i965/tiled_memcpy: linear_to_ytiled a cache line at a time

TileY's low 6 address bits are: v1 v0 u3 u2 u1 u0
Thus a cache line in the tiled surface is composed of a 2d area of
16x4 bytes of the linear surface.

Add a special case where the area being copied is 4-line aligned
and a multiple of 4-lines so that entire cache lines will be
written at a time.

On Apollolake, this increases tiling throughput to wc maps by
84.0103% +/- 0.862818%

v2: Split [y0, y1) and [y2, y3) loops apart for clarity (Jason Ekstrand)
v3: Don't reset src var (Jason), Ensure y0 <= y1 <= y2 <= y3

Reviewed-by: Jason Ekstrand <jason@jlekstrand.net>
This commit is contained in:
Scott D Phillips 2018-01-26 16:07:15 -08:00
parent eb2e17e2d1
commit ecaad89525
1 changed files with 66 additions and 6 deletions

View File

@ -287,7 +287,7 @@ linear_to_xtiled(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3,
*/
static inline void
linear_to_ytiled(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3,
uint32_t y0, uint32_t y1,
uint32_t y0, uint32_t y3,
char *dst, const char *src,
int32_t src_pitch,
uint32_t swizzle_bit,
@ -306,6 +306,9 @@ linear_to_ytiled(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3,
const uint32_t column_width = ytile_span;
const uint32_t bytes_per_column = column_width * ytile_height;
uint32_t y1 = MIN2(y3, ALIGN_UP(y0, 4));
uint32_t y2 = MAX2(y1, ALIGN_DOWN(y3, 4));
uint32_t xo0 = (x0 % ytile_span) + (x0 / ytile_span) * bytes_per_column;
uint32_t xo1 = (x1 % ytile_span) + (x1 / ytile_span) * bytes_per_column;
@ -321,24 +324,81 @@ linear_to_ytiled(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3,
src += (ptrdiff_t)y0 * src_pitch;
for (yo = y0 * column_width; yo < y1 * column_width; yo += column_width) {
if (y0 != y1) {
for (yo = y0 * column_width; yo < y1 * column_width; yo += column_width) {
uint32_t xo = xo1;
uint32_t swizzle = swizzle1;
mem_copy(dst + ((xo0 + yo) ^ swizzle0), src + x0, x1 - x0);
/* Step by spans/columns. As it happens, the swizzle bit flips
* at each step so we don't need to calculate it explicitly.
*/
for (x = x1; x < x2; x += ytile_span) {
mem_copy_align16(dst + ((xo + yo) ^ swizzle), src + x, ytile_span);
xo += bytes_per_column;
swizzle ^= swizzle_bit;
}
mem_copy_align16(dst + ((xo + yo) ^ swizzle), src + x2, x3 - x2);
src += src_pitch;
}
}
for (yo = y1 * column_width; yo < y2 * column_width; yo += 4 * column_width) {
uint32_t xo = xo1;
uint32_t swizzle = swizzle1;
mem_copy(dst + ((xo0 + yo) ^ swizzle0), src + x0, x1 - x0);
if (x0 != x1) {
mem_copy(dst + ((xo0 + yo + 0 * column_width) ^ swizzle0), src + x0 + 0 * src_pitch, x1 - x0);
mem_copy(dst + ((xo0 + yo + 1 * column_width) ^ swizzle0), src + x0 + 1 * src_pitch, x1 - x0);
mem_copy(dst + ((xo0 + yo + 2 * column_width) ^ swizzle0), src + x0 + 2 * src_pitch, x1 - x0);
mem_copy(dst + ((xo0 + yo + 3 * column_width) ^ swizzle0), src + x0 + 3 * src_pitch, x1 - x0);
}
/* Step by spans/columns. As it happens, the swizzle bit flips
* at each step so we don't need to calculate it explicitly.
*/
for (x = x1; x < x2; x += ytile_span) {
mem_copy_align16(dst + ((xo + yo) ^ swizzle), src + x, ytile_span);
mem_copy_align16(dst + ((xo + yo + 0 * column_width) ^ swizzle), src + x + 0 * src_pitch, ytile_span);
mem_copy_align16(dst + ((xo + yo + 1 * column_width) ^ swizzle), src + x + 1 * src_pitch, ytile_span);
mem_copy_align16(dst + ((xo + yo + 2 * column_width) ^ swizzle), src + x + 2 * src_pitch, ytile_span);
mem_copy_align16(dst + ((xo + yo + 3 * column_width) ^ swizzle), src + x + 3 * src_pitch, ytile_span);
xo += bytes_per_column;
swizzle ^= swizzle_bit;
}
mem_copy_align16(dst + ((xo + yo) ^ swizzle), src + x2, x3 - x2);
if (x2 != x3) {
mem_copy_align16(dst + ((xo + yo + 0 * column_width) ^ swizzle), src + x2 + 0 * src_pitch, x3 - x2);
mem_copy_align16(dst + ((xo + yo + 1 * column_width) ^ swizzle), src + x2 + 1 * src_pitch, x3 - x2);
mem_copy_align16(dst + ((xo + yo + 2 * column_width) ^ swizzle), src + x2 + 2 * src_pitch, x3 - x2);
mem_copy_align16(dst + ((xo + yo + 3 * column_width) ^ swizzle), src + x2 + 3 * src_pitch, x3 - x2);
}
src += src_pitch;
src += 4 * src_pitch;
}
if (y2 != y3) {
for (yo = y2 * column_width; yo < y3 * column_width; yo += column_width) {
uint32_t xo = xo1;
uint32_t swizzle = swizzle1;
mem_copy(dst + ((xo0 + yo) ^ swizzle0), src + x0, x1 - x0);
/* Step by spans/columns. As it happens, the swizzle bit flips
* at each step so we don't need to calculate it explicitly.
*/
for (x = x1; x < x2; x += ytile_span) {
mem_copy_align16(dst + ((xo + yo) ^ swizzle), src + x, ytile_span);
xo += bytes_per_column;
swizzle ^= swizzle_bit;
}
mem_copy_align16(dst + ((xo + yo) ^ swizzle), src + x2, x3 - x2);
src += src_pitch;
}
}
}