aco: improve creation of v_madmk_f32/v_madak_f32

Using needs_vop3 check was flawed because it would only combine the
literal if the first operand is the literal. If the second or third
operand is the literal, then needs_vop3 will be true and the literal will
not be combined.

pipeline-db (Navi):
Totals from affected shaders:
SGPRS: 782051 -> 782051 (0.00 %)
VGPRS: 630048 -> 630048 (0.00 %)
Spilled SGPRs: 195 -> 195 (0.00 %)
Spilled VGPRs: 0 -> 0 (0.00 %)
Code Size: 54743740 -> 54585548 (-0.29 %) bytes
Max Waves: 67340 -> 67340 (0.00 %)
Instructions: 10182030 -> 10182030 (0.00 %)

pipeline-db (Vega):
Totals from affected shaders:
SGPRS: 701990 -> 699590 (-0.34 %)
VGPRS: 566632 -> 566784 (0.03 %)
Spilled SGPRs: 218 -> 218 (0.00 %)
Spilled VGPRs: 0 -> 0 (0.00 %)
Code Size: 49173564 -> 49007856 (-0.34 %) bytes
Max Waves: 59650 -> 59612 (-0.06 %)
Instructions: 9315135 -> 9293330 (-0.23 %)

Signed-off-by: Rhys Perry <pendingchaos02@gmail.com>
Reviewed-by: Daniel Schürmann <daniel@schuermann.dev>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/merge_requests/2883>
This commit is contained in:
Rhys Perry 2019-11-22 15:18:38 +00:00 committed by Marge Bot
parent 15e25da3e5
commit f664cb01ec
1 changed files with 45 additions and 53 deletions

View File

@ -53,11 +53,10 @@ struct mad_info {
aco_ptr<Instruction> add_instr;
uint32_t mul_temp_id;
uint32_t literal_idx;
bool needs_vop3;
bool check_literal;
mad_info(aco_ptr<Instruction> instr, uint32_t id, bool vop3)
: add_instr(std::move(instr)), mul_temp_id(id), needs_vop3(vop3), check_literal(false) {}
mad_info(aco_ptr<Instruction> instr, uint32_t id)
: add_instr(std::move(instr)), mul_temp_id(id), check_literal(false) {}
};
enum Label {
@ -2194,7 +2193,6 @@ void combine_instruction(opt_ctx &ctx, Block& block, aco_ptr<Instruction>& instr
bool abs[3] = {false, false, false};
unsigned omod = 0;
bool clamp = false;
bool need_vop3 = false;
op[0] = mul_instr->operands[0];
op[1] = mul_instr->operands[1];
op[2] = instr->operands[add_op_idx];
@ -2202,18 +2200,12 @@ void combine_instruction(opt_ctx &ctx, Block& block, aco_ptr<Instruction>& instr
if (!check_vop3_operands(ctx, 3, op))
return;
for (unsigned i = 0; i < 3; i++) {
if (!(i == 0 || (op[i].isTemp() && op[i].getTemp().type() == RegType::vgpr)))
need_vop3 = true;
}
if (mul_instr->isVOP3()) {
VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*> (mul_instr);
neg[0] = vop3->neg[0];
neg[1] = vop3->neg[1];
abs[0] = vop3->abs[0];
abs[1] = vop3->abs[1];
need_vop3 = true;
/* we cannot use these modifiers between mul and add */
if (vop3->clamp || vop3->omod)
return;
@ -2243,15 +2235,11 @@ void combine_instruction(opt_ctx &ctx, Block& block, aco_ptr<Instruction>& instr
}
/* neg of the multiplication result */
neg[1] = neg[1] ^ vop3->neg[1 - add_op_idx];
need_vop3 = true;
}
if (instr->opcode == aco_opcode::v_sub_f32) {
if (instr->opcode == aco_opcode::v_sub_f32)
neg[1 + add_op_idx] = neg[1 + add_op_idx] ^ true;
need_vop3 = true;
} else if (instr->opcode == aco_opcode::v_subrev_f32) {
else if (instr->opcode == aco_opcode::v_subrev_f32)
neg[2 - add_op_idx] = neg[2 - add_op_idx] ^ true;
need_vop3 = true;
}
aco_ptr<VOP3A_instruction> mad{create_instruction<VOP3A_instruction>(aco_opcode::v_mad_f32, Format::VOP3A, 3, 1)};
for (unsigned i = 0; i < 3; i++)
@ -2265,7 +2253,7 @@ void combine_instruction(opt_ctx &ctx, Block& block, aco_ptr<Instruction>& instr
mad->definitions[0] = instr->definitions[0];
/* mark this ssa_def to be re-checked for profitability and literals */
ctx.mad_infos.emplace_back(std::move(instr), mul_instr->definitions[0].tempId(), need_vop3);
ctx.mad_infos.emplace_back(std::move(instr), mul_instr->definitions[0].tempId());
ctx.info[mad->definitions[0].tempId()].set_mad(mad.get(), ctx.mad_infos.size() - 1);
instr.reset(mad.release());
return;
@ -2353,48 +2341,55 @@ void select_instruction(opt_ctx &ctx, aco_ptr<Instruction>& instr)
}
}
/* re-check mad instructions */
mad_info* mad_info = NULL;
if (instr->opcode == aco_opcode::v_mad_f32 && ctx.info[instr->definitions[0].tempId()].is_mad()) {
mad_info* info = &ctx.mad_infos[ctx.info[instr->definitions[0].tempId()].val];
/* first, check profitability */
if (ctx.uses[info->mul_temp_id]) {
ctx.uses[info->mul_temp_id]++;
mad_info = &ctx.mad_infos[ctx.info[instr->definitions[0].tempId()].val];
/* re-check mad instructions */
if (ctx.uses[mad_info->mul_temp_id]) {
ctx.uses[mad_info->mul_temp_id]++;
if (instr->operands[0].isTemp())
ctx.uses[instr->operands[0].tempId()]--;
if (instr->operands[1].isTemp())
ctx.uses[instr->operands[1].tempId()]--;
instr.swap(info->add_instr);
/* second, check possible literals */
} else if (!info->needs_vop3) {
instr.swap(mad_info->add_instr);
mad_info = NULL;
}
/* check literals */
else if (!instr->usesModifiers()) {
bool sgpr_used = false;
uint32_t literal_idx = 0;
uint32_t literal_uses = UINT32_MAX;
for (unsigned i = 0; i < instr->operands.size(); i++)
{
if (instr->operands[i].isConstant() && i > 0) {
literal_uses = UINT32_MAX;
break;
}
if (!instr->operands[i].isTemp())
continue;
/* if one of the operands is sgpr, we cannot add a literal somewhere else */
if (instr->operands[i].getTemp().type() == RegType::sgpr) {
/* if one of the operands is sgpr, we cannot add a literal somewhere else on pre-GFX10 or operands other than the 1st */
if (instr->operands[i].getTemp().type() == RegType::sgpr && (i > 0 || ctx.program->chip_class < GFX10)) {
if (ctx.info[instr->operands[i].tempId()].is_literal()) {
literal_uses = ctx.uses[instr->operands[i].tempId()];
literal_idx = i;
} else {
literal_uses = UINT32_MAX;
}
break;
}
else if (ctx.info[instr->operands[i].tempId()].is_literal() &&
ctx.uses[instr->operands[i].tempId()] < literal_uses) {
sgpr_used = true;
/* don't break because we still need to check constants */
} else if (!sgpr_used &&
ctx.info[instr->operands[i].tempId()].is_literal() &&
ctx.uses[instr->operands[i].tempId()] < literal_uses) {
literal_uses = ctx.uses[instr->operands[i].tempId()];
literal_idx = i;
}
}
if (literal_uses < threshold) {
ctx.uses[instr->operands[literal_idx].tempId()]--;
info->check_literal = true;
info->literal_idx = literal_idx;
mad_info->check_literal = true;
mad_info->literal_idx = literal_idx;
return;
}
return;
}
}
@ -2480,31 +2475,28 @@ void apply_literals(opt_ctx &ctx, aco_ptr<Instruction>& instr)
return;
/* apply literals on MAD */
bool literals_applied = false;
if (instr->opcode == aco_opcode::v_mad_f32 && ctx.info[instr->definitions[0].tempId()].is_mad()) {
mad_info* info = &ctx.mad_infos[ctx.info[instr->definitions[0].tempId()].val];
if (!info->needs_vop3) {
if (info->check_literal && ctx.uses[instr->operands[info->literal_idx].tempId()] == 0) {
aco_ptr<Instruction> new_mad;
if (info->check_literal && ctx.uses[instr->operands[info->literal_idx].tempId()] == 0) {
if (info->literal_idx == 2) { /* add literal -> madak */
new_mad.reset(create_instruction<VOP2_instruction>(aco_opcode::v_madak_f32, Format::VOP2, 3, 1));
new_mad->operands[0] = instr->operands[0];
new_mad->operands[1] = instr->operands[1];
} else { /* mul literal -> madmk */
new_mad.reset(create_instruction<VOP2_instruction>(aco_opcode::v_madmk_f32, Format::VOP2, 3, 1));
new_mad->operands[0] = instr->operands[1 - info->literal_idx];
new_mad->operands[1] = instr->operands[2];
}
new_mad->operands[2] = Operand(ctx.info[instr->operands[info->literal_idx].tempId()].val);
new_mad->definitions[0] = instr->definitions[0];
instr.swap(new_mad);
if (info->literal_idx == 2) { /* add literal -> madak */
new_mad.reset(create_instruction<VOP2_instruction>(aco_opcode::v_madak_f32, Format::VOP2, 3, 1));
new_mad->operands[0] = instr->operands[0];
new_mad->operands[1] = instr->operands[1];
} else { /* mul literal -> madmk */
new_mad.reset(create_instruction<VOP2_instruction>(aco_opcode::v_madmk_f32, Format::VOP2, 3, 1));
new_mad->operands[0] = instr->operands[1 - info->literal_idx];
new_mad->operands[1] = instr->operands[2];
}
literals_applied = true;
new_mad->operands[2] = Operand(ctx.info[instr->operands[info->literal_idx].tempId()].val);
new_mad->definitions[0] = instr->definitions[0];
ctx.instructions.emplace_back(std::move(new_mad));
return;
}
}
/* apply literals on SALU/VALU */
if (!literals_applied && (instr->isSALU() || instr->isVALU())) {
/* apply literals on other SALU/VALU */
if (instr->isSALU() || instr->isVALU()) {
for (unsigned i = 0; i < instr->operands.size(); i++) {
Operand op = instr->operands[i];
if (op.isTemp() && ctx.info[op.tempId()].is_literal() && ctx.uses[op.tempId()] == 0) {