radv/gfx10: implement NGG streamout

It's still disabled by default because transform feedback randomly
hangs and it seems like it's related to GDS (cf. RadeonSI).

Signed-off-by: Samuel Pitoiset <samuel.pitoiset@gmail.com>
Reviewed-by: Bas Nieuwenhuizen <bas@basnieuwenhuizen.nl>
This commit is contained in:
Samuel Pitoiset 2019-09-09 10:54:27 +02:00
parent 63b20fb0cf
commit d0fd82b502
1 changed files with 514 additions and 7 deletions

View File

@ -2980,6 +2980,14 @@ static LLVMValueRef ngg_get_prim_cnt(struct radv_shader_context *ctx)
false);
}
static LLVMValueRef ngg_get_ordered_id(struct radv_shader_context *ctx)
{
return ac_build_bfe(&ctx->ac, ctx->gs_tg_info,
ctx->ac.i32_0,
LLVMConstInt(ctx->ac.i32, 11, false),
false);
}
static LLVMValueRef
ngg_gs_get_vertex_storage(struct radv_shader_context *ctx)
{
@ -3125,8 +3133,436 @@ static void build_export_prim(struct radv_shader_context *ctx,
ac_build_export(&ctx->ac, &args);
}
static void build_streamout_vertex(struct radv_shader_context *ctx,
LLVMValueRef *so_buffer, LLVMValueRef *wg_offset_dw,
unsigned stream, LLVMValueRef offset_vtx,
LLVMValueRef vertexptr)
{
struct radv_streamout_info *so = &ctx->shader_info->so;
LLVMBuilderRef builder = ctx->ac.builder;
LLVMValueRef offset[4] = {};
LLVMValueRef tmp;
for (unsigned buffer = 0; buffer < 4; ++buffer) {
if (!wg_offset_dw[buffer])
continue;
tmp = LLVMBuildMul(builder, offset_vtx,
LLVMConstInt(ctx->ac.i32, so->strides[buffer], false), "");
tmp = LLVMBuildAdd(builder, wg_offset_dw[buffer], tmp, "");
offset[buffer] = LLVMBuildShl(builder, tmp, LLVMConstInt(ctx->ac.i32, 2, false), "");
}
for (unsigned i = 0; i < so->num_outputs; ++i) {
struct radv_stream_output *output =
&ctx->shader_info->so.outputs[i];
if (stream != output->stream)
continue;
unsigned loc = output->location;
struct radv_shader_output_values out = {};
for (unsigned comp = 0; comp < 4; comp++) {
tmp = ac_build_gep0(&ctx->ac, vertexptr,
LLVMConstInt(ctx->ac.i32, 4 * loc + comp, false));
out.values[comp] = LLVMBuildLoad(builder, tmp, "");
}
radv_emit_stream_output(ctx, so_buffer, offset, output, &out);
}
}
struct ngg_streamout {
LLVMValueRef num_vertices;
/* per-thread data */
LLVMValueRef prim_enable[4]; /* i1 per stream */
LLVMValueRef vertices[3]; /* [N x i32] addrspace(LDS)* */
/* Output */
LLVMValueRef emit[4]; /* per-stream emitted primitives (only valid for used streams) */
};
/**
* Build streamout logic.
*
* Implies a barrier.
*
* Writes number of emitted primitives to gs_ngg_scratch[4:7].
*
* Clobbers gs_ngg_scratch[8:].
*/
static void build_streamout(struct radv_shader_context *ctx,
struct ngg_streamout *nggso)
{
struct radv_streamout_info *so = &ctx->shader_info->so;
LLVMBuilderRef builder = ctx->ac.builder;
LLVMValueRef buf_ptr = ctx->streamout_buffers;
LLVMValueRef tid = get_thread_id_in_tg(ctx);
LLVMValueRef cond, tmp, tmp2;
LLVMValueRef i32_2 = LLVMConstInt(ctx->ac.i32, 2, false);
LLVMValueRef i32_4 = LLVMConstInt(ctx->ac.i32, 4, false);
LLVMValueRef i32_8 = LLVMConstInt(ctx->ac.i32, 8, false);
LLVMValueRef so_buffer[4] = {};
unsigned max_num_vertices = 1 + (nggso->vertices[1] ? 1 : 0) +
(nggso->vertices[2] ? 1 : 0);
LLVMValueRef prim_stride_dw[4] = {};
LLVMValueRef prim_stride_dw_vgpr = LLVMGetUndef(ctx->ac.i32);
int stream_for_buffer[4] = { -1, -1, -1, -1 };
unsigned bufmask_for_stream[4] = {};
bool isgs = ctx->stage == MESA_SHADER_GEOMETRY;
unsigned scratch_emit_base = isgs ? 4 : 0;
LLVMValueRef scratch_emit_basev = isgs ? i32_4 : ctx->ac.i32_0;
unsigned scratch_offset_base = isgs ? 8 : 4;
LLVMValueRef scratch_offset_basev = isgs ? i32_8 : i32_4;
ac_llvm_add_target_dep_function_attr(ctx->main_function,
"amdgpu-gds-size", 256);
/* Determine the mapping of streamout buffers to vertex streams. */
for (unsigned i = 0; i < so->num_outputs; ++i) {
unsigned buf = so->outputs[i].buffer;
unsigned stream = so->outputs[i].stream;
assert(stream_for_buffer[buf] < 0 || stream_for_buffer[buf] == stream);
stream_for_buffer[buf] = stream;
bufmask_for_stream[stream] |= 1 << buf;
}
for (unsigned buffer = 0; buffer < 4; ++buffer) {
if (stream_for_buffer[buffer] == -1)
continue;
assert(so->strides[buffer]);
LLVMValueRef stride_for_buffer =
LLVMConstInt(ctx->ac.i32, so->strides[buffer], false);
prim_stride_dw[buffer] =
LLVMBuildMul(builder, stride_for_buffer,
nggso->num_vertices, "");
prim_stride_dw_vgpr = ac_build_writelane(
&ctx->ac, prim_stride_dw_vgpr, prim_stride_dw[buffer],
LLVMConstInt(ctx->ac.i32, buffer, false));
LLVMValueRef offset = LLVMConstInt(ctx->ac.i32, buffer, false);
so_buffer[buffer] = ac_build_load_to_sgpr(&ctx->ac, buf_ptr,
offset);
}
cond = LLVMBuildICmp(builder, LLVMIntEQ, get_wave_id_in_tg(ctx), ctx->ac.i32_0, "");
ac_build_ifcc(&ctx->ac, cond, 5200);
{
LLVMTypeRef gdsptr = LLVMPointerType(ctx->ac.i32, AC_ADDR_SPACE_GDS);
LLVMValueRef gdsbase = LLVMBuildIntToPtr(builder, ctx->ac.i32_0, gdsptr, "");
/* Advance the streamout offsets in GDS. */
LLVMValueRef offsets_vgpr = ac_build_alloca_undef(&ctx->ac, ctx->ac.i32, "");
LLVMValueRef generated_by_stream_vgpr = ac_build_alloca_undef(&ctx->ac, ctx->ac.i32, "");
cond = LLVMBuildICmp(builder, LLVMIntULT, ac_get_thread_id(&ctx->ac), i32_4, "");
ac_build_ifcc(&ctx->ac, cond, 5210);
{
/* Fetch the number of generated primitives and store
* it in GDS for later use.
*/
if (isgs) {
tmp = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, tid);
tmp = LLVMBuildLoad(builder, tmp, "");
} else {
tmp = ac_build_writelane(&ctx->ac, ctx->ac.i32_0,
ngg_get_prim_cnt(ctx), ctx->ac.i32_0);
}
LLVMBuildStore(builder, tmp, generated_by_stream_vgpr);
unsigned swizzle[4];
int unused_stream = -1;
for (unsigned stream = 0; stream < 4; ++stream) {
if (!ctx->shader_info->gs.num_stream_output_components[stream]) {
unused_stream = stream;
break;
}
}
for (unsigned buffer = 0; buffer < 4; ++buffer) {
if (stream_for_buffer[buffer] >= 0) {
swizzle[buffer] = stream_for_buffer[buffer];
} else {
assert(unused_stream >= 0);
swizzle[buffer] = unused_stream;
}
}
tmp = ac_build_quad_swizzle(&ctx->ac, tmp,
swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
tmp = LLVMBuildMul(builder, tmp, prim_stride_dw_vgpr, "");
LLVMValueRef args[] = {
LLVMBuildIntToPtr(builder, ngg_get_ordered_id(ctx), gdsptr, ""),
tmp,
ctx->ac.i32_0, // ordering
ctx->ac.i32_0, // scope
ctx->ac.i1false, // isVolatile
LLVMConstInt(ctx->ac.i32, 4 << 24, false), // OA index
ctx->ac.i1true, // wave release
ctx->ac.i1true, // wave done
};
tmp = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.ds.ordered.add",
ctx->ac.i32, args, ARRAY_SIZE(args), 0);
/* Keep offsets in a VGPR for quick retrieval via readlane by
* the first wave for bounds checking, and also store in LDS
* for retrieval by all waves later. */
LLVMBuildStore(builder, tmp, offsets_vgpr);
tmp2 = LLVMBuildAdd(builder, ac_get_thread_id(&ctx->ac),
scratch_offset_basev, "");
tmp2 = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, tmp2);
LLVMBuildStore(builder, tmp, tmp2);
}
ac_build_endif(&ctx->ac, 5210);
/* Determine the max emit per buffer. This is done via the SALU, in part
* because LLVM can't generate divide-by-multiply if we try to do this
* via VALU with one lane per buffer.
*/
LLVMValueRef max_emit[4] = {};
for (unsigned buffer = 0; buffer < 4; ++buffer) {
if (stream_for_buffer[buffer] == -1)
continue;
/* Compute the streamout buffer size in DWORD. */
LLVMValueRef bufsize_dw =
LLVMBuildLShr(builder,
LLVMBuildExtractElement(builder, so_buffer[buffer], i32_2, ""),
i32_2, "");
/* Load the streamout buffer offset from GDS. */
tmp = LLVMBuildLoad(builder, offsets_vgpr, "");
LLVMValueRef offset_dw =
ac_build_readlane(&ctx->ac, tmp,
LLVMConstInt(ctx->ac.i32, buffer, false));
/* Compute the remaining size to emit. */
LLVMValueRef remaining_dw =
LLVMBuildSub(builder, bufsize_dw, offset_dw, "");
tmp = LLVMBuildUDiv(builder, remaining_dw,
prim_stride_dw[buffer], "");
cond = LLVMBuildICmp(builder, LLVMIntULT,
bufsize_dw, offset_dw, "");
max_emit[buffer] = LLVMBuildSelect(builder, cond,
ctx->ac.i32_0, tmp, "");
}
/* Determine the number of emitted primitives per stream and fixup the
* GDS counter if necessary.
*
* This is complicated by the fact that a single stream can emit to
* multiple buffers (but luckily not vice versa).
*/
LLVMValueRef emit_vgpr = ctx->ac.i32_0;
for (unsigned stream = 0; stream < 4; ++stream) {
if (!ctx->shader_info->gs.num_stream_output_components[stream])
continue;
/* Load the number of generated primitives from GDS and
* determine that number for the given stream.
*/
tmp = LLVMBuildLoad(builder, generated_by_stream_vgpr, "");
LLVMValueRef generated =
ac_build_readlane(&ctx->ac, tmp,
LLVMConstInt(ctx->ac.i32, stream, false));
/* Compute the number of emitted primitives. */
LLVMValueRef emit = generated;
for (unsigned buffer = 0; buffer < 4; ++buffer) {
if (stream_for_buffer[buffer] == stream)
emit = ac_build_umin(&ctx->ac, emit, max_emit[buffer]);
}
/* Store the number of emitted primitives for that
* stream.
*/
emit_vgpr = ac_build_writelane(&ctx->ac, emit_vgpr, emit,
LLVMConstInt(ctx->ac.i32, stream, false));
/* Fixup the offset using a plain GDS atomic if we overflowed. */
cond = LLVMBuildICmp(builder, LLVMIntULT, emit, generated, "");
ac_build_ifcc(&ctx->ac, cond, 5221); /* scalar branch */
tmp = LLVMBuildLShr(builder,
LLVMConstInt(ctx->ac.i32, bufmask_for_stream[stream], false),
ac_get_thread_id(&ctx->ac), "");
tmp = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
ac_build_ifcc(&ctx->ac, tmp, 5222);
{
tmp = LLVMBuildSub(builder, generated, emit, "");
tmp = LLVMBuildMul(builder, tmp, prim_stride_dw_vgpr, "");
tmp2 = LLVMBuildGEP(builder, gdsbase, &tid, 1, "");
LLVMBuildAtomicRMW(builder, LLVMAtomicRMWBinOpSub, tmp2, tmp,
LLVMAtomicOrderingMonotonic, false);
}
ac_build_endif(&ctx->ac, 5222);
ac_build_endif(&ctx->ac, 5221);
}
/* Store the number of emitted primitives to LDS for later use. */
cond = LLVMBuildICmp(builder, LLVMIntULT, ac_get_thread_id(&ctx->ac), i32_4, "");
ac_build_ifcc(&ctx->ac, cond, 5225);
{
tmp = LLVMBuildAdd(builder, ac_get_thread_id(&ctx->ac),
scratch_emit_basev, "");
tmp = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, tmp);
LLVMBuildStore(builder, emit_vgpr, tmp);
}
ac_build_endif(&ctx->ac, 5225);
}
ac_build_endif(&ctx->ac, 5200);
/* Determine the workgroup-relative per-thread / primitive offset into
* the streamout buffers */
struct ac_wg_scan primemit_scan[4] = {};
if (isgs) {
for (unsigned stream = 0; stream < 4; ++stream) {
if (!ctx->shader_info->gs.num_stream_output_components[stream])
continue;
primemit_scan[stream].enable_exclusive = true;
primemit_scan[stream].op = nir_op_iadd;
primemit_scan[stream].src = nggso->prim_enable[stream];
primemit_scan[stream].scratch =
ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch,
LLVMConstInt(ctx->ac.i32, 12 + 8 * stream, false));
primemit_scan[stream].waveidx = get_wave_id_in_tg(ctx);
primemit_scan[stream].numwaves = get_tgsize(ctx);
primemit_scan[stream].maxwaves = 8;
ac_build_wg_scan_top(&ctx->ac, &primemit_scan[stream]);
}
}
ac_build_s_barrier(&ctx->ac);
/* Fetch the per-buffer offsets and per-stream emit counts in all waves. */
LLVMValueRef wgoffset_dw[4] = {};
{
LLVMValueRef scratch_vgpr;
tmp = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, ac_get_thread_id(&ctx->ac));
scratch_vgpr = LLVMBuildLoad(builder, tmp, "");
for (unsigned buffer = 0; buffer < 4; ++buffer) {
if (stream_for_buffer[buffer] >= 0) {
wgoffset_dw[buffer] = ac_build_readlane(
&ctx->ac, scratch_vgpr,
LLVMConstInt(ctx->ac.i32, scratch_offset_base + buffer, false));
}
}
for (unsigned stream = 0; stream < 4; ++stream) {
if (ctx->shader_info->gs.num_stream_output_components[stream]) {
nggso->emit[stream] = ac_build_readlane(
&ctx->ac, scratch_vgpr,
LLVMConstInt(ctx->ac.i32, scratch_emit_base + stream, false));
}
}
}
/* Write out primitive data */
for (unsigned stream = 0; stream < 4; ++stream) {
if (!ctx->shader_info->gs.num_stream_output_components[stream])
continue;
if (isgs) {
ac_build_wg_scan_bottom(&ctx->ac, &primemit_scan[stream]);
} else {
primemit_scan[stream].result_exclusive = tid;
}
cond = LLVMBuildICmp(builder, LLVMIntULT,
primemit_scan[stream].result_exclusive,
nggso->emit[stream], "");
cond = LLVMBuildAnd(builder, cond, nggso->prim_enable[stream], "");
ac_build_ifcc(&ctx->ac, cond, 5240);
{
LLVMValueRef offset_vtx =
LLVMBuildMul(builder, primemit_scan[stream].result_exclusive,
nggso->num_vertices, "");
for (unsigned i = 0; i < max_num_vertices; ++i) {
cond = LLVMBuildICmp(builder, LLVMIntULT,
LLVMConstInt(ctx->ac.i32, i, false),
nggso->num_vertices, "");
ac_build_ifcc(&ctx->ac, cond, 5241);
build_streamout_vertex(ctx, so_buffer, wgoffset_dw,
stream, offset_vtx, nggso->vertices[i]);
ac_build_endif(&ctx->ac, 5241);
offset_vtx = LLVMBuildAdd(builder, offset_vtx, ctx->ac.i32_1, "");
}
}
ac_build_endif(&ctx->ac, 5240);
}
}
static unsigned ngg_nogs_vertex_size(struct radv_shader_context *ctx)
{
unsigned lds_vertex_size = 0;
if (ctx->shader_info->so.num_outputs)
lds_vertex_size = 4 * ctx->shader_info->so.num_outputs + 1;
return lds_vertex_size;
}
/**
* Returns an `[N x i32] addrspace(LDS)*` pointing at contiguous LDS storage
* for the vertex outputs.
*/
static LLVMValueRef ngg_nogs_vertex_ptr(struct radv_shader_context *ctx,
LLVMValueRef vtxid)
{
/* The extra dword is used to avoid LDS bank conflicts. */
unsigned vertex_size = ngg_nogs_vertex_size(ctx);
LLVMTypeRef ai32 = LLVMArrayType(ctx->ac.i32, vertex_size);
LLVMTypeRef pai32 = LLVMPointerType(ai32, AC_ADDR_SPACE_LDS);
LLVMValueRef tmp = LLVMBuildBitCast(ctx->ac.builder, ctx->esgs_ring, pai32, "");
return LLVMBuildGEP(ctx->ac.builder, tmp, &vtxid, 1, "");
}
static void
handle_ngg_outputs_post(struct radv_shader_context *ctx)
handle_ngg_outputs_post_1(struct radv_shader_context *ctx)
{
LLVMBuilderRef builder = ctx->ac.builder;
LLVMValueRef vertex_ptr = NULL;
LLVMValueRef tmp, tmp2;
assert((ctx->stage == MESA_SHADER_VERTEX ||
ctx->stage == MESA_SHADER_TESS_EVAL) && !ctx->is_gs_copy_shader);
if (!ctx->shader_info->so.num_outputs)
return;
vertex_ptr = ngg_nogs_vertex_ptr(ctx, get_thread_id_in_tg(ctx));
for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
if (!(ctx->output_mask & (1ull << i)))
continue;
for (unsigned j = 0; j < 4; j++) {
tmp = ac_build_gep0(&ctx->ac, vertex_ptr,
LLVMConstInt(ctx->ac.i32, 4 * i + j, false));
tmp2 = LLVMBuildLoad(builder,
ctx->abi.outputs[4 * i + j], "");
tmp2 = ac_to_integer(&ctx->ac, tmp2);
LLVMBuildStore(builder, tmp2, tmp);
}
}
}
static void
handle_ngg_outputs_post_2(struct radv_shader_context *ctx)
{
LLVMBuilderRef builder = ctx->ac.builder;
LLVMValueRef tmp;
@ -3148,8 +3584,10 @@ handle_ngg_outputs_post(struct radv_shader_context *ctx)
/* Determine the number of vertices per primitive. */
unsigned num_vertices;
LLVMValueRef num_vertices_val;
if (ctx->stage == MESA_SHADER_VERTEX) {
num_vertices_val = LLVMConstInt(ctx->ac.i32, 1, false);
num_vertices = 3; /* TODO: optimize for points & lines */
} else {
assert(ctx->stage == MESA_SHADER_TESS_EVAL);
@ -3160,16 +3598,30 @@ handle_ngg_outputs_post(struct radv_shader_context *ctx)
num_vertices = 2;
else
num_vertices = 3;
num_vertices_val = LLVMConstInt(ctx->ac.i32, num_vertices, false);
}
/* TODO: streamout */
/* Streamout */
if (ctx->shader_info->so.num_outputs) {
struct ngg_streamout nggso = {};
nggso.num_vertices = num_vertices_val;
nggso.prim_enable[0] = is_gs_thread;
for (unsigned i = 0; i < num_vertices; ++i)
nggso.vertices[i] = ngg_nogs_vertex_ptr(ctx, vtxindex[i]);
build_streamout(ctx, &nggso);
}
/* Copy Primitive IDs from GS threads to the LDS address corresponding
* to the ES thread of the provoking vertex.
*/
if (ctx->stage == MESA_SHADER_VERTEX &&
ctx->options->key.vs_common_out.export_prim_id) {
/* TODO: streamout */
if (ctx->shader_info->so.num_outputs)
ac_build_s_barrier(&ctx->ac);
ac_build_ifcc(&ctx->ac, is_gs_thread, 5400);
/* Extract the PROVOKING_VTX_INDEX field. */
@ -3341,6 +3793,30 @@ static void gfx10_ngg_gs_emit_epilogue_1(struct radv_shader_context *ctx)
ac_build_endloop(&ctx->ac, 5100);
}
/* Accumulate generated primitives counts across the entire threadgroup. */
for (unsigned stream = 0; stream < 4; ++stream) {
unsigned num_components;
num_components =
ctx->shader_info->gs.num_stream_output_components[stream];
if (!num_components)
continue;
LLVMValueRef numprims =
LLVMBuildLoad(builder, ctx->gs_generated_prims[stream], "");
numprims = ac_build_reduce(&ctx->ac, numprims, nir_op_iadd, ctx->ac.wave_size);
tmp = LLVMBuildICmp(builder, LLVMIntEQ, ac_get_thread_id(&ctx->ac), ctx->ac.i32_0, "");
ac_build_ifcc(&ctx->ac, tmp, 5105);
{
LLVMBuildAtomicRMW(builder, LLVMAtomicRMWBinOpAdd,
ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch,
LLVMConstInt(ctx->ac.i32, stream, false)),
numprims, LLVMAtomicOrderingMonotonic, false);
}
ac_build_endif(&ctx->ac, 5105);
}
}
static void gfx10_ngg_gs_emit_epilogue_2(struct radv_shader_context *ctx)
@ -3354,7 +3830,38 @@ static void gfx10_ngg_gs_emit_epilogue_2(struct radv_shader_context *ctx)
const LLVMValueRef tid = get_thread_id_in_tg(ctx);
LLVMValueRef num_emit_threads = ngg_get_prim_cnt(ctx);
/* TODO: streamout */
/* Streamout */
if (ctx->shader_info->so.num_outputs) {
struct ngg_streamout nggso = {};
nggso.num_vertices = LLVMConstInt(ctx->ac.i32, verts_per_prim, false);
LLVMValueRef vertexptr = ngg_gs_vertex_ptr(ctx, tid);
for (unsigned stream = 0; stream < 4; ++stream) {
if (!ctx->shader_info->gs.num_stream_output_components[stream])
continue;
LLVMValueRef gep_idx[3] = {
ctx->ac.i32_0, /* implicit C-style array */
ctx->ac.i32_1, /* second value of struct */
LLVMConstInt(ctx->ac.i32, stream, false),
};
tmp = LLVMBuildGEP(builder, vertexptr, gep_idx, 3, "");
tmp = LLVMBuildLoad(builder, tmp, "");
tmp = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
tmp2 = LLVMBuildICmp(builder, LLVMIntULT, tid, num_emit_threads, "");
nggso.prim_enable[stream] = LLVMBuildAnd(builder, tmp, tmp2, "");
}
for (unsigned i = 0; i < verts_per_prim; ++i) {
tmp = LLVMBuildSub(builder, tid,
LLVMConstInt(ctx->ac.i32, verts_per_prim - i - 1, false), "");
tmp = ngg_gs_vertex_ptr(ctx, tmp);
nggso.vertices[i] = ac_build_gep0(&ctx->ac, tmp, ctx->ac.i32_0);
}
build_streamout(ctx, &nggso);
}
/* TODO: culling */
@ -3911,7 +4418,7 @@ handle_shader_outputs_post(struct ac_shader_abi *abi, unsigned max_outputs,
else if (ctx->options->key.vs_common_out.as_es)
handle_es_outputs_post(ctx, &ctx->shader_info->vs.es_info);
else if (ctx->options->key.vs_common_out.as_ngg)
break; /* handled outside of the shader body */
handle_ngg_outputs_post_1(ctx);
else
handle_vs_outputs_post(ctx, ctx->options->key.vs_common_out.export_prim_id,
ctx->options->key.vs_common_out.export_clip_dists,
@ -3930,7 +4437,7 @@ handle_shader_outputs_post(struct ac_shader_abi *abi, unsigned max_outputs,
if (ctx->options->key.vs_common_out.as_es)
handle_es_outputs_post(ctx, &ctx->shader_info->tes.es_info);
else if (ctx->options->key.vs_common_out.as_ngg)
break; /* handled outside of the shader body */
handle_ngg_outputs_post_1(ctx);
else
handle_vs_outputs_post(ctx, ctx->options->key.vs_common_out.export_prim_id,
ctx->options->key.vs_common_out.export_clip_dists,
@ -4349,7 +4856,7 @@ LLVMModuleRef ac_translate_nir_to_llvm(struct ac_llvm_compiler *ac_llvm,
if (is_pre_gs_stage(shaders[i]->info.stage) &&
ctx.options->key.vs_common_out.as_ngg &&
i == shader_count - 1) {
handle_ngg_outputs_post(&ctx);
handle_ngg_outputs_post_2(&ctx);
} else if (shaders[i]->info.stage == MESA_SHADER_GEOMETRY &&
ctx.options->key.vs_common_out.as_ngg) {
gfx10_ngg_gs_emit_epilogue_2(&ctx);