intel/common: Add unit tests for gen_mi_builder

Reviewed-by: Caio Marcelo de Oliveira Filho <caio.oliveira@intel.com>
Reviewed-by: Lionel Landwerlin <lionel.g.landwerlin@intel.com>
This commit is contained in:
Jason Ekstrand 2019-04-02 10:26:09 -05:00
parent 2f7fcd103e
commit 8b8deeca78
3 changed files with 667 additions and 0 deletions

View File

@ -276,6 +276,12 @@ option(
value : false,
description : 'Build unit tests. Currently this will build *all* unit tests, which may build more than expected.'
)
option(
'install-intel-gpu-tests',
type : 'boolean',
value : false,
description : 'Build and install Intel unit tests which require the GPU. This option is for developers and the Intel CI system only.'
)
option(
'selinux',
type : 'boolean',

View File

@ -43,3 +43,23 @@ libintel_common = static_library(
link_with : [libisl],
dependencies : [dep_expat, dep_libdrm, dep_thread, idep_genxml],
)
install_intel_gpu_tests = get_option('install-intel-gpu-tests')
if install_intel_gpu_tests
foreach g : [['70', 'gen7'], ['75', 'hsw'], ['80', 'gen8'],
['90', 'gen9'], ['110', 'gen11']]
executable(
'intel_@0@_mi_builder_test'.format(g[1]),
files('tests/gen_mi_builder_test.cpp'),
cpp_args : [
cpp_vis_args, cpp_msvc_compat_args,
'-DGEN_VERSIONx10=@0@'.format(g[0])
],
include_directories : [inc_common, inc_intel],
link_with : [libintel_dev, libmesa_util],
dependencies : [dep_libdrm, dep_thread, idep_gtest, idep_genxml],
install : install_intel_gpu_tests,
)
endforeach
endif

View File

@ -0,0 +1,641 @@
/*
* Copyright © 2019 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <fcntl.h>
#include <string.h>
#include <xf86drm.h>
#include <gtest/gtest.h>
#include "dev/gen_device_info.h"
#include "drm-uapi/i915_drm.h"
#include "genxml/gen_macros.h"
#include "util/macros.h"
class gen_mi_builder_test;
struct address {
uint32_t gem_handle;
uint32_t offset;
};
#define __gen_address_type struct address
#define __gen_user_data ::gen_mi_builder_test
uint64_t __gen_combine_address(gen_mi_builder_test *test, void *location,
struct address addr, uint32_t delta);
void * __gen_get_batch_dwords(gen_mi_builder_test *test, unsigned num_dwords);
struct address
__gen_address_offset(address addr, uint64_t offset)
{
addr.offset += offset;
return addr;
}
#if GEN_GEN >= 8 || GEN_IS_HASWELL
#define RSVD_TEMP_REG 0x2678 /* MI_ALU_REG15 */
#else
#define RSVD_TEMP_REG 0x2430 /* GEN7_3DPRIM_START_VERTEX */
#endif
#define GEN_MI_BUILDER_NUM_ALLOC_GPRS 15
#define INPUT_DATA_OFFSET 0
#define OUTPUT_DATA_OFFSET 2048
#include "genxml/genX_pack.h"
#include "gen_mi_builder.h"
#include <vector>
class gen_mi_builder_test : public ::testing::Test {
public:
gen_mi_builder_test();
~gen_mi_builder_test();
void SetUp();
void *emit_dwords(int num_dwords);
void submit_batch();
inline address in_addr(uint32_t offset)
{
address addr;
addr.gem_handle = data_bo_handle;
addr.offset = INPUT_DATA_OFFSET + offset;
return addr;
}
inline address out_addr(uint32_t offset)
{
address addr;
addr.gem_handle = data_bo_handle;
addr.offset = OUTPUT_DATA_OFFSET + offset;
return addr;
}
inline gen_mi_value in_mem64(uint32_t offset)
{
return gen_mi_mem64(in_addr(offset));
}
inline gen_mi_value in_mem32(uint32_t offset)
{
return gen_mi_mem32(in_addr(offset));
}
inline gen_mi_value out_mem64(uint32_t offset)
{
return gen_mi_mem64(out_addr(offset));
}
inline gen_mi_value out_mem32(uint32_t offset)
{
return gen_mi_mem32(out_addr(offset));
}
int fd;
gen_device_info devinfo;
uint32_t batch_bo_handle;
uint32_t batch_offset;
void *batch_map;
std::vector<drm_i915_gem_relocation_entry> relocs;
uint32_t data_bo_handle;
void *data_map;
char *input;
char *output;
uint64_t canary;
gen_mi_builder b;
};
gen_mi_builder_test::gen_mi_builder_test() :
fd(-1)
{ }
gen_mi_builder_test::~gen_mi_builder_test()
{
close(fd);
}
// 1 MB of batch should be enough for anyone, right?
#define BATCH_BO_SIZE (256 * 4096)
#define DATA_BO_SIZE 4096
void
gen_mi_builder_test::SetUp()
{
drmDevicePtr devices[8];
int max_devices = drmGetDevices2(0, devices, 8);
int i;
for (i = 0; i < max_devices; i++) {
if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
devices[i]->bustype == DRM_BUS_PCI &&
devices[i]->deviceinfo.pci->vendor_id == 0x8086) {
fd = open(devices[i]->nodes[DRM_NODE_RENDER], O_RDWR | O_CLOEXEC);
if (fd < 0)
continue;
/* We don't really need to do this when running on hardware because
* we can just pull it from the drmDevice. However, without doing
* this, intel_dump_gpu gets a bit of heartburn and we can't use the
* --device option with it.
*/
int device_id;
drm_i915_getparam getparam = drm_i915_getparam();
getparam.param = I915_PARAM_CHIPSET_ID;
getparam.value = &device_id;
ASSERT_EQ(drmIoctl(fd, DRM_IOCTL_I915_GETPARAM,
(void *)&getparam), 0) << strerror(errno);
ASSERT_TRUE(gen_get_device_info(device_id, &devinfo));
if (devinfo.gen != GEN_GEN || devinfo.is_haswell != GEN_IS_HASWELL) {
close(fd);
fd = -1;
continue;
}
/* Found a device! */
break;
}
}
ASSERT_TRUE(i < max_devices) << "Failed to find a DRM device";
// Create the batch buffer
drm_i915_gem_create gem_create = drm_i915_gem_create();
gem_create.size = BATCH_BO_SIZE;
ASSERT_EQ(drmIoctl(fd, DRM_IOCTL_I915_GEM_CREATE,
(void *)&gem_create), 0) << strerror(errno);
batch_bo_handle = gem_create.handle;
drm_i915_gem_caching gem_caching = drm_i915_gem_caching();
gem_caching.handle = batch_bo_handle;
gem_caching.caching = I915_CACHING_CACHED;
ASSERT_EQ(drmIoctl(fd, DRM_IOCTL_I915_GEM_SET_CACHING,
(void *)&gem_caching), 0) << strerror(errno);
drm_i915_gem_mmap gem_mmap = drm_i915_gem_mmap();
gem_mmap.handle = batch_bo_handle;
gem_mmap.offset = 0;
gem_mmap.size = BATCH_BO_SIZE;
gem_mmap.flags = 0;
ASSERT_EQ(drmIoctl(fd, DRM_IOCTL_I915_GEM_MMAP,
(void *)&gem_mmap), 0) << strerror(errno);
batch_map = (void *)(uintptr_t)gem_mmap.addr_ptr;
// Start the batch at zero
batch_offset = 0;
// Create the data buffer
gem_create = drm_i915_gem_create();
gem_create.size = DATA_BO_SIZE;
ASSERT_EQ(drmIoctl(fd, DRM_IOCTL_I915_GEM_CREATE,
(void *)&gem_create), 0) << strerror(errno);
data_bo_handle = gem_create.handle;
gem_caching = drm_i915_gem_caching();
gem_caching.handle = data_bo_handle;
gem_caching.caching = I915_CACHING_CACHED;
ASSERT_EQ(drmIoctl(fd, DRM_IOCTL_I915_GEM_SET_CACHING,
(void *)&gem_caching), 0) << strerror(errno);
gem_mmap = drm_i915_gem_mmap();
gem_mmap.handle = data_bo_handle;
gem_mmap.offset = 0;
gem_mmap.size = DATA_BO_SIZE;
gem_mmap.flags = 0;
ASSERT_EQ(drmIoctl(fd, DRM_IOCTL_I915_GEM_MMAP,
(void *)&gem_mmap), 0) << strerror(errno);
data_map = (void *)(uintptr_t)gem_mmap.addr_ptr;
input = (char *)data_map + INPUT_DATA_OFFSET;
output = (char *)data_map + OUTPUT_DATA_OFFSET;
// Fill the test data with garbage
memset(data_map, 139, DATA_BO_SIZE);
memset(&canary, 139, sizeof(canary));
gen_mi_builder_init(&b, this);
}
void *
gen_mi_builder_test::emit_dwords(int num_dwords)
{
void *ptr = (void *)((char *)batch_map + batch_offset);
batch_offset += num_dwords * 4;
assert(batch_offset < BATCH_BO_SIZE);
return ptr;
}
void
gen_mi_builder_test::submit_batch()
{
gen_mi_builder_emit(&b, GENX(MI_BATCH_BUFFER_END), bbe);
// Round batch up to an even number of dwords.
if (batch_offset & 4)
gen_mi_builder_emit(&b, GENX(MI_NOOP), noop);
drm_i915_gem_exec_object2 objects[2];
memset(objects, 0, sizeof(objects));
objects[0].handle = data_bo_handle;
objects[0].relocation_count = 0;
objects[0].relocs_ptr = 0;
objects[0].flags = EXEC_OBJECT_WRITE;
objects[0].offset = -1;
if (GEN_GEN >= 8)
objects[0].flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
objects[1].handle = batch_bo_handle;
objects[1].relocation_count = relocs.size();
objects[1].relocs_ptr = (uintptr_t)(void *)&relocs[0];
objects[1].flags = 0;
objects[1].offset = -1;
if (GEN_GEN >= 8)
objects[1].flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
drm_i915_gem_execbuffer2 execbuf = drm_i915_gem_execbuffer2();
execbuf.buffers_ptr = (uintptr_t)(void *)objects;
execbuf.buffer_count = 2;
execbuf.batch_start_offset = 0;
execbuf.batch_len = batch_offset;
execbuf.flags = I915_EXEC_HANDLE_LUT | I915_EXEC_RENDER;
ASSERT_EQ(drmIoctl(fd, DRM_IOCTL_I915_GEM_EXECBUFFER2,
(void *)&execbuf), 0) << strerror(errno);
drm_i915_gem_wait gem_wait = drm_i915_gem_wait();
gem_wait.bo_handle = batch_bo_handle;
gem_wait.timeout_ns = INT64_MAX;
ASSERT_EQ(drmIoctl(fd, DRM_IOCTL_I915_GEM_WAIT,
(void *)&gem_wait), 0) << strerror(errno);
}
uint64_t
__gen_combine_address(gen_mi_builder_test *test, void *location,
address addr, uint32_t delta)
{
drm_i915_gem_relocation_entry reloc = drm_i915_gem_relocation_entry();
reloc.target_handle = addr.gem_handle == test->data_bo_handle ? 0 : 1;
reloc.delta = addr.offset + delta;
reloc.offset = (char *)location - (char *)test->batch_map;
reloc.presumed_offset = -1;
test->relocs.push_back(reloc);
return reloc.delta;
}
void *
__gen_get_batch_dwords(gen_mi_builder_test *test, unsigned num_dwords)
{
return test->emit_dwords(num_dwords);
}
#include "genxml/genX_pack.h"
#include "gen_mi_builder.h"
TEST_F(gen_mi_builder_test, imm_mem)
{
const uint64_t value = 0x0123456789abcdef;
gen_mi_store(&b, out_mem64(0), gen_mi_imm(value));
gen_mi_store(&b, out_mem32(8), gen_mi_imm(value));
submit_batch();
// 64 -> 64
EXPECT_EQ(*(uint64_t *)(output + 0), value);
// 64 -> 32
EXPECT_EQ(*(uint32_t *)(output + 8), (uint32_t)value);
EXPECT_EQ(*(uint32_t *)(output + 12), (uint32_t)canary);
}
TEST_F(gen_mi_builder_test, mem_mem)
{
const uint64_t value = 0x0123456789abcdef;
*(uint64_t *)input = value;
gen_mi_store(&b, out_mem64(0), in_mem64(0));
gen_mi_store(&b, out_mem32(8), in_mem64(0));
gen_mi_store(&b, out_mem32(16), in_mem32(0));
gen_mi_store(&b, out_mem64(24), in_mem32(0));
submit_batch();
// 64 -> 64
EXPECT_EQ(*(uint64_t *)(output + 0), value);
// 64 -> 32
EXPECT_EQ(*(uint32_t *)(output + 8), (uint32_t)value);
EXPECT_EQ(*(uint32_t *)(output + 12), (uint32_t)canary);
// 32 -> 32
EXPECT_EQ(*(uint32_t *)(output + 16), (uint32_t)value);
EXPECT_EQ(*(uint32_t *)(output + 20), (uint32_t)canary);
// 32 -> 64
EXPECT_EQ(*(uint64_t *)(output + 24), (uint64_t)(uint32_t)value);
}
TEST_F(gen_mi_builder_test, imm_reg)
{
const uint64_t value = 0x0123456789abcdef;
gen_mi_store(&b, gen_mi_reg64(RSVD_TEMP_REG), gen_mi_imm(canary));
gen_mi_store(&b, gen_mi_reg64(RSVD_TEMP_REG), gen_mi_imm(value));
gen_mi_store(&b, out_mem64(0), gen_mi_reg64(RSVD_TEMP_REG));
gen_mi_store(&b, gen_mi_reg64(RSVD_TEMP_REG), gen_mi_imm(canary));
gen_mi_store(&b, gen_mi_reg32(RSVD_TEMP_REG), gen_mi_imm(value));
gen_mi_store(&b, out_mem64(8), gen_mi_reg64(RSVD_TEMP_REG));
submit_batch();
// 64 -> 64
EXPECT_EQ(*(uint64_t *)(output + 0), value);
// 64 -> 32
EXPECT_EQ(*(uint32_t *)(output + 8), (uint32_t)value);
EXPECT_EQ(*(uint32_t *)(output + 12), (uint32_t)canary);
}
TEST_F(gen_mi_builder_test, mem_reg)
{
const uint64_t value = 0x0123456789abcdef;
*(uint64_t *)input = value;
gen_mi_store(&b, gen_mi_reg64(RSVD_TEMP_REG), gen_mi_imm(canary));
gen_mi_store(&b, gen_mi_reg64(RSVD_TEMP_REG), in_mem64(0));
gen_mi_store(&b, out_mem64(0), gen_mi_reg64(RSVD_TEMP_REG));
gen_mi_store(&b, gen_mi_reg64(RSVD_TEMP_REG), gen_mi_imm(canary));
gen_mi_store(&b, gen_mi_reg32(RSVD_TEMP_REG), in_mem64(0));
gen_mi_store(&b, out_mem64(8), gen_mi_reg64(RSVD_TEMP_REG));
gen_mi_store(&b, gen_mi_reg64(RSVD_TEMP_REG), gen_mi_imm(canary));
gen_mi_store(&b, gen_mi_reg32(RSVD_TEMP_REG), in_mem32(0));
gen_mi_store(&b, out_mem64(16), gen_mi_reg64(RSVD_TEMP_REG));
gen_mi_store(&b, gen_mi_reg64(RSVD_TEMP_REG), gen_mi_imm(canary));
gen_mi_store(&b, gen_mi_reg64(RSVD_TEMP_REG), in_mem32(0));
gen_mi_store(&b, out_mem64(24), gen_mi_reg64(RSVD_TEMP_REG));
submit_batch();
// 64 -> 64
EXPECT_EQ(*(uint64_t *)(output + 0), value);
// 64 -> 32
EXPECT_EQ(*(uint32_t *)(output + 8), (uint32_t)value);
EXPECT_EQ(*(uint32_t *)(output + 12), (uint32_t)canary);
// 32 -> 32
EXPECT_EQ(*(uint32_t *)(output + 16), (uint32_t)value);
EXPECT_EQ(*(uint32_t *)(output + 20), (uint32_t)canary);
// 32 -> 64
EXPECT_EQ(*(uint64_t *)(output + 24), (uint64_t)(uint32_t)value);
}
/* Start of MI_MATH section */
#if GEN_GEN >= 8 || GEN_IS_HASWELL
/* Test adding of immediates of all kinds including
*
* - All zeroes
* - All ones
* - inverted constants
*/
TEST_F(gen_mi_builder_test, add_imm)
{
const uint64_t value = 0x0123456789abcdef;
const uint64_t add = 0xdeadbeefac0ffee2;
memcpy(input, &value, sizeof(value));
gen_mi_store(&b, out_mem64(0),
gen_mi_iadd(&b, in_mem64(0), gen_mi_imm(0)));
gen_mi_store(&b, out_mem64(8),
gen_mi_iadd(&b, in_mem64(0), gen_mi_imm(-1)));
gen_mi_store(&b, out_mem64(16),
gen_mi_iadd(&b, in_mem64(0), gen_mi_inot(&b, gen_mi_imm(0))));
gen_mi_store(&b, out_mem64(24),
gen_mi_iadd(&b, in_mem64(0), gen_mi_inot(&b, gen_mi_imm(-1))));
gen_mi_store(&b, out_mem64(32),
gen_mi_iadd(&b, in_mem64(0), gen_mi_imm(add)));
gen_mi_store(&b, out_mem64(40),
gen_mi_iadd(&b, in_mem64(0), gen_mi_inot(&b, gen_mi_imm(add))));
gen_mi_store(&b, out_mem64(48),
gen_mi_iadd(&b, gen_mi_imm(0), in_mem64(0)));
gen_mi_store(&b, out_mem64(56),
gen_mi_iadd(&b, gen_mi_imm(-1), in_mem64(0)));
gen_mi_store(&b, out_mem64(64),
gen_mi_iadd(&b, gen_mi_inot(&b, gen_mi_imm(0)), in_mem64(0)));
gen_mi_store(&b, out_mem64(72),
gen_mi_iadd(&b, gen_mi_inot(&b, gen_mi_imm(-1)), in_mem64(0)));
gen_mi_store(&b, out_mem64(80),
gen_mi_iadd(&b, gen_mi_imm(add), in_mem64(0)));
gen_mi_store(&b, out_mem64(88),
gen_mi_iadd(&b, gen_mi_inot(&b, gen_mi_imm(add)), in_mem64(0)));
// And som add_imm just for good measure
gen_mi_store(&b, out_mem64(96), gen_mi_iadd_imm(&b, in_mem64(0), 0));
gen_mi_store(&b, out_mem64(104), gen_mi_iadd_imm(&b, in_mem64(0), add));
submit_batch();
EXPECT_EQ(*(uint64_t *)(output + 0), value);
EXPECT_EQ(*(uint64_t *)(output + 8), value - 1);
EXPECT_EQ(*(uint64_t *)(output + 16), value - 1);
EXPECT_EQ(*(uint64_t *)(output + 24), value);
EXPECT_EQ(*(uint64_t *)(output + 32), value + add);
EXPECT_EQ(*(uint64_t *)(output + 40), value + ~add);
EXPECT_EQ(*(uint64_t *)(output + 48), value);
EXPECT_EQ(*(uint64_t *)(output + 56), value - 1);
EXPECT_EQ(*(uint64_t *)(output + 64), value - 1);
EXPECT_EQ(*(uint64_t *)(output + 72), value);
EXPECT_EQ(*(uint64_t *)(output + 80), value + add);
EXPECT_EQ(*(uint64_t *)(output + 88), value + ~add);
EXPECT_EQ(*(uint64_t *)(output + 96), value);
EXPECT_EQ(*(uint64_t *)(output + 104), value + add);
}
TEST_F(gen_mi_builder_test, ilt_uge)
{
uint64_t values[8] = {
0x0123456789abcdef,
0xdeadbeefac0ffee2,
(uint64_t)-1,
1,
0,
1049571,
(uint64_t)-240058,
20204184,
};
memcpy(input, values, sizeof(values));
for (unsigned i = 0; i < ARRAY_SIZE(values); i++) {
for (unsigned j = 0; j < ARRAY_SIZE(values); j++) {
gen_mi_store(&b, out_mem32(i * 64 + j * 8 + 0),
gen_mi_ult(&b, in_mem64(i * 8), in_mem64(j * 8)));
gen_mi_store(&b, out_mem32(i * 64 + j * 8 + 4),
gen_mi_uge(&b, in_mem64(i * 8), in_mem64(j * 8)));
}
}
submit_batch();
for (unsigned i = 0; i < ARRAY_SIZE(values); i++) {
for (unsigned j = 0; j < ARRAY_SIZE(values); j++) {
uint32_t *out_u32 = (uint32_t *)(output + i * 64 + j * 8);
EXPECT_EQ(out_u32[0], values[i] < values[j] ? ~0u : 0u);
EXPECT_EQ(out_u32[1], values[i] >= values[j] ? ~0u : 0u);
}
}
}
TEST_F(gen_mi_builder_test, iand)
{
const uint64_t values[2] = {
0x0123456789abcdef,
0xdeadbeefac0ffee2,
};
memcpy(input, values, sizeof(values));
gen_mi_store(&b, out_mem64(0), gen_mi_iand(&b, in_mem64(0), in_mem64(8)));
submit_batch();
EXPECT_EQ(*(uint64_t *)output, values[0] & values[1]);
}
TEST_F(gen_mi_builder_test, imul_imm)
{
uint64_t lhs[2] = {
0x0123456789abcdef,
0xdeadbeefac0ffee2,
};
memcpy(input, lhs, sizeof(lhs));
/* Some random 32-bit unsigned integers. The first four have been
* hand-chosen just to ensure some good low integers; the rest were
* generated with a python script.
*/
uint32_t rhs[20] = {
1, 2, 3, 5,
10800, 193, 64, 40,
3796, 256, 88, 473,
1421, 706, 175, 850,
39, 38985, 1941, 17,
};
for (unsigned i = 0; i < ARRAY_SIZE(lhs); i++) {
for (unsigned j = 0; j < ARRAY_SIZE(rhs); j++) {
gen_mi_store(&b, out_mem64(i * 160 + j * 8),
gen_mi_imul_imm(&b, in_mem64(i * 8), rhs[j]));
}
}
submit_batch();
for (unsigned i = 0; i < ARRAY_SIZE(lhs); i++) {
for (unsigned j = 0; j < ARRAY_SIZE(rhs); j++) {
EXPECT_EQ(*(uint64_t *)(output + i * 160 + j * 8), lhs[i] * rhs[j]);
}
}
}
TEST_F(gen_mi_builder_test, ishl_imm)
{
const uint64_t value = 0x0123456789abcdef;
memcpy(input, &value, sizeof(value));
const unsigned max_shift = 64;
for (unsigned i = 0; i <= max_shift; i++)
gen_mi_store(&b, out_mem64(i * 8), gen_mi_ishl_imm(&b, in_mem64(0), i));
submit_batch();
for (unsigned i = 0; i <= max_shift; i++) {
if (i >= 64) {
EXPECT_EQ(*(uint64_t *)(output + i * 8), 0);
} else {
EXPECT_EQ(*(uint64_t *)(output + i * 8), value << i);
}
}
}
TEST_F(gen_mi_builder_test, ushr32_imm)
{
const uint64_t value = 0x0123456789abcdef;
memcpy(input, &value, sizeof(value));
const unsigned max_shift = 31;
for (unsigned i = 0; i <= max_shift; i++)
gen_mi_store(&b, out_mem64(i * 8), gen_mi_ushr32_imm(&b, in_mem64(0), i));
submit_batch();
for (unsigned i = 0; i <= max_shift; i++)
EXPECT_EQ(*(uint64_t *)(output + i * 8), (value >> i) & UINT32_MAX);
}
TEST_F(gen_mi_builder_test, udiv32_imm)
{
/* Some random 32-bit unsigned integers. The first four have been
* hand-chosen just to ensure some good low integers; the rest were
* generated with a python script.
*/
uint32_t values[20] = {
1, 2, 3, 5,
10800, 193, 64, 40,
3796, 256, 88, 473,
1421, 706, 175, 850,
39, 38985, 1941, 17,
};
memcpy(input, values, sizeof(values));
for (unsigned i = 0; i < ARRAY_SIZE(values); i++) {
for (unsigned j = 0; j < ARRAY_SIZE(values); j++) {
gen_mi_store(&b, out_mem32(i * 80 + j * 4),
gen_mi_udiv32_imm(&b, in_mem32(i * 4), values[j]));
}
}
submit_batch();
for (unsigned i = 0; i < ARRAY_SIZE(values); i++) {
for (unsigned j = 0; j < ARRAY_SIZE(values); j++) {
EXPECT_EQ(*(uint32_t *)(output + i * 80 + j * 4),
values[i] / values[j]);
}
}
}
#endif /* GEN_GEN >= 8 || GEN_IS_HASWELL */