intel: Share URB configuration code between GL and Vulkan.

This code is far too complicated to cut and paste.

v2: Update the newly added genX_gpu_memcpy.c; const a few things.

Signed-off-by: Kenneth Graunke <kenneth@whitecape.org>
Reviewed-by: Topi Pohjolainen <topi.pohjolainen@intel.com>
This commit is contained in:
Kenneth Graunke 2016-11-15 11:43:07 -08:00
parent 6d416bcd84
commit 9ef2b9277d
8 changed files with 256 additions and 294 deletions

View File

@ -11,6 +11,7 @@ COMMON_FILES = \
common/gen_device_info.h \
common/gen_l3_config.c \
common/gen_l3_config.h \
common/gen_urb_config.c \
common/gen_sample_positions.h
GENXML_GENERATED_FILES = \

View File

@ -92,4 +92,10 @@ gen_get_l3_config_urb_size(const struct gen_device_info *devinfo,
void gen_dump_l3_config(const struct gen_l3_config *cfg, FILE *fp);
void gen_get_urb_config(const struct gen_device_info *devinfo,
unsigned push_constant_bytes, unsigned urb_size_bytes,
bool tess_present, bool gs_present,
const unsigned entry_size[4],
unsigned entries[4], unsigned start[4]);
#endif /* GEN_L3_CONFIG_H */

View File

@ -0,0 +1,201 @@
/*
* Copyright (c) 2011 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <stdlib.h>
#include <math.h>
#include "util/macros.h"
#include "main/macros.h"
#include "gen_l3_config.h"
/**
* The following diagram shows how we partition the URB:
*
* 16kb or 32kb Rest of the URB space
* __________-__________ _________________-_________________
* / \ / \
* +-------------------------------------------------------------+
* | VS/HS/DS/GS/FS Push | VS/HS/DS/GS URB |
* | Constants | Entries |
* +-------------------------------------------------------------+
*
* Push constants must be stored at the beginning of the URB space,
* while URB entries can be stored anywhere. We choose to lay them
* out in pipeline order (VS -> HS -> DS -> GS).
*/
/**
* Decide how to partition the URB among the various stages.
*
* \param[in] push_constant_bytes - space allocate for push constants.
* \param[in] urb_size_bytes - total size of the URB (from L3 config).
* \param[in] tess_present - are tessellation shaders active?
* \param[in] gs_present - are geometry shaders active?
* \param[in] entry_size - the URB entry size (from the shader compiler)
* \param[out] entries - the number of URB entries for each stage
* \param[out] start - the starting offset for each stage
*/
void
gen_get_urb_config(const struct gen_device_info *devinfo,
unsigned push_constant_bytes, unsigned urb_size_bytes,
bool tess_present, bool gs_present,
const unsigned entry_size[4],
unsigned entries[4], unsigned start[4])
{
const bool active[4] = { true, tess_present, tess_present, gs_present };
/* URB allocations must be done in 8k chunks. */
const unsigned chunk_size_bytes = 8192;
const unsigned push_constant_chunks =
push_constant_bytes / chunk_size_bytes;
const unsigned urb_chunks = urb_size_bytes / chunk_size_bytes;
/* From p35 of the Ivy Bridge PRM (section 1.7.1: 3DSTATE_URB_GS):
*
* VS Number of URB Entries must be divisible by 8 if the VS URB Entry
* Allocation Size is less than 9 512-bit URB entries.
*
* Similar text exists for HS, DS and GS.
*/
unsigned granularity[4];
for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
granularity[i] = (entry_size[i] < 9) ? 8 : 1;
}
unsigned min_entries[4] = {
/* VS has a lower limit on the number of URB entries.
*
* From the Broadwell PRM, 3DSTATE_URB_VS instruction:
* "When tessellation is enabled, the VS Number of URB Entries must be
* greater than or equal to 192."
*/
[MESA_SHADER_VERTEX] = tess_present && devinfo->gen == 8 ?
192 : devinfo->urb.min_entries[MESA_SHADER_VERTEX],
/* There are two constraints on the minimum amount of URB space we can
* allocate:
*
* (1) We need room for at least 2 URB entries, since we always operate
* the GS in DUAL_OBJECT mode.
*
* (2) We can't allocate less than nr_gs_entries_granularity.
*/
[MESA_SHADER_GEOMETRY] = gs_present ? 2 : 0,
[MESA_SHADER_TESS_CTRL] = tess_present ? 1 : 0,
[MESA_SHADER_TESS_EVAL] = tess_present ?
devinfo->urb.min_entries[MESA_SHADER_TESS_EVAL] : 0,
};
/* Min VS Entries isn't a multiple of 8 on Cherryview/Broxton; round up.
* Round them all up.
*/
for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
min_entries[i] = ALIGN(min_entries[i], granularity[i]);
}
unsigned entry_size_bytes[4];
for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
entry_size_bytes[i] = 64 * entry_size[i];
}
/* Initially, assign each stage the minimum amount of URB space it needs,
* and make a note of how much additional space it "wants" (the amount of
* additional space it could actually make use of).
*/
unsigned chunks[4];
unsigned wants[4];
unsigned total_needs = push_constant_chunks;
unsigned total_wants = 0;
for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
if (active[i]) {
chunks[i] = DIV_ROUND_UP(min_entries[i] * entry_size_bytes[i],
chunk_size_bytes);
wants[i] =
DIV_ROUND_UP(devinfo->urb.max_entries[i] * entry_size_bytes[i],
chunk_size_bytes) - chunks[i];
} else {
chunks[i] = 0;
wants[i] = 0;
}
total_needs += chunks[i];
total_wants += wants[i];
}
assert(total_needs <= urb_chunks);
/* Mete out remaining space (if any) in proportion to "wants". */
unsigned remaining_space = MIN2(urb_chunks - total_needs, total_wants);
if (remaining_space > 0) {
for (int i = MESA_SHADER_VERTEX;
total_wants > 0 && i <= MESA_SHADER_TESS_EVAL; i++) {
unsigned additional = (unsigned)
roundf(wants[i] * (((float) remaining_space) / total_wants));
chunks[i] += additional;
remaining_space -= additional;
total_wants -= additional;
}
chunks[MESA_SHADER_GEOMETRY] += remaining_space;
}
/* Sanity check that we haven't over-allocated. */
unsigned total_chunks = push_constant_chunks;
for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
total_chunks += chunks[i];
}
assert(total_chunks <= urb_chunks);
/* Finally, compute the number of entries that can fit in the space
* allocated to each stage.
*/
for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
entries[i] = chunks[i] * chunk_size_bytes / entry_size_bytes[i];
/* Since we rounded up when computing wants[], this may be slightly
* more than the maximum allowed amount, so correct for that.
*/
entries[i] = MIN2(entries[i], devinfo->urb.max_entries[i]);
/* Ensure that we program a multiple of the granularity. */
entries[i] = ROUND_DOWN_TO(entries[i], granularity[i]);
/* Finally, sanity check to make sure we have at least the minimum
* number of entries needed for each stage.
*/
assert(entries[i] >= min_entries[i]);
}
/* Lay out the URB in pipeline order: push constants, VS, HS, DS, GS. */
start[0] = push_constant_chunks;
for (int i = MESA_SHADER_TESS_CTRL; i <= MESA_SHADER_GEOMETRY; i++) {
start[i] = start[i - 1] + chunks[i - 1];
}
}

View File

@ -55,9 +55,9 @@ void genX(cmd_buffer_flush_compute_state)(struct anv_cmd_buffer *cmd_buffer);
void
genX(emit_urb_setup)(struct anv_device *device, struct anv_batch *batch,
const struct gen_l3_config *l3_config,
VkShaderStageFlags active_stages,
unsigned vs_entry_size, unsigned gs_entry_size,
const struct gen_l3_config *l3_config);
const unsigned entry_size[4]);
void genX(cmd_buffer_emit_hz_op)(struct anv_cmd_buffer *cmd_buffer,
enum blorp_hiz_op op);

View File

@ -124,11 +124,13 @@ blorp_emit_urb_config(struct blorp_batch *batch, unsigned vs_entry_size)
struct anv_device *device = batch->blorp->driver_ctx;
struct anv_cmd_buffer *cmd_buffer = batch->driver_batch;
const unsigned entry_size[4] = { vs_entry_size, 1, 1, 1 };
genX(emit_urb_setup)(device, &cmd_buffer->batch,
cmd_buffer->state.current_l3_config,
VK_SHADER_STAGE_VERTEX_BIT |
VK_SHADER_STAGE_FRAGMENT_BIT,
vs_entry_size, 0,
cmd_buffer->state.current_l3_config);
entry_size);
}
void genX(blorp_exec)(struct blorp_batch *batch,

View File

@ -149,9 +149,11 @@ genX(cmd_buffer_gpu_memcpy)(struct anv_cmd_buffer *cmd_buffer,
* allocate space for the VS. Even though one isn't run, we need VUEs to
* store the data that VF is going to pass to SOL.
*/
const unsigned entry_size[4] = { DIV_ROUND_UP(32, 64), 1, 1, 1 };
genX(emit_urb_setup)(cmd_buffer->device, &cmd_buffer->batch,
VK_SHADER_STAGE_VERTEX_BIT, DIV_ROUND_UP(32, 64), 0,
cmd_buffer->state.current_l3_config);
cmd_buffer->state.current_l3_config,
VK_SHADER_STAGE_VERTEX_BIT, entry_size);
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_SO_BUFFER), sob) {
sob.SOBufferIndex = 0;

View File

@ -183,129 +183,27 @@ emit_vertex_input(struct anv_pipeline *pipeline,
void
genX(emit_urb_setup)(struct anv_device *device, struct anv_batch *batch,
const struct gen_l3_config *l3_config,
VkShaderStageFlags active_stages,
unsigned vs_size, unsigned gs_size,
const struct gen_l3_config *l3_config)
const unsigned entry_size[4])
{
if (!(active_stages & VK_SHADER_STAGE_VERTEX_BIT))
vs_size = 1;
const struct gen_device_info *devinfo = &device->info;
#if GEN_IS_HASWELL
const unsigned push_constant_kb = devinfo->gt == 3 ? 32 : 16;
#else
const unsigned push_constant_kb = GEN_GEN >= 8 ? 32 : 16;
#endif
if (!(active_stages & VK_SHADER_STAGE_GEOMETRY_BIT))
gs_size = 1;
const unsigned urb_size_kb = gen_get_l3_config_urb_size(devinfo, l3_config);
unsigned vs_entry_size_bytes = vs_size * 64;
unsigned gs_entry_size_bytes = gs_size * 64;
/* From p35 of the Ivy Bridge PRM (section 1.7.1: 3DSTATE_URB_GS):
*
* VS Number of URB Entries must be divisible by 8 if the VS URB Entry
* Allocation Size is less than 9 512-bit URB entries.
*
* Similar text exists for GS.
*/
unsigned vs_granularity = (vs_size < 9) ? 8 : 1;
unsigned gs_granularity = (gs_size < 9) ? 8 : 1;
/* URB allocations must be done in 8k chunks. */
unsigned chunk_size_bytes = 8192;
/* Determine the size of the URB in chunks. */
const unsigned total_urb_size =
gen_get_l3_config_urb_size(&device->info, l3_config);
const unsigned urb_chunks = total_urb_size * 1024 / chunk_size_bytes;
/* Reserve space for push constants */
unsigned push_constant_kb;
if (device->info.gen >= 8)
push_constant_kb = 32;
else if (device->info.is_haswell)
push_constant_kb = device->info.gt == 3 ? 32 : 16;
else
push_constant_kb = 16;
unsigned push_constant_bytes = push_constant_kb * 1024;
unsigned push_constant_chunks =
push_constant_bytes / chunk_size_bytes;
/* Initially, assign each stage the minimum amount of URB space it needs,
* and make a note of how much additional space it "wants" (the amount of
* additional space it could actually make use of).
*/
/* VS has a lower limit on the number of URB entries */
unsigned vs_chunks =
ALIGN(device->info.urb.min_entries[MESA_SHADER_VERTEX] *
vs_entry_size_bytes, chunk_size_bytes) / chunk_size_bytes;
unsigned vs_wants =
ALIGN(device->info.urb.max_entries[MESA_SHADER_VERTEX] *
vs_entry_size_bytes,
chunk_size_bytes) / chunk_size_bytes - vs_chunks;
unsigned gs_chunks = 0;
unsigned gs_wants = 0;
if (active_stages & VK_SHADER_STAGE_GEOMETRY_BIT) {
/* There are two constraints on the minimum amount of URB space we can
* allocate:
*
* (1) We need room for at least 2 URB entries, since we always operate
* the GS in DUAL_OBJECT mode.
*
* (2) We can't allocate less than nr_gs_entries_granularity.
*/
gs_chunks = ALIGN(MAX2(gs_granularity, 2) * gs_entry_size_bytes,
chunk_size_bytes) / chunk_size_bytes;
gs_wants =
ALIGN(device->info.urb.max_entries[MESA_SHADER_GEOMETRY] *
gs_entry_size_bytes,
chunk_size_bytes) / chunk_size_bytes - gs_chunks;
}
/* There should always be enough URB space to satisfy the minimum
* requirements of each stage.
*/
unsigned total_needs = push_constant_chunks + vs_chunks + gs_chunks;
assert(total_needs <= urb_chunks);
/* Mete out remaining space (if any) in proportion to "wants". */
unsigned total_wants = vs_wants + gs_wants;
unsigned remaining_space = urb_chunks - total_needs;
if (remaining_space > total_wants)
remaining_space = total_wants;
if (remaining_space > 0) {
unsigned vs_additional = (unsigned)
round(vs_wants * (((double) remaining_space) / total_wants));
vs_chunks += vs_additional;
remaining_space -= vs_additional;
gs_chunks += remaining_space;
}
/* Sanity check that we haven't over-allocated. */
assert(push_constant_chunks + vs_chunks + gs_chunks <= urb_chunks);
/* Finally, compute the number of entries that can fit in the space
* allocated to each stage.
*/
unsigned nr_vs_entries = vs_chunks * chunk_size_bytes / vs_entry_size_bytes;
unsigned nr_gs_entries = gs_chunks * chunk_size_bytes / gs_entry_size_bytes;
/* Since we rounded up when computing *_wants, this may be slightly more
* than the maximum allowed amount, so correct for that.
*/
nr_vs_entries = MIN2(nr_vs_entries,
device->info.urb.max_entries[MESA_SHADER_VERTEX]);
nr_gs_entries = MIN2(nr_gs_entries,
device->info.urb.max_entries[MESA_SHADER_GEOMETRY]);
/* Ensure that we program a multiple of the granularity. */
nr_vs_entries = ROUND_DOWN_TO(nr_vs_entries, vs_granularity);
nr_gs_entries = ROUND_DOWN_TO(nr_gs_entries, gs_granularity);
/* Finally, sanity check to make sure we have at least the minimum number
* of entries needed for each stage.
*/
assert(nr_vs_entries >= device->info.urb.min_entries[MESA_SHADER_VERTEX]);
if (active_stages & VK_SHADER_STAGE_GEOMETRY_BIT)
assert(nr_gs_entries >= 2);
unsigned entries[4];
unsigned start[4];
gen_get_urb_config(devinfo,
1024 * push_constant_kb, 1024 * urb_size_kb,
active_stages &
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT,
active_stages & VK_SHADER_STAGE_GEOMETRY_BIT,
entry_size, entries, start);
#if GEN_GEN == 7 && !GEN_IS_HASWELL
/* From the IVB PRM Vol. 2, Part 1, Section 3.2.1:
@ -323,45 +221,31 @@ genX(emit_urb_setup)(struct anv_device *device, struct anv_batch *batch,
}
#endif
/* Lay out the URB in the following order:
* - push constants
* - VS
* - GS
*/
anv_batch_emit(batch, GENX(3DSTATE_URB_VS), urb) {
urb.VSURBStartingAddress = push_constant_chunks;
urb.VSURBEntryAllocationSize = vs_size - 1;
urb.VSNumberofURBEntries = nr_vs_entries;
}
anv_batch_emit(batch, GENX(3DSTATE_URB_HS), urb) {
urb.HSURBStartingAddress = push_constant_chunks;
}
anv_batch_emit(batch, GENX(3DSTATE_URB_DS), urb) {
urb.DSURBStartingAddress = push_constant_chunks;
}
anv_batch_emit(batch, GENX(3DSTATE_URB_GS), urb) {
urb.GSURBStartingAddress = push_constant_chunks + vs_chunks;
urb.GSURBEntryAllocationSize = gs_size - 1;
urb.GSNumberofURBEntries = nr_gs_entries;
for (int i = 0; i <= MESA_SHADER_GEOMETRY; i++) {
anv_batch_emit(batch, GENX(3DSTATE_URB_VS), urb) {
urb._3DCommandSubOpcode += i;
urb.VSURBStartingAddress = start[i];
urb.VSURBEntryAllocationSize = entry_size[i] - 1;
urb.VSNumberofURBEntries = entries[i];
}
}
}
static inline void
emit_urb_setup(struct anv_pipeline *pipeline)
{
unsigned vs_entry_size =
(pipeline->active_stages & VK_SHADER_STAGE_VERTEX_BIT) ?
get_vs_prog_data(pipeline)->base.urb_entry_size : 0;
unsigned gs_entry_size =
(pipeline->active_stages & VK_SHADER_STAGE_GEOMETRY_BIT) ?
get_gs_prog_data(pipeline)->base.urb_entry_size : 0;
unsigned entry_size[4];
for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
const struct brw_vue_prog_data *prog_data =
!anv_pipeline_has_stage(pipeline, i) ? NULL :
(const struct brw_vue_prog_data *) pipeline->shaders[i]->prog_data;
entry_size[i] = prog_data ? prog_data->urb_entry_size : 1;
}
genX(emit_urb_setup)(pipeline->device, &pipeline->batch,
pipeline->active_stages, vs_entry_size, gs_entry_size,
pipeline->urb.l3_config);
pipeline->urb.l3_config,
pipeline->active_stages, entry_size);
}
static void

View File

@ -27,6 +27,8 @@
#include "brw_state.h"
#include "brw_defines.h"
#include "common/gen_l3_config.h"
/**
* The following diagram shows how we partition the URB:
*
@ -214,146 +216,10 @@ gen7_upload_urb(struct brw_context *brw, unsigned vs_size,
brw->urb.hsize = entry_size[MESA_SHADER_TESS_CTRL];
brw->urb.dsize = entry_size[MESA_SHADER_TESS_EVAL];
/* URB allocations must be done in 8k chunks. */
unsigned chunk_size_bytes = 8192;
/* Determine the size of the URB in chunks.
* BRW_NEW_URB_SIZE
*/
unsigned urb_chunks = brw->urb.size * 1024 / chunk_size_bytes;
/* Reserve space for push constants */
unsigned push_constant_bytes = 1024 * push_size_kB;
unsigned push_constant_chunks = push_constant_bytes / chunk_size_bytes;
/* From p35 of the Ivy Bridge PRM (section 1.7.1: 3DSTATE_URB_GS):
*
* VS Number of URB Entries must be divisible by 8 if the VS URB Entry
* Allocation Size is less than 9 512-bit URB entries.
*
* Similar text exists for HS, DS and GS.
*/
unsigned granularity[4];
for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
granularity[i] = (entry_size[i] < 9) ? 8 : 1;
}
unsigned min_entries[4] = {
/* VS has a lower limit on the number of URB entries.
*
* From the Broadwell PRM, 3DSTATE_URB_VS instruction:
* "When tessellation is enabled, the VS Number of URB Entries must be
* greater than or equal to 192."
*/
[MESA_SHADER_VERTEX] = tess_present && brw->gen == 8 ?
192 : devinfo->urb.min_entries[MESA_SHADER_VERTEX],
/* There are two constraints on the minimum amount of URB space we can
* allocate:
*
* (1) We need room for at least 2 URB entries, since we always operate
* the GS in DUAL_OBJECT mode.
*
* (2) We can't allocate less than nr_gs_entries_granularity.
*/
[MESA_SHADER_GEOMETRY] = gs_present ? 2 : 0,
[MESA_SHADER_TESS_CTRL] = tess_present ? 1 : 0,
[MESA_SHADER_TESS_EVAL] = tess_present ?
devinfo->urb.min_entries[MESA_SHADER_TESS_EVAL] : 0,
};
/* Min VS Entries isn't a multiple of 8 on Cherryview/Broxton; round up.
* Round them all up.
*/
for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
min_entries[i] = ALIGN(min_entries[i], granularity[i]);
}
unsigned entry_size_bytes[4];
for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
entry_size_bytes[i] = 64 * entry_size[i];
}
/* Initially, assign each stage the minimum amount of URB space it needs,
* and make a note of how much additional space it "wants" (the amount of
* additional space it could actually make use of).
*/
unsigned chunks[4];
unsigned wants[4];
unsigned total_needs = push_constant_chunks;
unsigned total_wants = 0;
for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
if (active[i]) {
chunks[i] = DIV_ROUND_UP(min_entries[i] * entry_size_bytes[i],
chunk_size_bytes);
wants[i] =
DIV_ROUND_UP(devinfo->urb.max_entries[i] * entry_size_bytes[i],
chunk_size_bytes) - chunks[i];
} else {
chunks[i] = 0;
wants[i] = 0;
}
total_needs += chunks[i];
total_wants += wants[i];
}
assert(total_needs <= urb_chunks);
/* Mete out remaining space (if any) in proportion to "wants". */
unsigned remaining_space = MIN2(urb_chunks - total_needs, total_wants);
if (remaining_space > 0) {
for (int i = MESA_SHADER_VERTEX;
total_wants > 0 && i <= MESA_SHADER_TESS_EVAL; i++) {
unsigned additional = (unsigned)
roundf(wants[i] * (((float) remaining_space) / total_wants));
chunks[i] += additional;
remaining_space -= additional;
total_wants -= additional;
}
chunks[MESA_SHADER_GEOMETRY] += remaining_space;
}
/* Sanity check that we haven't over-allocated. */
unsigned total_chunks = push_constant_chunks;
for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
total_chunks += chunks[i];
}
assert(total_chunks <= urb_chunks);
/* Finally, compute the number of entries that can fit in the space
* allocated to each stage.
*/
unsigned entries[4];
for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
entries[i] = chunks[i] * chunk_size_bytes / entry_size_bytes[i];
/* Since we rounded up when computing wants[], this may be slightly
* more than the maximum allowed amount, so correct for that.
*/
entries[i] = MIN2(entries[i], devinfo->urb.max_entries[i]);
/* Ensure that we program a multiple of the granularity. */
entries[i] = ROUND_DOWN_TO(entries[i], granularity[i]);
/* Finally, sanity check to make sure we have at least the minimum
* number of entries needed for each stage.
*/
assert(entries[i] >= min_entries[i]);
}
/* Lay out the URB in pipeline order: push constants, VS, HS, DS, GS. */
unsigned start[4];
start[0] = push_constant_chunks;
for (int i = MESA_SHADER_TESS_CTRL; i <= MESA_SHADER_GEOMETRY; i++) {
start[i] = start[i - 1] + chunks[i - 1];
}
gen_get_urb_config(devinfo, 1024 * push_size_kB, 1024 * brw->urb.size,
tess_present, gs_present, entry_size, entries, start);
if (brw->gen == 7 && !brw->is_haswell && !brw->is_baytrail)
gen7_emit_vs_workaround_flush(brw);