gallivm: Generalize lp_build_mul and lp_build_lerp for signed normalized types.

This fixes fdo bug 57755 and most of the failures of piglit fbo-blending-formats
GL_EXT_texture_snorm.

GL_INTENSITY_SNORM is still failing, but problem is probably elsewhere,
as GL_R8_SNORM works fine.
This commit is contained in:
José Fonseca 2012-12-04 13:38:52 +00:00
parent ec83535c83
commit 7d44d354bd
1 changed files with 82 additions and 92 deletions

View File

@ -45,6 +45,8 @@
*/
#include <float.h>
#include "util/u_memory.h"
#include "util/u_debug.h"
#include "util/u_math.h"
@ -58,9 +60,9 @@
#include "lp_bld_logic.h"
#include "lp_bld_pack.h"
#include "lp_bld_debug.h"
#include "lp_bld_bitarit.h"
#include "lp_bld_arit.h"
#include "float.h"
#define EXP_POLY_DEGREE 5
@ -679,8 +681,12 @@ lp_build_sub(struct lp_build_context *bld,
}
/**
* Normalized 8bit multiplication.
* Normalized multiplication.
*
* There are several approaches here (using 8-bit normalized multiplication as
* an example):
*
* - alpha plus one
*
@ -721,66 +727,56 @@ lp_build_sub(struct lp_build_context *bld,
* http://www.stereopsis.com/doubleblend.html
*/
static LLVMValueRef
lp_build_mul_u8n(struct gallivm_state *gallivm,
struct lp_type i16_type,
LLVMValueRef a, LLVMValueRef b)
lp_build_mul_norm(struct gallivm_state *gallivm,
struct lp_type wide_type,
LLVMValueRef a, LLVMValueRef b)
{
LLVMBuilderRef builder = gallivm->builder;
LLVMValueRef c8;
struct lp_build_context bld;
unsigned bits;
LLVMValueRef shift;
LLVMValueRef half;
LLVMValueRef ab;
assert(!i16_type.floating);
assert(lp_check_value(i16_type, a));
assert(lp_check_value(i16_type, b));
assert(!wide_type.floating);
assert(lp_check_value(wide_type, a));
assert(lp_check_value(wide_type, b));
lp_build_context_init(&bld, gallivm, wide_type);
bits = wide_type.width / 2;
if (wide_type.sign) {
--bits;
}
shift = lp_build_const_int_vec(gallivm, wide_type, bits);
c8 = lp_build_const_int_vec(gallivm, i16_type, 8);
#if 0
/* a*b/255 ~= (a*(b + 1)) >> 256 */
b = LLVMBuildAdd(builder, b, lp_build_const_int_vec(gallium, i16_type, 1), "");
/* XXX: This would not work for signed types */
assert(!wide_type.sign);
b = LLVMBuildAdd(builder, b, lp_build_const_int_vec(gallium, wide_type, 1), "");
ab = LLVMBuildMul(builder, a, b, "");
#else
/* ab/255 ~= (ab + (ab >> 8) + 0x80) >> 8 */
ab = LLVMBuildMul(builder, a, b, "");
ab = LLVMBuildAdd(builder, ab, LLVMBuildLShr(builder, ab, c8, ""), "");
ab = LLVMBuildAdd(builder, ab, lp_build_const_int_vec(gallivm, i16_type, 0x80), "");
ab = LLVMBuildAdd(builder, ab, LLVMBuildLShr(builder, ab, shift, ""), "");
/* Add rounding term */
half = lp_build_const_int_vec(gallivm, wide_type, 1 << (bits - 1));
if (wide_type.sign) {
LLVMValueRef minus_half = LLVMBuildNeg(builder, half, "");
LLVMValueRef sign = lp_build_shr_imm(&bld, half, wide_type.width - 1);
half = lp_build_select(&bld, sign, minus_half, half);
}
ab = LLVMBuildAdd(builder, ab, half, "");
#endif
ab = LLVMBuildLShr(builder, ab, c8, "");
return ab;
}
/**
* Normalized 16bit multiplication.
*
* Utilises same principle as above code.
*/
static LLVMValueRef
lp_build_mul_u16n(struct gallivm_state *gallivm,
struct lp_type i32_type,
LLVMValueRef a, LLVMValueRef b)
{
LLVMBuilderRef builder = gallivm->builder;
LLVMValueRef c16;
LLVMValueRef ab;
assert(!i32_type.floating);
assert(lp_check_value(i32_type, a));
assert(lp_check_value(i32_type, b));
c16 = lp_build_const_int_vec(gallivm, i32_type, 16);
/* ab/65535 ~= (ab + (ab >> 16) + 0x8000) >> 16 */
ab = LLVMBuildMul(builder, a, b, "");
ab = LLVMBuildAdd(builder, ab, LLVMBuildLShr(builder, ab, c16, ""), "");
ab = LLVMBuildAdd(builder, ab, lp_build_const_int_vec(gallivm, i32_type, 0x8000), "");
ab = LLVMBuildLShr(builder, ab, c16, "");
ab = LLVMBuildLShr(builder, ab, shift, "");
return ab;
}
@ -812,41 +808,20 @@ lp_build_mul(struct lp_build_context *bld,
if(a == bld->undef || b == bld->undef)
return bld->undef;
if(!type.floating && !type.fixed && type.norm) {
if(type.width == 8) {
struct lp_type i16_type = lp_wider_type(type);
LLVMValueRef al, ah, bl, bh, abl, abh, ab;
if (!type.floating && !type.fixed && type.norm) {
struct lp_type wide_type = lp_wider_type(type);
LLVMValueRef al, ah, bl, bh, abl, abh, ab;
lp_build_unpack2(bld->gallivm, type, i16_type, a, &al, &ah);
lp_build_unpack2(bld->gallivm, type, i16_type, b, &bl, &bh);
lp_build_unpack2(bld->gallivm, type, wide_type, a, &al, &ah);
lp_build_unpack2(bld->gallivm, type, wide_type, b, &bl, &bh);
/* PMULLW, PSRLW, PADDW */
abl = lp_build_mul_u8n(bld->gallivm, i16_type, al, bl);
abh = lp_build_mul_u8n(bld->gallivm, i16_type, ah, bh);
/* PMULLW, PSRLW, PADDW */
abl = lp_build_mul_norm(bld->gallivm, wide_type, al, bl);
abh = lp_build_mul_norm(bld->gallivm, wide_type, ah, bh);
ab = lp_build_pack2(bld->gallivm, i16_type, type, abl, abh);
return ab;
}
ab = lp_build_pack2(bld->gallivm, wide_type, type, abl, abh);
if(type.width == 16) {
struct lp_type i32_type = lp_wider_type(type);
LLVMValueRef al, ah, bl, bh, abl, abh, ab;
lp_build_unpack2(bld->gallivm, type, i32_type, a, &al, &ah);
lp_build_unpack2(bld->gallivm, type, i32_type, b, &bl, &bh);
/* PMULLW, PSRLW, PADDW */
abl = lp_build_mul_u16n(bld->gallivm, i32_type, al, bl);
abh = lp_build_mul_u16n(bld->gallivm, i32_type, ah, bh);
ab = lp_build_pack2(bld->gallivm, i32_type, type, abl, abh);
return ab;
}
/* FIXME */
assert(0);
return ab;
}
if(type.fixed)
@ -988,7 +963,10 @@ lp_build_div(struct lp_build_context *bld,
/**
* Linear interpolation -- without any checks.
* Linear interpolation helper.
*
* @param normalized whether we are interpolating normalized values,
* encoded in normalized integers, twice as wide.
*
* @sa http://www.stereopsis.com/doubleblend.html
*/
@ -996,8 +974,10 @@ static INLINE LLVMValueRef
lp_build_lerp_simple(struct lp_build_context *bld,
LLVMValueRef x,
LLVMValueRef v0,
LLVMValueRef v1)
LLVMValueRef v1,
bool normalized)
{
unsigned half_width = bld->type.width/2;
LLVMBuilderRef builder = bld->gallivm->builder;
LLVMValueRef delta;
LLVMValueRef res;
@ -1010,14 +990,19 @@ lp_build_lerp_simple(struct lp_build_context *bld,
res = lp_build_mul(bld, x, delta);
if (normalized) {
if (bld->type.sign) {
res = lp_build_shr_imm(bld, res, half_width - 1);
} else {
res = lp_build_shr_imm(bld, res, half_width);
}
}
res = lp_build_add(bld, v0, res);
if (bld->type.fixed) {
/* XXX: This step is necessary for lerping 8bit colors stored on 16bits,
* but it will be wrong for other uses. Basically we need a more
* powerful lp_type, capable of further distinguishing the values
* interpretation from the value storage. */
res = LLVMBuildAnd(builder, res, lp_build_const_int_vec(bld->gallivm, bld->type, (1 << bld->type.width/2) - 1), "");
if (normalized && !bld->type.sign) {
/* We need to mask out the high order bits when lerping 8bit normalized colors stored on 16bits */
res = LLVMBuildAnd(builder, res, lp_build_const_int_vec(bld->gallivm, bld->type, (1 << half_width) - 1), "");
}
return res;
@ -1045,17 +1030,17 @@ lp_build_lerp(struct lp_build_context *bld,
struct lp_type wide_type;
struct lp_build_context wide_bld;
LLVMValueRef xl, xh, v0l, v0h, v1l, v1h, resl, resh;
unsigned bits;
LLVMValueRef shift;
assert(type.length >= 2);
assert(!type.sign);
/*
* Create a wider type, enough to hold the intermediate result of the
* multiplication.
* Create a wider integer type, enough to hold the
* intermediate result of the multiplication.
*/
memset(&wide_type, 0, sizeof wide_type);
wide_type.fixed = TRUE;
wide_type.sign = type.sign;
wide_type.width = type.width*2;
wide_type.length = type.length/2;
@ -1069,7 +1054,12 @@ lp_build_lerp(struct lp_build_context *bld,
* Scale x from [0, 255] to [0, 256]
*/
shift = lp_build_const_int_vec(bld->gallivm, wide_type, type.width - 1);
bits = type.width - 1;
if (type.sign) {
--bits;
}
shift = lp_build_const_int_vec(bld->gallivm, wide_type, bits - 1);
xl = lp_build_add(&wide_bld, xl,
LLVMBuildAShr(builder, xl, shift, ""));
@ -1080,12 +1070,12 @@ lp_build_lerp(struct lp_build_context *bld,
* Lerp both halves.
*/
resl = lp_build_lerp_simple(&wide_bld, xl, v0l, v1l);
resh = lp_build_lerp_simple(&wide_bld, xh, v0h, v1h);
resl = lp_build_lerp_simple(&wide_bld, xl, v0l, v1l, TRUE);
resh = lp_build_lerp_simple(&wide_bld, xh, v0h, v1h, TRUE);
res = lp_build_pack2(bld->gallivm, wide_type, type, resl, resh);
} else {
res = lp_build_lerp_simple(bld, x, v0, v1);
res = lp_build_lerp_simple(bld, x, v0, v1, FALSE);
}
return res;