i965/tiled_memcpy: Add tiled-to-linear paths

This commit addes tiled copy functions for coping from tiled memory to
linear memory.  These are very similar to the existing linear-to-tiled
paths.

v2: Jason Ekstrand <jason.ekstrand@intel.com>
   - New commit message
   - Various whitespace fixes
   - Added ptrdiff_t casts as done in commit 225a09790

v3: Jason Ekstrand <jason.ekstrand@intel.com>
   - Fixed a comment

Signed-off-by: Jason Ekstrand <jason.ekstrand@intel.com>
Reviewed-by: Chad Versace <chad.versace@intel.com>
This commit is contained in:
Sisinty Sasmita Patra 2015-01-03 11:16:08 -08:00 committed by Jason Ekstrand
parent 009be40b7d
commit b52959c602
2 changed files with 281 additions and 0 deletions

View File

@ -233,6 +233,109 @@ linear_to_ytiled(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3,
}
}
/**
* Copy texture data from X tile layout to linear.
*
* \copydoc tile_copy_fn
*/
static inline void
xtiled_to_linear(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3,
uint32_t y0, uint32_t y1,
char *dst, const char *src,
uint32_t dst_pitch,
uint32_t swizzle_bit,
mem_copy_fn mem_copy)
{
/* The copy destination offset for each range copied is the sum of
* an X offset 'x0' or 'xo' and a Y offset 'yo.'
*/
uint32_t xo, yo;
dst += y0 * dst_pitch;
for (yo = y0 * xtile_width; yo < y1 * xtile_width; yo += xtile_width) {
/* Bits 9 and 10 of the copy destination offset control swizzling.
* Only 'yo' contributes to those bits in the total offset,
* so calculate 'swizzle' just once per row.
* Move bits 9 and 10 three and four places respectively down
* to bit 6 and xor them.
*/
uint32_t swizzle = ((yo >> 3) ^ (yo >> 4)) & swizzle_bit;
mem_copy(dst + x0, src + ((x0 + yo) ^ swizzle), x1 - x0);
for (xo = x1; xo < x2; xo += xtile_span) {
mem_copy(dst + xo, src + ((xo + yo) ^ swizzle), xtile_span);
}
mem_copy(dst + x2, src + ((xo + yo) ^ swizzle), x3 - x2);
dst += dst_pitch;
}
}
/**
* Copy texture data from Y tile layout to linear.
*
* \copydoc tile_copy_fn
*/
static inline void
ytiled_to_linear(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3,
uint32_t y0, uint32_t y1,
char *dst, const char *src,
uint32_t dst_pitch,
uint32_t swizzle_bit,
mem_copy_fn mem_copy)
{
/* Y tiles consist of columns that are 'ytile_span' wide (and the same height
* as the tile). Thus the destination offset for (x,y) is the sum of:
* (x % column_width) // position within column
* (x / column_width) * bytes_per_column // column number * bytes per column
* y * column_width
*
* The copy destination offset for each range copied is the sum of
* an X offset 'xo0' or 'xo' and a Y offset 'yo.'
*/
const uint32_t column_width = ytile_span;
const uint32_t bytes_per_column = column_width * ytile_height;
uint32_t xo0 = (x0 % ytile_span) + (x0 / ytile_span) * bytes_per_column;
uint32_t xo1 = (x1 % ytile_span) + (x1 / ytile_span) * bytes_per_column;
/* Bit 9 of the destination offset control swizzling.
* Only the X offset contributes to bit 9 of the total offset,
* so swizzle can be calculated in advance for these X positions.
* Move bit 9 three places down to bit 6.
*/
uint32_t swizzle0 = (xo0 >> 3) & swizzle_bit;
uint32_t swizzle1 = (xo1 >> 3) & swizzle_bit;
uint32_t x, yo;
dst += y0 * dst_pitch;
for (yo = y0 * column_width; yo < y1 * column_width; yo += column_width) {
uint32_t xo = xo1;
uint32_t swizzle = swizzle1;
mem_copy(dst + x0, src + ((xo0 + yo) ^ swizzle0), x1 - x0);
/* Step by spans/columns. As it happens, the swizzle bit flips
* at each step so we don't need to calculate it explicitly.
*/
for (x = x1; x < x2; x += ytile_span) {
mem_copy(dst + x, src + ((xo + yo) ^ swizzle), ytile_span);
xo += bytes_per_column;
swizzle ^= swizzle_bit;
}
mem_copy(dst + x2, src + ((xo + yo) ^ swizzle), x3 - x2);
dst += dst_pitch;
}
}
/**
* Copy texture data from linear to X tile layout, faster.
*
@ -305,6 +408,77 @@ linear_to_ytiled_faster(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3,
dst, src, src_pitch, swizzle_bit, mem_copy);
}
/**
* Copy texture data from X tile layout to linear, faster.
*
* Same as \ref xtile_to_linear but faster, because it passes constant
* parameters for common cases, allowing the compiler to inline code
* optimized for those cases.
*
* \copydoc tile_copy_fn
*/
static FLATTEN void
xtiled_to_linear_faster(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3,
uint32_t y0, uint32_t y1,
char *dst, const char *src,
uint32_t dst_pitch,
uint32_t swizzle_bit,
mem_copy_fn mem_copy)
{
if (x0 == 0 && x3 == xtile_width && y0 == 0 && y1 == xtile_height) {
if (mem_copy == memcpy)
return xtiled_to_linear(0, 0, xtile_width, xtile_width, 0, xtile_height,
dst, src, dst_pitch, swizzle_bit, memcpy);
else if (mem_copy == rgba8_copy)
return xtiled_to_linear(0, 0, xtile_width, xtile_width, 0, xtile_height,
dst, src, dst_pitch, swizzle_bit, rgba8_copy);
} else {
if (mem_copy == memcpy)
return xtiled_to_linear(x0, x1, x2, x3, y0, y1,
dst, src, dst_pitch, swizzle_bit, memcpy);
else if (mem_copy == rgba8_copy)
return xtiled_to_linear(x0, x1, x2, x3, y0, y1,
dst, src, dst_pitch, swizzle_bit, rgba8_copy);
}
xtiled_to_linear(x0, x1, x2, x3, y0, y1,
dst, src, dst_pitch, swizzle_bit, mem_copy);
}
/**
* Copy texture data from Y tile layout to linear, faster.
*
* Same as \ref ytile_to_linear but faster, because it passes constant
* parameters for common cases, allowing the compiler to inline code
* optimized for those cases.
*
* \copydoc tile_copy_fn
*/
static FLATTEN void
ytiled_to_linear_faster(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3,
uint32_t y0, uint32_t y1,
char *dst, const char *src,
uint32_t dst_pitch,
uint32_t swizzle_bit,
mem_copy_fn mem_copy)
{
if (x0 == 0 && x3 == ytile_width && y0 == 0 && y1 == ytile_height) {
if (mem_copy == memcpy)
return ytiled_to_linear(0, 0, ytile_width, ytile_width, 0, ytile_height,
dst, src, dst_pitch, swizzle_bit, memcpy);
else if (mem_copy == rgba8_copy)
return ytiled_to_linear(0, 0, ytile_width, ytile_width, 0, ytile_height,
dst, src, dst_pitch, swizzle_bit, rgba8_copy);
} else {
if (mem_copy == memcpy)
return ytiled_to_linear(x0, x1, x2, x3, y0, y1,
dst, src, dst_pitch, swizzle_bit, memcpy);
else if (mem_copy == rgba8_copy)
return ytiled_to_linear(x0, x1, x2, x3, y0, y1,
dst, src, dst_pitch, swizzle_bit, rgba8_copy);
}
ytiled_to_linear(x0, x1, x2, x3, y0, y1,
dst, src, dst_pitch, swizzle_bit, mem_copy);
}
/**
* Copy from linear to tiled texture.
@ -397,10 +571,108 @@ linear_to_tiled(uint32_t xt1, uint32_t xt2,
}
}
/**
* Copy from tiled to linear texture.
*
* Divide the region given by X range [xt1, xt2) and Y range [yt1, yt2) into
* pieces that do not cross tile boundaries and copy each piece with a tile
* copy function (\ref tile_copy_fn).
* The X range is in bytes, i.e. pixels * bytes-per-pixel.
* The Y range is in pixels (i.e. unitless).
* 'dst' is the start of the texture and 'src' is the corresponding
* address to copy from, though copying begins at (xt1, yt1).
*/
void
tiled_to_linear(uint32_t xt1, uint32_t xt2,
uint32_t yt1, uint32_t yt2,
char *dst, const char *src,
uint32_t dst_pitch, uint32_t src_pitch,
bool has_swizzling,
uint32_t tiling,
mem_copy_fn mem_copy)
{
tile_copy_fn tile_copy;
uint32_t xt0, xt3;
uint32_t yt0, yt3;
uint32_t xt, yt;
uint32_t tw, th, span;
uint32_t swizzle_bit = has_swizzling ? 1<<6 : 0;
if (tiling == I915_TILING_X) {
tw = xtile_width;
th = xtile_height;
span = xtile_span;
tile_copy = xtiled_to_linear_faster;
} else if (tiling == I915_TILING_Y) {
tw = ytile_width;
th = ytile_height;
span = ytile_span;
tile_copy = ytiled_to_linear_faster;
} else {
unreachable("unsupported tiling");
}
/* Round out to tile boundaries. */
xt0 = ALIGN_DOWN(xt1, tw);
xt3 = ALIGN_UP (xt2, tw);
yt0 = ALIGN_DOWN(yt1, th);
yt3 = ALIGN_UP (yt2, th);
/* Loop over all tiles to which we have something to copy.
* 'xt' and 'yt' are the origin of the destination tile, whether copying
* copying a full or partial tile.
* tile_copy() copies one tile or partial tile.
* Looping x inside y is the faster memory access pattern.
*/
for (yt = yt0; yt < yt3; yt += th) {
for (xt = xt0; xt < xt3; xt += tw) {
/* The area to update is [x0,x3) x [y0,y1).
* May not want the whole tile, hence the min and max.
*/
uint32_t x0 = MAX2(xt1, xt);
uint32_t y0 = MAX2(yt1, yt);
uint32_t x3 = MIN2(xt2, xt + tw);
uint32_t y1 = MIN2(yt2, yt + th);
/* [x0,x3) is split into [x0,x1), [x1,x2), [x2,x3) such that
* the middle interval is the longest span-aligned part.
* The sub-ranges could be empty.
*/
uint32_t x1, x2;
x1 = ALIGN_UP(x0, span);
if (x1 > x3)
x1 = x2 = x3;
else
x2 = ALIGN_DOWN(x3, span);
assert(x0 <= x1 && x1 <= x2 && x2 <= x3);
assert(x1 - x0 < span && x3 - x2 < span);
assert(x3 - x0 <= tw);
assert((x2 - x1) % span == 0);
/* Translate by (xt,yt) for single-tile copier. */
tile_copy(x0-xt, x1-xt, x2-xt, x3-xt,
y0-yt, y1-yt,
dst + (ptrdiff_t) xt + (ptrdiff_t) yt * dst_pitch,
src + (ptrdiff_t) xt * th + (ptrdiff_t) yt * src_pitch,
dst_pitch,
swizzle_bit,
mem_copy);
}
}
}
/**
* Determine which copy function to use for the given format combination
*
* The only two possible copy functions which are ever returned are a
* direct memcpy and a RGBA <-> BGRA copy function. Since RGBA -> BGRA and
* BGRA -> RGBA are exactly the same operation (and memcpy is obviously
* symmetric), it doesn't matter whether the copy is from the tiled image
* to the untiled or vice versa. The copy function required is the same in
* either case so this function can be used.
*
* \param[in] tiledFormat The format of the tiled image
* \param[in] format The GL format of the client data
* \param[in] type The GL type of the client data

View File

@ -46,6 +46,15 @@ linear_to_tiled(uint32_t xt1, uint32_t xt2,
uint32_t tiling,
mem_copy_fn mem_copy);
void
tiled_to_linear(uint32_t xt1, uint32_t xt2,
uint32_t yt1, uint32_t yt2,
char *dst, const char *src,
uint32_t dst_pitch, uint32_t src_pitch,
bool has_swizzling,
uint32_t tiling,
mem_copy_fn mem_copy);
bool intel_get_memcpy(mesa_format tiledFormat, GLenum format,
GLenum type, mem_copy_fn* mem_copy, uint32_t* cpp);