i965/fs: Support 16-bit do_read_vector with VK_KHR_relaxed_block_layout

16-bit load_ubo/ssbo operations that call do_untyped_read_vector don't
guarantee that offsets are multiple of 4-bytes as required by untyped_read
message. This happens for example in the case of f16mat3x3 when then
VK_KHR_relaxed_block_layout is enabled.

Vectors reads when we have non-constant offsets are implemented with
multiple byte_scattered_read messages that not require 32-bit aligned offsets.

Now for all constant offsets we can use the untyped_read_surface message.
In the case of constant offsets not aligned to 32-bits, we calculate a
start offset 32-bit aligned and use the shuffle_32bit_load_result_to_16bit_data
function and the first_component parameter to skip the copy of the unneeded
component.

v2: (Jason Ekstrand)
    Use untyped_read_surface messages always we have constant offsets.

v3: (Jason Ekstrand)
    Simplify loop for reads with non constant offsets.
    Use end - start to calculate the number of 32-bit components to read with
    constant offsets.

Reviewed-by: Jason Ekstrand <jason@jlekstrand.net>
This commit is contained in:
Jose Maria Casanova Crespo 2018-02-01 00:05:11 +01:00 committed by Jason Ekstrand
parent 2dd94f462b
commit 8dd8be0323
1 changed files with 37 additions and 14 deletions

View File

@ -2304,28 +2304,51 @@ do_untyped_vector_read(const fs_builder &bld,
{
if (type_sz(dest.type) <= 2) {
assert(dest.stride == 1);
boolean is_const_offset = offset_reg.file == BRW_IMMEDIATE_VALUE;
if (num_components > 1) {
/* Pairs of 16-bit components can be read with untyped read, for 16-bit
* vec3 4th component is ignored.
if (is_const_offset) {
uint32_t start = offset_reg.ud & ~3;
uint32_t end = offset_reg.ud + num_components * type_sz(dest.type);
end = ALIGN(end, 4);
assert (end - start <= 16);
/* At this point we have 16-bit component/s that have constant
* offset aligned to 4-bytes that can be read with untyped_reads.
* untyped_read message requires 32-bit aligned offsets.
*/
unsigned first_component = (offset_reg.ud & 3) / type_sz(dest.type);
unsigned num_components_32bit = (end - start) / 4;
fs_reg read_result =
emit_untyped_read(bld, surf_index, offset_reg,
1 /* dims */, DIV_ROUND_UP(num_components, 2),
emit_untyped_read(bld, surf_index, brw_imm_ud(start),
1 /* dims */,
num_components_32bit,
BRW_PREDICATE_NONE);
shuffle_32bit_load_result_to_16bit_data(bld,
retype(dest, BRW_REGISTER_TYPE_W),
retype(read_result, BRW_REGISTER_TYPE_D),
0, num_components);
first_component, num_components);
} else {
assert(num_components == 1);
/* scalar 16-bit are read using one byte_scattered_read message */
fs_reg read_result =
emit_byte_scattered_read(bld, surf_index, offset_reg,
1 /* dims */, 1,
type_sz(dest.type) * 8 /* bit_size */,
BRW_PREDICATE_NONE);
bld.MOV(dest, subscript(read_result, dest.type, 0));
fs_reg read_offset = bld.vgrf(BRW_REGISTER_TYPE_UD);
for (unsigned i = 0; i < num_components; i++) {
if (i == 0) {
bld.MOV(read_offset, offset_reg);
} else {
bld.ADD(read_offset, offset_reg,
brw_imm_ud(i * type_sz(dest.type)));
}
/* Non constant offsets are not guaranteed to be aligned 32-bits
* so they are read using one byte_scattered_read message
* for each component.
*/
fs_reg read_result =
emit_byte_scattered_read(bld, surf_index, read_offset,
1 /* dims */, 1,
type_sz(dest.type) * 8 /* bit_size */,
BRW_PREDICATE_NONE);
bld.MOV(offset(dest, bld, i),
subscript (read_result, dest.type, 0));
}
}
} else if (type_sz(dest.type) == 4) {
fs_reg read_result = emit_untyped_read(bld, surf_index, offset_reg,