/* * Copyright © 2021 Valve Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * */ #include "aco_builder.h" #include "aco_ir.h" #include #include #include #include namespace aco { namespace { constexpr const size_t max_reg_cnt = 512; struct Idx { bool operator==(const Idx& other) const { return block == other.block && instr == other.instr; } bool operator!=(const Idx& other) const { return !operator==(other); } bool found() const { return block != UINT32_MAX; } uint32_t block; uint32_t instr; }; Idx not_written_in_block{UINT32_MAX, 0}; Idx clobbered{UINT32_MAX, 1}; Idx const_or_undef{UINT32_MAX, 2}; Idx written_by_multiple_instrs{UINT32_MAX, 3}; struct pr_opt_ctx { Program* program; Block* current_block; uint32_t current_instr_idx; std::vector uses; std::vector> instr_idx_by_regs; void reset_block(Block* block) { current_block = block; current_instr_idx = 0; if ((block->kind & block_kind_loop_header) || block->linear_preds.empty()) { std::fill(instr_idx_by_regs[block->index].begin(), instr_idx_by_regs[block->index].end(), not_written_in_block); } else { unsigned first_pred = block->linear_preds[0]; for (unsigned i = 0; i < max_reg_cnt; i++) { bool all_same = std::all_of( std::next(block->linear_preds.begin()), block->linear_preds.end(), [&](unsigned pred) { return instr_idx_by_regs[pred][i] == instr_idx_by_regs[first_pred][i]; }); if (all_same) instr_idx_by_regs[block->index][i] = instr_idx_by_regs[first_pred][i]; else instr_idx_by_regs[block->index][i] = not_written_in_block; } } } Instruction* get(Idx idx) { return program->blocks[idx.block].instructions[idx.instr].get(); } }; void save_reg_writes(pr_opt_ctx& ctx, aco_ptr& instr) { for (const Definition& def : instr->definitions) { assert(def.regClass().type() != RegType::sgpr || def.physReg().reg() <= 255); assert(def.regClass().type() != RegType::vgpr || def.physReg().reg() >= 256); unsigned dw_size = DIV_ROUND_UP(def.bytes(), 4u); unsigned r = def.physReg().reg(); Idx idx{ctx.current_block->index, ctx.current_instr_idx}; if (def.regClass().is_subdword()) idx = clobbered; assert((r + dw_size) <= max_reg_cnt); assert(def.size() == dw_size || def.regClass().is_subdword()); std::fill(ctx.instr_idx_by_regs[ctx.current_block->index].begin() + r, ctx.instr_idx_by_regs[ctx.current_block->index].begin() + r + dw_size, idx); } } Idx last_writer_idx(pr_opt_ctx& ctx, PhysReg physReg, RegClass rc) { /* Verify that all of the operand's registers are written by the same instruction. */ assert(physReg.reg() < max_reg_cnt); Idx instr_idx = ctx.instr_idx_by_regs[ctx.current_block->index][physReg.reg()]; unsigned dw_size = DIV_ROUND_UP(rc.bytes(), 4u); unsigned r = physReg.reg(); bool all_same = std::all_of(ctx.instr_idx_by_regs[ctx.current_block->index].begin() + r, ctx.instr_idx_by_regs[ctx.current_block->index].begin() + r + dw_size, [instr_idx](Idx i) { return i == instr_idx; }); return all_same ? instr_idx : written_by_multiple_instrs; } Idx last_writer_idx(pr_opt_ctx& ctx, const Operand& op) { if (op.isConstant() || op.isUndefined()) return const_or_undef; assert(op.physReg().reg() < max_reg_cnt); Idx instr_idx = ctx.instr_idx_by_regs[ctx.current_block->index][op.physReg().reg()]; #ifndef NDEBUG /* Debug mode: */ instr_idx = last_writer_idx(ctx, op.physReg(), op.regClass()); assert(instr_idx != written_by_multiple_instrs); #endif return instr_idx; } bool is_clobbered_since(pr_opt_ctx& ctx, PhysReg reg, RegClass rc, const Idx& idx) { /* If we didn't find an instruction, assume that the register is clobbered. */ if (!idx.found()) return true; /* TODO: We currently can't keep track of subdword registers. */ if (rc.is_subdword()) return true; unsigned begin_reg = reg.reg(); unsigned end_reg = begin_reg + rc.size(); unsigned current_block_idx = ctx.current_block->index; for (unsigned r = begin_reg; r < end_reg; ++r) { Idx& i = ctx.instr_idx_by_regs[current_block_idx][r]; if (i == clobbered || i == written_by_multiple_instrs) return true; else if (i == not_written_in_block) continue; assert(i.found()); if (i.block > idx.block || (i.block == idx.block && i.instr > idx.instr)) return true; } return false; } template bool is_clobbered_since(pr_opt_ctx& ctx, const T& t, const Idx& idx) { return is_clobbered_since(ctx, t.physReg(), t.regClass(), idx); } void try_apply_branch_vcc(pr_opt_ctx& ctx, aco_ptr& instr) { /* We are looking for the following pattern: * * vcc = ... ; last_vcc_wr * sX, scc = s_and_bXX vcc, exec ; op0_instr * (...vcc and exec must not be clobbered inbetween...) * s_cbranch_XX scc ; instr * * If possible, the above is optimized into: * * vcc = ... ; last_vcc_wr * s_cbranch_XX vcc ; instr modified to use vcc */ /* Don't try to optimize this on GFX6-7 because SMEM may corrupt the vccz bit. */ if (ctx.program->gfx_level < GFX8) return; if (instr->format != Format::PSEUDO_BRANCH || instr->operands.size() == 0 || instr->operands[0].physReg() != scc) return; Idx op0_instr_idx = last_writer_idx(ctx, instr->operands[0]); Idx last_vcc_wr_idx = last_writer_idx(ctx, vcc, ctx.program->lane_mask); /* We need to make sure: * - the instructions that wrote the operand register and VCC are both found * - the operand register used by the branch, and VCC were both written in the current block * - EXEC hasn't been clobbered since the last VCC write * - VCC hasn't been clobbered since the operand register was written * (ie. the last VCC writer precedes the op0 writer) */ if (!op0_instr_idx.found() || !last_vcc_wr_idx.found() || op0_instr_idx.block != ctx.current_block->index || last_vcc_wr_idx.block != ctx.current_block->index || is_clobbered_since(ctx, exec, ctx.program->lane_mask, last_vcc_wr_idx) || is_clobbered_since(ctx, vcc, ctx.program->lane_mask, op0_instr_idx)) return; Instruction* op0_instr = ctx.get(op0_instr_idx); Instruction* last_vcc_wr = ctx.get(last_vcc_wr_idx); if ((op0_instr->opcode != aco_opcode::s_and_b64 /* wave64 */ && op0_instr->opcode != aco_opcode::s_and_b32 /* wave32 */) || op0_instr->operands[0].physReg() != vcc || op0_instr->operands[1].physReg() != exec || !last_vcc_wr->isVOPC()) return; assert(last_vcc_wr->definitions[0].tempId() == op0_instr->operands[0].tempId()); /* Reduce the uses of the SCC def */ ctx.uses[instr->operands[0].tempId()]--; /* Use VCC instead of SCC in the branch */ instr->operands[0] = op0_instr->operands[0]; } void try_optimize_scc_nocompare(pr_opt_ctx& ctx, aco_ptr& instr) { /* We are looking for the following pattern: * * s_bfe_u32 s0, s3, 0x40018 ; outputs SGPR and SCC if the SGPR != 0 * s_cmp_eq_i32 s0, 0 ; comparison between the SGPR and 0 * s_cbranch_scc0 BB3 ; use the result of the comparison, eg. branch or cselect * * If possible, the above is optimized into: * * s_bfe_u32 s0, s3, 0x40018 ; original instruction * s_cbranch_scc1 BB3 ; modified to use SCC directly rather than the SGPR with comparison * */ if (!instr->isSALU() && !instr->isBranch()) return; if (instr->isSOPC() && (instr->opcode == aco_opcode::s_cmp_eq_u32 || instr->opcode == aco_opcode::s_cmp_eq_i32 || instr->opcode == aco_opcode::s_cmp_lg_u32 || instr->opcode == aco_opcode::s_cmp_lg_i32 || instr->opcode == aco_opcode::s_cmp_eq_u64 || instr->opcode == aco_opcode::s_cmp_lg_u64) && (instr->operands[0].constantEquals(0) || instr->operands[1].constantEquals(0)) && (instr->operands[0].isTemp() || instr->operands[1].isTemp())) { /* Make sure the constant is always in operand 1 */ if (instr->operands[0].isConstant()) std::swap(instr->operands[0], instr->operands[1]); if (ctx.uses[instr->operands[0].tempId()] > 1) return; /* Make sure both SCC and Operand 0 are written by the same instruction. */ Idx wr_idx = last_writer_idx(ctx, instr->operands[0]); Idx sccwr_idx = last_writer_idx(ctx, scc, s1); if (!wr_idx.found() || wr_idx != sccwr_idx) return; Instruction* wr_instr = ctx.get(wr_idx); if (!wr_instr->isSALU() || wr_instr->definitions.size() < 2 || wr_instr->definitions[1].physReg() != scc) return; /* Look for instructions which set SCC := (D != 0) */ switch (wr_instr->opcode) { case aco_opcode::s_bfe_i32: case aco_opcode::s_bfe_i64: case aco_opcode::s_bfe_u32: case aco_opcode::s_bfe_u64: case aco_opcode::s_and_b32: case aco_opcode::s_and_b64: case aco_opcode::s_andn2_b32: case aco_opcode::s_andn2_b64: case aco_opcode::s_or_b32: case aco_opcode::s_or_b64: case aco_opcode::s_orn2_b32: case aco_opcode::s_orn2_b64: case aco_opcode::s_xor_b32: case aco_opcode::s_xor_b64: case aco_opcode::s_not_b32: case aco_opcode::s_not_b64: case aco_opcode::s_nor_b32: case aco_opcode::s_nor_b64: case aco_opcode::s_xnor_b32: case aco_opcode::s_xnor_b64: case aco_opcode::s_nand_b32: case aco_opcode::s_nand_b64: case aco_opcode::s_lshl_b32: case aco_opcode::s_lshl_b64: case aco_opcode::s_lshr_b32: case aco_opcode::s_lshr_b64: case aco_opcode::s_ashr_i32: case aco_opcode::s_ashr_i64: case aco_opcode::s_abs_i32: case aco_opcode::s_absdiff_i32: break; default: return; } /* Use the SCC def from wr_instr */ ctx.uses[instr->operands[0].tempId()]--; instr->operands[0] = Operand(wr_instr->definitions[1].getTemp(), scc); ctx.uses[instr->operands[0].tempId()]++; /* Set the opcode and operand to 32-bit */ instr->operands[1] = Operand::zero(); instr->opcode = (instr->opcode == aco_opcode::s_cmp_eq_u32 || instr->opcode == aco_opcode::s_cmp_eq_i32 || instr->opcode == aco_opcode::s_cmp_eq_u64) ? aco_opcode::s_cmp_eq_u32 : aco_opcode::s_cmp_lg_u32; } else if ((instr->format == Format::PSEUDO_BRANCH && instr->operands.size() == 1 && instr->operands[0].physReg() == scc) || instr->opcode == aco_opcode::s_cselect_b32) { /* For cselect, operand 2 is the SCC condition */ unsigned scc_op_idx = 0; if (instr->opcode == aco_opcode::s_cselect_b32) { scc_op_idx = 2; } Idx wr_idx = last_writer_idx(ctx, instr->operands[scc_op_idx]); if (!wr_idx.found()) return; Instruction* wr_instr = ctx.get(wr_idx); /* Check if we found the pattern above. */ if (wr_instr->opcode != aco_opcode::s_cmp_eq_u32 && wr_instr->opcode != aco_opcode::s_cmp_lg_u32) return; if (wr_instr->operands[0].physReg() != scc) return; if (!wr_instr->operands[1].constantEquals(0)) return; /* The optimization can be unsafe when there are other users. */ if (ctx.uses[instr->operands[scc_op_idx].tempId()] > 1) return; if (wr_instr->opcode == aco_opcode::s_cmp_eq_u32) { /* Flip the meaning of the instruction to correctly use the SCC. */ if (instr->format == Format::PSEUDO_BRANCH) instr->opcode = instr->opcode == aco_opcode::p_cbranch_z ? aco_opcode::p_cbranch_nz : aco_opcode::p_cbranch_z; else if (instr->opcode == aco_opcode::s_cselect_b32) std::swap(instr->operands[0], instr->operands[1]); else unreachable( "scc_nocompare optimization is only implemented for p_cbranch and s_cselect"); } /* Use the SCC def from the original instruction, not the comparison */ ctx.uses[instr->operands[scc_op_idx].tempId()]--; instr->operands[scc_op_idx] = wr_instr->operands[0]; } } void try_combine_dpp(pr_opt_ctx& ctx, aco_ptr& instr) { /* We are looking for the following pattern: * * v_mov_dpp vA, vB, ... ; move instruction with DPP * v_xxx vC, vA, ... ; current instr that uses the result from the move * * If possible, the above is optimized into: * * v_xxx_dpp vC, vB, ... ; current instr modified to use DPP directly * */ if (!instr->isVALU() || instr->isDPP()) return; for (unsigned i = 0; i < MIN2(2, instr->operands.size()); i++) { Idx op_instr_idx = last_writer_idx(ctx, instr->operands[i]); if (!op_instr_idx.found()) continue; const Instruction* mov = ctx.get(op_instr_idx); if (mov->opcode != aco_opcode::v_mov_b32 || !mov->isDPP()) continue; bool dpp8 = mov->isDPP8(); if (!can_use_DPP(instr, false, dpp8)) return; /* If we aren't going to remove the v_mov_b32, we have to ensure that it doesn't overwrite * it's own operand before we use it. */ if (mov->definitions[0].physReg() == mov->operands[0].physReg() && (!mov->definitions[0].tempId() || ctx.uses[mov->definitions[0].tempId()] > 1)) continue; /* Don't propagate DPP if the source register is overwritten since the move. */ if (is_clobbered_since(ctx, mov->operands[0], op_instr_idx)) continue; if (i && !can_swap_operands(instr, &instr->opcode)) continue; if (!dpp8) /* anything else doesn't make sense in SSA */ assert(mov->dpp16().row_mask == 0xf && mov->dpp16().bank_mask == 0xf); if (--ctx.uses[mov->definitions[0].tempId()]) ctx.uses[mov->operands[0].tempId()]++; convert_to_DPP(instr, dpp8); if (dpp8) { DPP8_instruction* dpp = &instr->dpp8(); if (i) { std::swap(dpp->operands[0], dpp->operands[1]); } dpp->operands[0] = mov->operands[0]; memcpy(dpp->lane_sel, mov->dpp8().lane_sel, sizeof(dpp->lane_sel)); } else { DPP16_instruction* dpp = &instr->dpp16(); if (i) { std::swap(dpp->operands[0], dpp->operands[1]); std::swap(dpp->neg[0], dpp->neg[1]); std::swap(dpp->abs[0], dpp->abs[1]); } dpp->operands[0] = mov->operands[0]; dpp->dpp_ctrl = mov->dpp16().dpp_ctrl; dpp->bound_ctrl = true; dpp->neg[0] ^= mov->dpp16().neg[0] && !dpp->abs[0]; dpp->abs[0] |= mov->dpp16().abs[0]; } return; } } void process_instruction(pr_opt_ctx& ctx, aco_ptr& instr) { try_apply_branch_vcc(ctx, instr); try_optimize_scc_nocompare(ctx, instr); try_combine_dpp(ctx, instr); if (instr) save_reg_writes(ctx, instr); ctx.current_instr_idx++; } } // namespace void optimize_postRA(Program* program) { pr_opt_ctx ctx; ctx.program = program; ctx.uses = dead_code_analysis(program); ctx.instr_idx_by_regs.resize(program->blocks.size()); /* Forward pass * Goes through each instruction exactly once, and can transform * instructions or adjust the use counts of temps. */ for (auto& block : program->blocks) { ctx.reset_block(&block); for (aco_ptr& instr : block.instructions) process_instruction(ctx, instr); } /* Cleanup pass * Gets rid of instructions which are manually deleted or * no longer have any uses. */ for (auto& block : program->blocks) { auto new_end = std::remove_if(block.instructions.begin(), block.instructions.end(), [&ctx](const aco_ptr& instr) { return !instr || is_dead(ctx.uses, instr.get()); }); block.instructions.resize(new_end - block.instructions.begin()); } } } // namespace aco