv_cmd_buffer_to_handle(cmd_buffer)); radv_image_view_finish(&src_iview); radv_image_view_finish(&dest_iview); } radv_meta_restore(&saved_state, cmd_buffer); } /** * Emit any needed resolves for the current subpass. */ void radv_cmd_buffer_resolve_subpass_fs(struct radv_cmd_buffer *cmd_buffer) { struct vk_framebuffer *fb = cmd_buffer->state.framebuffer; const struct radv_subpass *subpass = cmd_buffer->state.subpass; struct radv_meta_saved_state saved_state; struct radv_subpass_barrier barrier; /* Resolves happen before the end-of-subpass barriers get executed, * so we have to make the attachment shader-readable */ barrier.src_stage_mask = VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT; barrier.src_access_mask = VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT; barrier.dst_access_mask = VK_ACCESS_2_INPUT_ATTACHMENT_READ_BIT; radv_emit_subpass_barrier(cmd_buffer, &barrier); radv_decompress_resolve_subpass_src(cmd_buffer); radv_meta_save( &saved_state, cmd_buffer, RADV_META_SAVE_GRAPHICS_PIPELINE | RADV_META_SAVE_CONSTANTS | RADV_META_SAVE_DESCRIPTORS); for (uint32_t i = 0; i < subpass->color_count; ++i) { struct radv_subpass_attachment src_att = subpass->color_attachments[i]; struct radv_subpass_attachment dest_att = subpass->resolve_attachments[i]; if (dest_att.attachment == VK_ATTACHMENT_UNUSED) continue; struct radv_image_view *dest_iview = cmd_buffer->state.attachments[dest_att.attachment].iview; struct radv_image_view *src_iview = cmd_buffer->state.attachments[src_att.attachment].iview; struct radv_subpass resolve_subpass = { .color_count = 1, .color_attachments = (struct radv_subpass_attachment[]){dest_att}, .depth_stencil_attachment = NULL, }; radv_cmd_buffer_set_subpass(cmd_buffer, &resolve_subpass); emit_resolve(cmd_buffer, src_iview, dest_iview, &(VkOffset2D){0, 0}, &(VkOffset2D){0, 0}, &(VkExtent2D){fb->width, fb->height}); radv_cmd_buffer_restore_subpass(cmd_buffer, subpass); } radv_meta_restore(&saved_state, cmd_buffer); } /** * Depth/stencil resolves for the current subpass. */ void radv_depth_stencil_resolve_subpass_fs(struct radv_cmd_buffer *cmd_buffer, VkImageAspectFlags aspects, VkResolveModeFlagBits resolve_mode) { struct vk_framebuffer *fb = cmd_buffer->state.framebuffer; const struct radv_subpass *subpass = cmd_buffer->state.subpass; struct radv_meta_saved_state saved_state; struct radv_subpass_barrier barrier; /* Resolves happen before the end-of-subpass barriers get executed, * so we have to make the attachment shader-readable */ barrier.src_stage_mask = VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT; barrier.src_access_mask = VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT; barrier.dst_access_mask = VK_ACCESS_2_INPUT_ATTACHMENT_READ_BIT; radv_emit_subpass_barrier(cmd_buffer, &barrier); struct radv_subpass_attachment src_att = *subpass->depth_stencil_attachment; struct radv_image_view *src_iview = cmd_buffer->state.attachments[src_att.attachment].iview; struct radv_image *src_image = src_iview->image; VkImageResolve2 region = {0}; region.sType = VK_STRUCTURE_TYPE_IMAGE_RESOLVE_2; region.srcSubresource.aspectMask = aspects; region.srcSubresource.mipLevel = 0; region.srcSubresource.baseArrayLayer = 0; region.srcSubresource.layerCount = 1; radv_decompress_resolve_src(cmd_buffer, src_image, src_att.layout, ®ion); radv_meta_save(&saved_state, cmd_buffer, RADV_META_SAVE_GRAPHICS_PIPELINE | RADV_META_SAVE_DESCRIPTORS); struct radv_subpass_attachment dst_att = *subpass->ds_resolve_attachment; struct radv_image_view *dst_iview = cmd_buffer->state.attachments[dst_att.attachment].iview; struct radv_subpass resolve_subpass = { .color_count = 0, .color_attachments = NULL, .depth_stencil_attachment = (struct radv_subpass_attachment *){&dst_att}, }; radv_cmd_buffer_set_subpass(cmd_buffer, &resolve_subpass); struct radv_image_view tsrc_iview; radv_image_view_init(&tsrc_iview, cmd_buffer->device, &(VkImageViewCreateInfo){ .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .image = radv_image_to_handle(src_image), .viewType = radv_meta_get_view_type(src_image), .format = src_iview->vk.format, .subresourceRange = { .aspectMask = aspects, .baseMipLevel = 0, .levelCount = 1, .baseArrayLayer = 0, .layerCount = 1, }, }, 0, NULL); emit_depth_stencil_resolve(cmd_buffer, &tsrc_iview, dst_iview, &(VkExtent2D){fb->width, fb->height}, aspects, resolve_mode); radv_cmd_buffer_restore_subpass(cmd_buffer, subpass); radv_image_view_finish(&tsrc_iview); radv_meta_restore(&saved_state, cmd_buffer); }