#!/bin/sh # Make sure to kill itself and all the children process from this script on # exiting, since any console output may interfere with LAVA signals handling, # which based on the log console. cleanup() { if [ "$BACKGROUND_PIDS" = "" ]; then return 0 fi set +x echo "Killing all child processes" for pid in $BACKGROUND_PIDS do kill "$pid" 2>/dev/null || true done # Sleep just a little to give enough time for subprocesses to be gracefully # killed. Then apply a SIGKILL if necessary. sleep 5 for pid in $BACKGROUND_PIDS do kill -9 "$pid" 2>/dev/null || true done BACKGROUND_PIDS= set -x } trap cleanup INT TERM EXIT # Space separated values with the PIDS of the processes started in the # background by this script BACKGROUND_PIDS= # Second-stage init, used to set up devices and our job environment before # running tests. . /set-job-env-vars.sh set -ex # Set up any devices required by the jobs [ -z "$HWCI_KERNEL_MODULES" ] || { echo -n $HWCI_KERNEL_MODULES | xargs -d, -n1 /usr/sbin/modprobe } # # Load the KVM module specific to the detected CPU virtualization extensions: # - vmx for Intel VT # - svm for AMD-V # # Additionally, download the kernel image to boot the VM via HWCI_TEST_SCRIPT. # if [ "$HWCI_KVM" = "true" ]; then unset KVM_KERNEL_MODULE grep -qs '\bvmx\b' /proc/cpuinfo && KVM_KERNEL_MODULE=kvm_intel || { grep -qs '\bsvm\b' /proc/cpuinfo && KVM_KERNEL_MODULE=kvm_amd } [ -z "${KVM_KERNEL_MODULE}" ] && \ echo "WARNING: Failed to detect CPU virtualization extensions" || \ modprobe ${KVM_KERNEL_MODULE} mkdir -p /lava-files wget -S --progress=dot:giga -O /lava-files/${KERNEL_IMAGE_NAME} \ "${KERNEL_IMAGE_BASE_URL}/${KERNEL_IMAGE_NAME}" fi # Fix prefix confusion: the build installs to $CI_PROJECT_DIR, but we expect # it in /install ln -sf $CI_PROJECT_DIR/install /install export LD_LIBRARY_PATH=/install/lib export LIBGL_DRIVERS_PATH=/install/lib/dri # Store Mesa's disk cache under /tmp, rather than sending it out over NFS. export XDG_CACHE_HOME=/tmp # Make sure Python can find all our imports export PYTHONPATH=$(python3 -c "import sys;print(\":\".join(sys.path))") if [ "$HWCI_FREQ_MAX" = "true" ]; then # Ensure initialization of the DRM device (needed by MSM) head -0 /dev/dri/renderD128 # Disable GPU frequency scaling DEVFREQ_GOVERNOR=`find /sys/devices -name governor | grep gpu || true` test -z "$DEVFREQ_GOVERNOR" || echo performance > $DEVFREQ_GOVERNOR || true # Disable CPU frequency scaling echo performance | tee -a /sys/devices/system/cpu/cpufreq/policy*/scaling_governor || true # Disable GPU runtime power management GPU_AUTOSUSPEND=`find /sys/devices -name autosuspend_delay_ms | grep gpu | head -1` test -z "$GPU_AUTOSUSPEND" || echo -1 > $GPU_AUTOSUSPEND || true # Lock Intel GPU frequency to 70% of the maximum allowed by hardware # and enable throttling detection & reporting. # Additionally, set the upper limit for CPU scaling frequency to 65% of the # maximum permitted, as an additional measure to mitigate thermal throttling. ./intel-gpu-freq.sh -s 70% --cpu-set-max 65% -g all -d fi # Increase freedreno hangcheck timer because it's right at the edge of the # spilling tests timing out (and some traces, too) if [ -n "$FREEDRENO_HANGCHECK_MS" ]; then echo $FREEDRENO_HANGCHECK_MS | tee -a /sys/kernel/debug/dri/128/hangcheck_period_ms fi # Start a little daemon to capture the first devcoredump we encounter. (They # expire after 5 minutes, so we poll for them). /capture-devcoredump.sh & BACKGROUND_PIDS="$! $BACKGROUND_PIDS" # If we want Xorg to be running for the test, then we start it up before the # HWCI_TEST_SCRIPT because we need to use xinit to start X (otherwise # without using -displayfd you can race with Xorg's startup), but xinit will eat # your client's return code if [ -n "$HWCI_START_XORG" ]; then echo "touch /xorg-started; sleep 100000" > /xorg-script env \ xinit /bin/sh /xorg-script -- /usr/bin/Xorg -noreset -s 0 -dpms -logfile /Xorg.0.log & BACKGROUND_PIDS="$! $BACKGROUND_PIDS" # Wait for xorg to be ready for connections. for i in 1 2 3 4 5; do if [ -e /xorg-started ]; then break fi sleep 5 done export DISPLAY=:0 fi RESULT=fail set +e sh -c "$HWCI_TEST_SCRIPT" EXIT_CODE=$? set -e # Let's make sure the results are always stored in current working directory mv -f ${CI_PROJECT_DIR}/results ./ 2>/dev/null || true [ ${EXIT_CODE} -ne 0 ] || rm -rf results/trace/"$PIGLIT_REPLAY_DEVICE_NAME" # Make sure that capture-devcoredump is done before we start trying to tar up # artifacts -- if it's writing while tar is reading, tar will throw an error and # kill the job. cleanup # upload artifacts if [ -n "$MINIO_RESULTS_UPLOAD" ]; then tar -czf results.tar.gz results/; ci-fairy minio login --token-file "${CI_JOB_JWT_FILE}"; ci-fairy minio cp results.tar.gz minio://"$MINIO_RESULTS_UPLOAD"/results.tar.gz; fi # We still need to echo the hwci: mesa message, as some scripts rely on it, such # as the python ones inside the bare-metal folder [ ${EXIT_CODE} -eq 0 ] && RESULT=pass set +x echo "hwci: mesa: $RESULT" # Sleep a bit to avoid kernel dump message interleave from LAVA ENDTC signal sleep 1 exit $EXIT_CODE