radv: move shaders related code to radv_shader.c

Reduce size of radv_pipeline.c and improve code isolation. More
code can probably moved but it's a start.

Signed-off-by: Samuel Pitoiset <samuel.pitoiset@gmail.com>
Reviewed-by: Bas Nieuwenhuizen <bas@basnieuwenhuizen.nl>
This commit is contained in:
Samuel Pitoiset 2017-09-01 11:41:18 +02:00
parent 988d792375
commit d4d777317b
11 changed files with 642 additions and 523 deletions

View File

@ -58,6 +58,7 @@ VULKAN_FILES := \
radv_pipeline_cache.c \
radv_private.h \
radv_radeon_winsys.h \
radv_shader.c \
radv_query.c \
radv_util.c \
radv_util.h \

View File

@ -27,6 +27,7 @@
#include "radv_private.h"
#include "radv_radeon_winsys.h"
#include "radv_shader.h"
#include "radv_cs.h"
#include "sid.h"
#include "gfx9d.h"
@ -400,33 +401,6 @@ static unsigned radv_pack_float_12p4(float x)
x >= 4096 ? 0xffff : x * 16;
}
uint32_t
radv_shader_stage_to_user_data_0(gl_shader_stage stage, bool has_gs, bool has_tess)
{
switch (stage) {
case MESA_SHADER_FRAGMENT:
return R_00B030_SPI_SHADER_USER_DATA_PS_0;
case MESA_SHADER_VERTEX:
if (has_tess)
return R_00B530_SPI_SHADER_USER_DATA_LS_0;
else
return has_gs ? R_00B330_SPI_SHADER_USER_DATA_ES_0 : R_00B130_SPI_SHADER_USER_DATA_VS_0;
case MESA_SHADER_GEOMETRY:
return R_00B230_SPI_SHADER_USER_DATA_GS_0;
case MESA_SHADER_COMPUTE:
return R_00B900_COMPUTE_USER_DATA_0;
case MESA_SHADER_TESS_CTRL:
return R_00B430_SPI_SHADER_USER_DATA_HS_0;
case MESA_SHADER_TESS_EVAL:
if (has_gs)
return R_00B330_SPI_SHADER_USER_DATA_ES_0;
else
return R_00B130_SPI_SHADER_USER_DATA_VS_0;
default:
unreachable("unknown shader");
}
}
struct ac_userdata_info *
radv_lookup_user_sgpr(struct radv_pipeline *pipeline,
gl_shader_stage stage,

View File

@ -30,6 +30,7 @@
#include "ac_debug.h"
#include "radv_debug.h"
#include "radv_shader.h"
bool
radv_init_trace(struct radv_device *device)

View File

@ -31,6 +31,7 @@
#include <fcntl.h>
#include "radv_debug.h"
#include "radv_private.h"
#include "radv_shader.h"
#include "radv_cs.h"
#include "util/disk_cache.h"
#include "util/strtod.h"

View File

@ -27,6 +27,7 @@
#define RADV_META_H
#include "radv_private.h"
#include "radv_shader.h"
#ifdef __cplusplus
extern "C" {

View File

@ -29,6 +29,7 @@
#include "util/u_atomic.h"
#include "radv_debug.h"
#include "radv_private.h"
#include "radv_shader.h"
#include "nir/nir.h"
#include "nir/nir_builder.h"
#include "spirv/nir_spirv.h"
@ -46,73 +47,6 @@
#include "util/debug.h"
#include "ac_exp_param.h"
void radv_shader_variant_destroy(struct radv_device *device,
struct radv_shader_variant *variant);
static const struct nir_shader_compiler_options nir_options = {
.vertex_id_zero_based = true,
.lower_scmp = true,
.lower_flrp32 = true,
.lower_fsat = true,
.lower_fdiv = true,
.lower_sub = true,
.lower_pack_snorm_2x16 = true,
.lower_pack_snorm_4x8 = true,
.lower_pack_unorm_2x16 = true,
.lower_pack_unorm_4x8 = true,
.lower_unpack_snorm_2x16 = true,
.lower_unpack_snorm_4x8 = true,
.lower_unpack_unorm_2x16 = true,
.lower_unpack_unorm_4x8 = true,
.lower_extract_byte = true,
.lower_extract_word = true,
.max_unroll_iterations = 32
};
VkResult radv_CreateShaderModule(
VkDevice _device,
const VkShaderModuleCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkShaderModule* pShaderModule)
{
RADV_FROM_HANDLE(radv_device, device, _device);
struct radv_shader_module *module;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO);
assert(pCreateInfo->flags == 0);
module = vk_alloc2(&device->alloc, pAllocator,
sizeof(*module) + pCreateInfo->codeSize, 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (module == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
module->nir = NULL;
module->size = pCreateInfo->codeSize;
memcpy(module->data, pCreateInfo->pCode, module->size);
_mesa_sha1_compute(module->data, module->size, module->sha1);
*pShaderModule = radv_shader_module_to_handle(module);
return VK_SUCCESS;
}
void radv_DestroyShaderModule(
VkDevice _device,
VkShaderModule _module,
const VkAllocationCallbacks* pAllocator)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_shader_module, module, _module);
if (!module)
return;
vk_free2(&device->alloc, pAllocator, module);
}
static void
radv_pipeline_destroy(struct radv_device *device,
struct radv_pipeline *pipeline,
@ -142,181 +76,6 @@ void radv_DestroyPipeline(
radv_pipeline_destroy(device, pipeline, pAllocator);
}
static void
radv_optimize_nir(struct nir_shader *shader)
{
bool progress;
do {
progress = false;
NIR_PASS_V(shader, nir_lower_vars_to_ssa);
NIR_PASS_V(shader, nir_lower_64bit_pack);
NIR_PASS_V(shader, nir_lower_alu_to_scalar);
NIR_PASS_V(shader, nir_lower_phis_to_scalar);
NIR_PASS(progress, shader, nir_copy_prop);
NIR_PASS(progress, shader, nir_opt_remove_phis);
NIR_PASS(progress, shader, nir_opt_dce);
if (nir_opt_trivial_continues(shader)) {
progress = true;
NIR_PASS(progress, shader, nir_copy_prop);
NIR_PASS(progress, shader, nir_opt_dce);
}
NIR_PASS(progress, shader, nir_opt_if);
NIR_PASS(progress, shader, nir_opt_dead_cf);
NIR_PASS(progress, shader, nir_opt_cse);
NIR_PASS(progress, shader, nir_opt_peephole_select, 8);
NIR_PASS(progress, shader, nir_opt_algebraic);
NIR_PASS(progress, shader, nir_opt_constant_folding);
NIR_PASS(progress, shader, nir_opt_undef);
NIR_PASS(progress, shader, nir_opt_conditional_discard);
if (shader->options->max_unroll_iterations) {
NIR_PASS(progress, shader, nir_opt_loop_unroll, 0);
}
} while (progress);
}
static nir_shader *
radv_shader_compile_to_nir(struct radv_device *device,
struct radv_shader_module *module,
const char *entrypoint_name,
gl_shader_stage stage,
const VkSpecializationInfo *spec_info,
bool dump)
{
if (strcmp(entrypoint_name, "main") != 0) {
radv_finishme("Multiple shaders per module not really supported");
}
nir_shader *nir;
nir_function *entry_point;
if (module->nir) {
/* Some things such as our meta clear/blit code will give us a NIR
* shader directly. In that case, we just ignore the SPIR-V entirely
* and just use the NIR shader */
nir = module->nir;
nir->options = &nir_options;
nir_validate_shader(nir);
assert(exec_list_length(&nir->functions) == 1);
struct exec_node *node = exec_list_get_head(&nir->functions);
entry_point = exec_node_data(nir_function, node, node);
} else {
uint32_t *spirv = (uint32_t *) module->data;
assert(module->size % 4 == 0);
if (device->debug_flags & RADV_DEBUG_DUMP_SPIRV)
radv_print_spirv(module, stderr);
uint32_t num_spec_entries = 0;
struct nir_spirv_specialization *spec_entries = NULL;
if (spec_info && spec_info->mapEntryCount > 0) {
num_spec_entries = spec_info->mapEntryCount;
spec_entries = malloc(num_spec_entries * sizeof(*spec_entries));
for (uint32_t i = 0; i < num_spec_entries; i++) {
VkSpecializationMapEntry entry = spec_info->pMapEntries[i];
const void *data = spec_info->pData + entry.offset;
assert(data + entry.size <= spec_info->pData + spec_info->dataSize);
spec_entries[i].id = spec_info->pMapEntries[i].constantID;
if (spec_info->dataSize == 8)
spec_entries[i].data64 = *(const uint64_t *)data;
else
spec_entries[i].data32 = *(const uint32_t *)data;
}
}
const struct nir_spirv_supported_extensions supported_ext = {
.draw_parameters = true,
.float64 = true,
.image_read_without_format = true,
.image_write_without_format = true,
.tessellation = true,
.int64 = true,
.multiview = true,
.variable_pointers = true,
};
entry_point = spirv_to_nir(spirv, module->size / 4,
spec_entries, num_spec_entries,
stage, entrypoint_name, &supported_ext, &nir_options);
nir = entry_point->shader;
assert(nir->stage == stage);
nir_validate_shader(nir);
free(spec_entries);
/* We have to lower away local constant initializers right before we
* inline functions. That way they get properly initialized at the top
* of the function and not at the top of its caller.
*/
NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_local);
NIR_PASS_V(nir, nir_lower_returns);
NIR_PASS_V(nir, nir_inline_functions);
/* Pick off the single entrypoint that we want */
foreach_list_typed_safe(nir_function, func, node, &nir->functions) {
if (func != entry_point)
exec_node_remove(&func->node);
}
assert(exec_list_length(&nir->functions) == 1);
entry_point->name = ralloc_strdup(entry_point, "main");
NIR_PASS_V(nir, nir_remove_dead_variables,
nir_var_shader_in | nir_var_shader_out | nir_var_system_value);
/* Now that we've deleted all but the main function, we can go ahead and
* lower the rest of the constant initializers.
*/
NIR_PASS_V(nir, nir_lower_constant_initializers, ~0);
NIR_PASS_V(nir, nir_lower_system_values);
NIR_PASS_V(nir, nir_lower_clip_cull_distance_arrays);
}
/* Vulkan uses the separate-shader linking model */
nir->info.separate_shader = true;
nir_shader_gather_info(nir, entry_point->impl);
nir_variable_mode indirect_mask = 0;
indirect_mask |= nir_var_shader_in;
indirect_mask |= nir_var_local;
nir_lower_indirect_derefs(nir, indirect_mask);
static const nir_lower_tex_options tex_options = {
.lower_txp = ~0,
};
nir_lower_tex(nir, &tex_options);
nir_lower_vars_to_ssa(nir);
nir_lower_var_copies(nir);
nir_lower_global_vars_to_local(nir);
nir_remove_dead_variables(nir, nir_var_local);
radv_optimize_nir(nir);
if (dump)
nir_print_shader(nir, stderr);
return nir;
}
static const char *radv_get_shader_name(struct radv_shader_variant *var,
gl_shader_stage stage)
{
switch (stage) {
case MESA_SHADER_VERTEX: return var->info.vs.as_ls ? "Vertex Shader as LS" : var->info.vs.as_es ? "Vertex Shader as ES" : "Vertex Shader as VS";
case MESA_SHADER_GEOMETRY: return "Geometry Shader";
case MESA_SHADER_FRAGMENT: return "Pixel Shader";
case MESA_SHADER_COMPUTE: return "Compute Shader";
case MESA_SHADER_TESS_CTRL: return "Tessellation Control Shader";
case MESA_SHADER_TESS_EVAL: return var->info.tes.as_es ? "Tessellation Evaluation Shader as ES" : "Tessellation Evaluation Shader as VS";
default:
return "Unknown shader";
};
}
static void radv_dump_pipeline_stats(struct radv_device *device, struct radv_pipeline *pipeline)
{
unsigned lds_increment = device->physical_device->rad_info.chip_class >= CIK ? 512 : 256;
@ -391,163 +150,6 @@ static void radv_dump_pipeline_stats(struct radv_device *device, struct radv_pip
}
}
void radv_shader_variant_destroy(struct radv_device *device,
struct radv_shader_variant *variant)
{
if (!p_atomic_dec_zero(&variant->ref_count))
return;
mtx_lock(&device->shader_slab_mutex);
list_del(&variant->slab_list);
mtx_unlock(&device->shader_slab_mutex);
free(variant);
}
static void radv_fill_shader_variant(struct radv_device *device,
struct radv_shader_variant *variant,
struct ac_shader_binary *binary,
gl_shader_stage stage)
{
bool scratch_enabled = variant->config.scratch_bytes_per_wave > 0;
unsigned vgpr_comp_cnt = 0;
if (scratch_enabled && !device->llvm_supports_spill)
radv_finishme("shader scratch support only available with LLVM 4.0");
variant->code_size = binary->code_size;
variant->rsrc2 = S_00B12C_USER_SGPR(variant->info.num_user_sgprs) |
S_00B12C_SCRATCH_EN(scratch_enabled);
switch (stage) {
case MESA_SHADER_TESS_EVAL:
vgpr_comp_cnt = 3;
/* fallthrough */
case MESA_SHADER_TESS_CTRL:
variant->rsrc2 |= S_00B42C_OC_LDS_EN(1);
break;
case MESA_SHADER_VERTEX:
case MESA_SHADER_GEOMETRY:
vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt;
break;
case MESA_SHADER_FRAGMENT:
break;
case MESA_SHADER_COMPUTE:
variant->rsrc2 |=
S_00B84C_TGID_X_EN(1) | S_00B84C_TGID_Y_EN(1) |
S_00B84C_TGID_Z_EN(1) | S_00B84C_TIDIG_COMP_CNT(2) |
S_00B84C_TG_SIZE_EN(1) |
S_00B84C_LDS_SIZE(variant->config.lds_size);
break;
default:
unreachable("unsupported shader type");
break;
}
variant->rsrc1 = S_00B848_VGPRS((variant->config.num_vgprs - 1) / 4) |
S_00B848_SGPRS((variant->config.num_sgprs - 1) / 8) |
S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt) |
S_00B848_DX10_CLAMP(1) |
S_00B848_FLOAT_MODE(variant->config.float_mode);
void *ptr = radv_alloc_shader_memory(device, variant);
memcpy(ptr, binary->code, binary->code_size);
}
static struct radv_shader_variant *radv_shader_variant_create(struct radv_device *device,
struct nir_shader *shader,
struct radv_pipeline_layout *layout,
const struct ac_shader_variant_key *key,
void** code_out,
unsigned *code_size_out,
bool dump)
{
struct radv_shader_variant *variant = calloc(1, sizeof(struct radv_shader_variant));
enum radeon_family chip_family = device->physical_device->rad_info.family;
LLVMTargetMachineRef tm;
if (!variant)
return NULL;
struct ac_nir_compiler_options options = {0};
options.layout = layout;
if (key)
options.key = *key;
struct ac_shader_binary binary;
enum ac_target_machine_options tm_options = 0;
options.unsafe_math = !!(device->debug_flags & RADV_DEBUG_UNSAFE_MATH);
options.family = chip_family;
options.chip_class = device->physical_device->rad_info.chip_class;
options.supports_spill = device->llvm_supports_spill;
if (options.supports_spill)
tm_options |= AC_TM_SUPPORTS_SPILL;
if (device->instance->perftest_flags & RADV_PERFTEST_SISCHED)
tm_options |= AC_TM_SISCHED;
tm = ac_create_target_machine(chip_family, tm_options);
ac_compile_nir_shader(tm, &binary, &variant->config,
&variant->info, shader, &options, dump);
LLVMDisposeTargetMachine(tm);
radv_fill_shader_variant(device, variant, &binary, shader->stage);
if (code_out) {
*code_out = binary.code;
*code_size_out = binary.code_size;
} else
free(binary.code);
free(binary.config);
free(binary.rodata);
free(binary.global_symbol_offsets);
free(binary.relocs);
free(binary.disasm_string);
variant->ref_count = 1;
return variant;
}
static struct radv_shader_variant *
radv_pipeline_create_gs_copy_shader(struct radv_pipeline *pipeline,
struct nir_shader *nir,
void** code_out,
unsigned *code_size_out,
bool dump_shader,
bool multiview)
{
struct radv_shader_variant *variant = calloc(1, sizeof(struct radv_shader_variant));
enum radeon_family chip_family = pipeline->device->physical_device->rad_info.family;
LLVMTargetMachineRef tm;
if (!variant)
return NULL;
struct ac_nir_compiler_options options = {0};
struct ac_shader_binary binary;
enum ac_target_machine_options tm_options = 0;
options.family = chip_family;
options.chip_class = pipeline->device->physical_device->rad_info.chip_class;
options.key.has_multiview_view_index = multiview;
if (options.supports_spill)
tm_options |= AC_TM_SUPPORTS_SPILL;
if (pipeline->device->instance->perftest_flags & RADV_PERFTEST_SISCHED)
tm_options |= AC_TM_SISCHED;
tm = ac_create_target_machine(chip_family, tm_options);
ac_create_gs_copy_shader(tm, nir, &binary, &variant->config, &variant->info, &options, dump_shader);
LLVMDisposeTargetMachine(tm);
radv_fill_shader_variant(pipeline->device, variant, &binary, MESA_SHADER_VERTEX);
if (code_out) {
*code_out = binary.code;
*code_size_out = binary.code_size;
} else
free(binary.code);
free(binary.config);
free(binary.rodata);
free(binary.global_symbol_offsets);
free(binary.relocs);
free(binary.disasm_string);
variant->ref_count = 1;
return variant;
}
static struct radv_shader_variant *
radv_pipeline_compile(struct radv_pipeline *pipeline,
struct radv_pipeline_cache *cache,
@ -607,8 +209,9 @@ radv_pipeline_compile(struct radv_pipeline *pipeline,
if (stage == MESA_SHADER_GEOMETRY && !pipeline->gs_copy_shader) {
void *gs_copy_code = NULL;
unsigned gs_copy_code_size = 0;
pipeline->gs_copy_shader = radv_pipeline_create_gs_copy_shader(
pipeline, nir, &gs_copy_code, &gs_copy_code_size, dump, key->has_multiview_view_index);
pipeline->gs_copy_shader = radv_create_gs_copy_shader(
pipeline->device, nir, &gs_copy_code,
&gs_copy_code_size, dump, key->has_multiview_view_index);
if (pipeline->gs_copy_shader) {
pipeline->gs_copy_shader =
@ -2586,56 +2189,3 @@ VkResult radv_CreateComputePipelines(
return result;
}
void *radv_alloc_shader_memory(struct radv_device *device,
struct radv_shader_variant *shader)
{
mtx_lock(&device->shader_slab_mutex);
list_for_each_entry(struct radv_shader_slab, slab, &device->shader_slabs, slabs) {
uint64_t offset = 0;
list_for_each_entry(struct radv_shader_variant, s, &slab->shaders, slab_list) {
if (s->bo_offset - offset >= shader->code_size) {
shader->bo = slab->bo;
shader->bo_offset = offset;
list_addtail(&shader->slab_list, &s->slab_list);
mtx_unlock(&device->shader_slab_mutex);
return slab->ptr + offset;
}
offset = align_u64(s->bo_offset + s->code_size, 256);
}
if (slab->size - offset >= shader->code_size) {
shader->bo = slab->bo;
shader->bo_offset = offset;
list_addtail(&shader->slab_list, &slab->shaders);
mtx_unlock(&device->shader_slab_mutex);
return slab->ptr + offset;
}
}
mtx_unlock(&device->shader_slab_mutex);
struct radv_shader_slab *slab = calloc(1, sizeof(struct radv_shader_slab));
slab->size = 256 * 1024;
slab->bo = device->ws->buffer_create(device->ws, slab->size, 256,
RADEON_DOMAIN_VRAM, 0);
slab->ptr = (char*)device->ws->buffer_map(slab->bo);
list_inithead(&slab->shaders);
mtx_lock(&device->shader_slab_mutex);
list_add(&slab->slabs, &device->shader_slabs);
shader->bo = slab->bo;
shader->bo_offset = 0;
list_add(&shader->slab_list, &slab->shaders);
mtx_unlock(&device->shader_slab_mutex);
return slab->ptr;
}
void radv_destroy_shader_slabs(struct radv_device *device)
{
list_for_each_entry_safe(struct radv_shader_slab, slab, &device->shader_slabs, slabs) {
device->ws->buffer_destroy(slab->bo);
free(slab);
}
mtx_destroy(&device->shader_slab_mutex);
}

View File

@ -26,6 +26,7 @@
#include "util/u_atomic.h"
#include "radv_debug.h"
#include "radv_private.h"
#include "radv_shader.h"
#include "ac_nir_to_llvm.h"

View File

@ -330,9 +330,6 @@ radv_pipeline_cache_insert_shader(struct radv_pipeline_cache *cache,
struct radv_shader_variant *variant,
const void *code, unsigned code_size);
void radv_shader_variant_destroy(struct radv_device *device,
struct radv_shader_variant *variant);
struct radv_meta_state {
VkAllocationCallbacks alloc;
@ -950,15 +947,7 @@ struct radv_event {
uint64_t *map;
};
struct nir_shader;
struct radv_shader_module {
struct nir_shader * nir;
unsigned char sha1[20];
uint32_t size;
char data[0];
};
struct radv_shader_module;
struct ac_shader_variant_key;
void
@ -990,35 +979,6 @@ mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
stage = __builtin_ffs(__tmp) - 1, __tmp; \
__tmp &= ~(1 << (stage)))
struct radv_shader_slab {
struct list_head slabs;
struct list_head shaders;
struct radeon_winsys_bo *bo;
uint64_t size;
char *ptr;
};
struct radv_shader_variant {
uint32_t ref_count;
struct radeon_winsys_bo *bo;
uint64_t bo_offset;
struct ac_shader_config config;
uint32_t code_size;
struct ac_shader_variant_info info;
unsigned rsrc1;
unsigned rsrc2;
struct list_head slab_list;
};
void *radv_alloc_shader_memory(struct radv_device *device,
struct radv_shader_variant *shader);
void radv_destroy_shader_slabs(struct radv_device *device);
struct radv_depth_stencil_state {
uint32_t db_depth_control;
uint32_t db_stencil_control;
@ -1142,7 +1102,6 @@ static inline bool radv_pipeline_has_tess(struct radv_pipeline *pipeline)
return pipeline->shaders[MESA_SHADER_TESS_EVAL] ? true : false;
}
uint32_t radv_shader_stage_to_user_data_0(gl_shader_stage stage, bool has_gs, bool has_tess);
struct ac_userdata_info *radv_lookup_user_sgpr(struct radv_pipeline *pipeline,
gl_shader_stage stage,
int idx);

View File

@ -0,0 +1,526 @@
/*
* Copyright © 2016 Red Hat.
* Copyright © 2016 Bas Nieuwenhuizen
*
* based in part on anv driver which is:
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "util/mesa-sha1.h"
#include "util/u_atomic.h"
#include "radv_debug.h"
#include "radv_private.h"
#include "radv_shader.h"
#include "nir/nir.h"
#include "nir/nir_builder.h"
#include "spirv/nir_spirv.h"
#include <llvm-c/Core.h>
#include <llvm-c/TargetMachine.h>
#include "sid.h"
#include "gfx9d.h"
#include "r600d_common.h"
#include "ac_binary.h"
#include "ac_llvm_util.h"
#include "ac_nir_to_llvm.h"
#include "vk_format.h"
#include "util/debug.h"
#include "ac_exp_param.h"
static const struct nir_shader_compiler_options nir_options = {
.vertex_id_zero_based = true,
.lower_scmp = true,
.lower_flrp32 = true,
.lower_fsat = true,
.lower_fdiv = true,
.lower_sub = true,
.lower_pack_snorm_2x16 = true,
.lower_pack_snorm_4x8 = true,
.lower_pack_unorm_2x16 = true,
.lower_pack_unorm_4x8 = true,
.lower_unpack_snorm_2x16 = true,
.lower_unpack_snorm_4x8 = true,
.lower_unpack_unorm_2x16 = true,
.lower_unpack_unorm_4x8 = true,
.lower_extract_byte = true,
.lower_extract_word = true,
.max_unroll_iterations = 32
};
VkResult radv_CreateShaderModule(
VkDevice _device,
const VkShaderModuleCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkShaderModule* pShaderModule)
{
RADV_FROM_HANDLE(radv_device, device, _device);
struct radv_shader_module *module;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO);
assert(pCreateInfo->flags == 0);
module = vk_alloc2(&device->alloc, pAllocator,
sizeof(*module) + pCreateInfo->codeSize, 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (module == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
module->nir = NULL;
module->size = pCreateInfo->codeSize;
memcpy(module->data, pCreateInfo->pCode, module->size);
_mesa_sha1_compute(module->data, module->size, module->sha1);
*pShaderModule = radv_shader_module_to_handle(module);
return VK_SUCCESS;
}
void radv_DestroyShaderModule(
VkDevice _device,
VkShaderModule _module,
const VkAllocationCallbacks* pAllocator)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_shader_module, module, _module);
if (!module)
return;
vk_free2(&device->alloc, pAllocator, module);
}
static void
radv_optimize_nir(struct nir_shader *shader)
{
bool progress;
do {
progress = false;
NIR_PASS_V(shader, nir_lower_vars_to_ssa);
NIR_PASS_V(shader, nir_lower_64bit_pack);
NIR_PASS_V(shader, nir_lower_alu_to_scalar);
NIR_PASS_V(shader, nir_lower_phis_to_scalar);
NIR_PASS(progress, shader, nir_copy_prop);
NIR_PASS(progress, shader, nir_opt_remove_phis);
NIR_PASS(progress, shader, nir_opt_dce);
if (nir_opt_trivial_continues(shader)) {
progress = true;
NIR_PASS(progress, shader, nir_copy_prop);
NIR_PASS(progress, shader, nir_opt_dce);
}
NIR_PASS(progress, shader, nir_opt_if);
NIR_PASS(progress, shader, nir_opt_dead_cf);
NIR_PASS(progress, shader, nir_opt_cse);
NIR_PASS(progress, shader, nir_opt_peephole_select, 8);
NIR_PASS(progress, shader, nir_opt_algebraic);
NIR_PASS(progress, shader, nir_opt_constant_folding);
NIR_PASS(progress, shader, nir_opt_undef);
NIR_PASS(progress, shader, nir_opt_conditional_discard);
if (shader->options->max_unroll_iterations) {
NIR_PASS(progress, shader, nir_opt_loop_unroll, 0);
}
} while (progress);
}
nir_shader *
radv_shader_compile_to_nir(struct radv_device *device,
struct radv_shader_module *module,
const char *entrypoint_name,
gl_shader_stage stage,
const VkSpecializationInfo *spec_info,
bool dump)
{
if (strcmp(entrypoint_name, "main") != 0) {
radv_finishme("Multiple shaders per module not really supported");
}
nir_shader *nir;
nir_function *entry_point;
if (module->nir) {
/* Some things such as our meta clear/blit code will give us a NIR
* shader directly. In that case, we just ignore the SPIR-V entirely
* and just use the NIR shader */
nir = module->nir;
nir->options = &nir_options;
nir_validate_shader(nir);
assert(exec_list_length(&nir->functions) == 1);
struct exec_node *node = exec_list_get_head(&nir->functions);
entry_point = exec_node_data(nir_function, node, node);
} else {
uint32_t *spirv = (uint32_t *) module->data;
assert(module->size % 4 == 0);
if (device->debug_flags & RADV_DEBUG_DUMP_SPIRV)
radv_print_spirv(module, stderr);
uint32_t num_spec_entries = 0;
struct nir_spirv_specialization *spec_entries = NULL;
if (spec_info && spec_info->mapEntryCount > 0) {
num_spec_entries = spec_info->mapEntryCount;
spec_entries = malloc(num_spec_entries * sizeof(*spec_entries));
for (uint32_t i = 0; i < num_spec_entries; i++) {
VkSpecializationMapEntry entry = spec_info->pMapEntries[i];
const void *data = spec_info->pData + entry.offset;
assert(data + entry.size <= spec_info->pData + spec_info->dataSize);
spec_entries[i].id = spec_info->pMapEntries[i].constantID;
if (spec_info->dataSize == 8)
spec_entries[i].data64 = *(const uint64_t *)data;
else
spec_entries[i].data32 = *(const uint32_t *)data;
}
}
const struct nir_spirv_supported_extensions supported_ext = {
.draw_parameters = true,
.float64 = true,
.image_read_without_format = true,
.image_write_without_format = true,
.tessellation = true,
.int64 = true,
.multiview = true,
.variable_pointers = true,
};
entry_point = spirv_to_nir(spirv, module->size / 4,
spec_entries, num_spec_entries,
stage, entrypoint_name, &supported_ext, &nir_options);
nir = entry_point->shader;
assert(nir->stage == stage);
nir_validate_shader(nir);
free(spec_entries);
/* We have to lower away local constant initializers right before we
* inline functions. That way they get properly initialized at the top
* of the function and not at the top of its caller.
*/
NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_local);
NIR_PASS_V(nir, nir_lower_returns);
NIR_PASS_V(nir, nir_inline_functions);
/* Pick off the single entrypoint that we want */
foreach_list_typed_safe(nir_function, func, node, &nir->functions) {
if (func != entry_point)
exec_node_remove(&func->node);
}
assert(exec_list_length(&nir->functions) == 1);
entry_point->name = ralloc_strdup(entry_point, "main");
NIR_PASS_V(nir, nir_remove_dead_variables,
nir_var_shader_in | nir_var_shader_out | nir_var_system_value);
/* Now that we've deleted all but the main function, we can go ahead and
* lower the rest of the constant initializers.
*/
NIR_PASS_V(nir, nir_lower_constant_initializers, ~0);
NIR_PASS_V(nir, nir_lower_system_values);
NIR_PASS_V(nir, nir_lower_clip_cull_distance_arrays);
}
/* Vulkan uses the separate-shader linking model */
nir->info.separate_shader = true;
nir_shader_gather_info(nir, entry_point->impl);
nir_variable_mode indirect_mask = 0;
indirect_mask |= nir_var_shader_in;
indirect_mask |= nir_var_local;
nir_lower_indirect_derefs(nir, indirect_mask);
static const nir_lower_tex_options tex_options = {
.lower_txp = ~0,
};
nir_lower_tex(nir, &tex_options);
nir_lower_vars_to_ssa(nir);
nir_lower_var_copies(nir);
nir_lower_global_vars_to_local(nir);
nir_remove_dead_variables(nir, nir_var_local);
radv_optimize_nir(nir);
if (dump)
nir_print_shader(nir, stderr);
return nir;
}
void *
radv_alloc_shader_memory(struct radv_device *device,
struct radv_shader_variant *shader)
{
mtx_lock(&device->shader_slab_mutex);
list_for_each_entry(struct radv_shader_slab, slab, &device->shader_slabs, slabs) {
uint64_t offset = 0;
list_for_each_entry(struct radv_shader_variant, s, &slab->shaders, slab_list) {
if (s->bo_offset - offset >= shader->code_size) {
shader->bo = slab->bo;
shader->bo_offset = offset;
list_addtail(&shader->slab_list, &s->slab_list);
mtx_unlock(&device->shader_slab_mutex);
return slab->ptr + offset;
}
offset = align_u64(s->bo_offset + s->code_size, 256);
}
if (slab->size - offset >= shader->code_size) {
shader->bo = slab->bo;
shader->bo_offset = offset;
list_addtail(&shader->slab_list, &slab->shaders);
mtx_unlock(&device->shader_slab_mutex);
return slab->ptr + offset;
}
}
mtx_unlock(&device->shader_slab_mutex);
struct radv_shader_slab *slab = calloc(1, sizeof(struct radv_shader_slab));
slab->size = 256 * 1024;
slab->bo = device->ws->buffer_create(device->ws, slab->size, 256,
RADEON_DOMAIN_VRAM, 0);
slab->ptr = (char*)device->ws->buffer_map(slab->bo);
list_inithead(&slab->shaders);
mtx_lock(&device->shader_slab_mutex);
list_add(&slab->slabs, &device->shader_slabs);
shader->bo = slab->bo;
shader->bo_offset = 0;
list_add(&shader->slab_list, &slab->shaders);
mtx_unlock(&device->shader_slab_mutex);
return slab->ptr;
}
void
radv_destroy_shader_slabs(struct radv_device *device)
{
list_for_each_entry_safe(struct radv_shader_slab, slab, &device->shader_slabs, slabs) {
device->ws->buffer_destroy(slab->bo);
free(slab);
}
mtx_destroy(&device->shader_slab_mutex);
}
static void
radv_fill_shader_variant(struct radv_device *device,
struct radv_shader_variant *variant,
struct ac_shader_binary *binary,
gl_shader_stage stage)
{
bool scratch_enabled = variant->config.scratch_bytes_per_wave > 0;
unsigned vgpr_comp_cnt = 0;
if (scratch_enabled && !device->llvm_supports_spill)
radv_finishme("shader scratch support only available with LLVM 4.0");
variant->code_size = binary->code_size;
variant->rsrc2 = S_00B12C_USER_SGPR(variant->info.num_user_sgprs) |
S_00B12C_SCRATCH_EN(scratch_enabled);
switch (stage) {
case MESA_SHADER_TESS_EVAL:
vgpr_comp_cnt = 3;
/* fallthrough */
case MESA_SHADER_TESS_CTRL:
variant->rsrc2 |= S_00B42C_OC_LDS_EN(1);
break;
case MESA_SHADER_VERTEX:
case MESA_SHADER_GEOMETRY:
vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt;
break;
case MESA_SHADER_FRAGMENT:
break;
case MESA_SHADER_COMPUTE:
variant->rsrc2 |=
S_00B84C_TGID_X_EN(1) | S_00B84C_TGID_Y_EN(1) |
S_00B84C_TGID_Z_EN(1) | S_00B84C_TIDIG_COMP_CNT(2) |
S_00B84C_TG_SIZE_EN(1) |
S_00B84C_LDS_SIZE(variant->config.lds_size);
break;
default:
unreachable("unsupported shader type");
break;
}
variant->rsrc1 = S_00B848_VGPRS((variant->config.num_vgprs - 1) / 4) |
S_00B848_SGPRS((variant->config.num_sgprs - 1) / 8) |
S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt) |
S_00B848_DX10_CLAMP(1) |
S_00B848_FLOAT_MODE(variant->config.float_mode);
void *ptr = radv_alloc_shader_memory(device, variant);
memcpy(ptr, binary->code, binary->code_size);
}
struct radv_shader_variant *
radv_shader_variant_create(struct radv_device *device,
struct nir_shader *shader,
struct radv_pipeline_layout *layout,
const struct ac_shader_variant_key *key,
void **code_out,
unsigned *code_size_out,
bool dump)
{
struct radv_shader_variant *variant = calloc(1, sizeof(struct radv_shader_variant));
enum radeon_family chip_family = device->physical_device->rad_info.family;
LLVMTargetMachineRef tm;
if (!variant)
return NULL;
struct ac_nir_compiler_options options = {0};
options.layout = layout;
if (key)
options.key = *key;
struct ac_shader_binary binary;
enum ac_target_machine_options tm_options = 0;
options.unsafe_math = !!(device->debug_flags & RADV_DEBUG_UNSAFE_MATH);
options.family = chip_family;
options.chip_class = device->physical_device->rad_info.chip_class;
options.supports_spill = device->llvm_supports_spill;
if (options.supports_spill)
tm_options |= AC_TM_SUPPORTS_SPILL;
if (device->instance->perftest_flags & RADV_PERFTEST_SISCHED)
tm_options |= AC_TM_SISCHED;
tm = ac_create_target_machine(chip_family, tm_options);
ac_compile_nir_shader(tm, &binary, &variant->config,
&variant->info, shader, &options, dump);
LLVMDisposeTargetMachine(tm);
radv_fill_shader_variant(device, variant, &binary, shader->stage);
if (code_out) {
*code_out = binary.code;
*code_size_out = binary.code_size;
} else
free(binary.code);
free(binary.config);
free(binary.rodata);
free(binary.global_symbol_offsets);
free(binary.relocs);
free(binary.disasm_string);
variant->ref_count = 1;
return variant;
}
struct radv_shader_variant *
radv_create_gs_copy_shader(struct radv_device *device, struct nir_shader *nir,
void **code_out, unsigned *code_size_out,
bool dump_shader, bool multiview)
{
struct radv_shader_variant *variant = calloc(1, sizeof(struct radv_shader_variant));
enum radeon_family chip_family = device->physical_device->rad_info.family;
LLVMTargetMachineRef tm;
if (!variant)
return NULL;
struct ac_nir_compiler_options options = {0};
struct ac_shader_binary binary;
enum ac_target_machine_options tm_options = 0;
options.family = chip_family;
options.chip_class = device->physical_device->rad_info.chip_class;
options.key.has_multiview_view_index = multiview;
if (options.supports_spill)
tm_options |= AC_TM_SUPPORTS_SPILL;
if (device->instance->perftest_flags & RADV_PERFTEST_SISCHED)
tm_options |= AC_TM_SISCHED;
tm = ac_create_target_machine(chip_family, tm_options);
ac_create_gs_copy_shader(tm, nir, &binary, &variant->config, &variant->info, &options, dump_shader);
LLVMDisposeTargetMachine(tm);
radv_fill_shader_variant(device, variant, &binary, MESA_SHADER_VERTEX);
if (code_out) {
*code_out = binary.code;
*code_size_out = binary.code_size;
} else
free(binary.code);
free(binary.config);
free(binary.rodata);
free(binary.global_symbol_offsets);
free(binary.relocs);
free(binary.disasm_string);
variant->ref_count = 1;
return variant;
}
void
radv_shader_variant_destroy(struct radv_device *device,
struct radv_shader_variant *variant)
{
if (!p_atomic_dec_zero(&variant->ref_count))
return;
mtx_lock(&device->shader_slab_mutex);
list_del(&variant->slab_list);
mtx_unlock(&device->shader_slab_mutex);
free(variant);
}
uint32_t
radv_shader_stage_to_user_data_0(gl_shader_stage stage, bool has_gs,
bool has_tess)
{
switch (stage) {
case MESA_SHADER_FRAGMENT:
return R_00B030_SPI_SHADER_USER_DATA_PS_0;
case MESA_SHADER_VERTEX:
if (has_tess)
return R_00B530_SPI_SHADER_USER_DATA_LS_0;
else
return has_gs ? R_00B330_SPI_SHADER_USER_DATA_ES_0 : R_00B130_SPI_SHADER_USER_DATA_VS_0;
case MESA_SHADER_GEOMETRY:
return R_00B230_SPI_SHADER_USER_DATA_GS_0;
case MESA_SHADER_COMPUTE:
return R_00B900_COMPUTE_USER_DATA_0;
case MESA_SHADER_TESS_CTRL:
return R_00B430_SPI_SHADER_USER_DATA_HS_0;
case MESA_SHADER_TESS_EVAL:
if (has_gs)
return R_00B330_SPI_SHADER_USER_DATA_ES_0;
else
return R_00B130_SPI_SHADER_USER_DATA_VS_0;
default:
unreachable("unknown shader");
}
}
const char *
radv_get_shader_name(struct radv_shader_variant *var, gl_shader_stage stage)
{
switch (stage) {
case MESA_SHADER_VERTEX: return var->info.vs.as_ls ? "Vertex Shader as LS" : var->info.vs.as_es ? "Vertex Shader as ES" : "Vertex Shader as VS";
case MESA_SHADER_GEOMETRY: return "Geometry Shader";
case MESA_SHADER_FRAGMENT: return "Pixel Shader";
case MESA_SHADER_COMPUTE: return "Compute Shader";
case MESA_SHADER_TESS_CTRL: return "Tessellation Control Shader";
case MESA_SHADER_TESS_EVAL: return var->info.tes.as_es ? "Tessellation Evaluation Shader as ES" : "Tessellation Evaluation Shader as VS";
default:
return "Unknown shader";
};
}

View File

@ -0,0 +1,104 @@
/*
* Copyright © 2016 Red Hat.
* Copyright © 2016 Bas Nieuwenhuizen
*
* based in part on anv driver which is:
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#ifndef RADV_SHADER_H
#define RADV_SHADER_H
#include "radv_private.h"
#include "nir/nir.h"
struct radv_shader_module {
struct nir_shader *nir;
unsigned char sha1[20];
uint32_t size;
char data[0];
};
struct radv_shader_variant {
uint32_t ref_count;
struct radeon_winsys_bo *bo;
uint64_t bo_offset;
struct ac_shader_config config;
uint32_t code_size;
struct ac_shader_variant_info info;
unsigned rsrc1;
unsigned rsrc2;
struct list_head slab_list;
};
struct radv_shader_slab {
struct list_head slabs;
struct list_head shaders;
struct radeon_winsys_bo *bo;
uint64_t size;
char *ptr;
};
nir_shader *
radv_shader_compile_to_nir(struct radv_device *device,
struct radv_shader_module *module,
const char *entrypoint_name,
gl_shader_stage stage,
const VkSpecializationInfo *spec_info,
bool dump);
void *
radv_alloc_shader_memory(struct radv_device *device,
struct radv_shader_variant *shader);
void
radv_destroy_shader_slabs(struct radv_device *device);
struct radv_shader_variant *
radv_shader_variant_create(struct radv_device *device,
struct nir_shader *shader,
struct radv_pipeline_layout *layout,
const struct ac_shader_variant_key *key,
void ** code_out,
unsigned *code_size_out,
bool dump);
struct radv_shader_variant *
radv_create_gs_copy_shader(struct radv_device *device, struct nir_shader *nir,
void **code_out, unsigned *code_size_out,
bool dump_shader, bool multiview);
void
radv_shader_variant_destroy(struct radv_device *device,
struct radv_shader_variant *variant);
uint32_t
radv_shader_stage_to_user_data_0(gl_shader_stage stage, bool has_gs,
bool has_tess);
const char *
radv_get_shader_name(struct radv_shader_variant *var, gl_shader_stage stage);
#endif

View File

@ -28,6 +28,7 @@
/* command buffer handling for SI */
#include "radv_private.h"
#include "radv_shader.h"
#include "radv_cs.h"
#include "sid.h"
#include "gfx9d.h"