radeonsi/gfx10: implement gfx10_emit_cache_flush

Acked-by: Bas Nieuwenhuizen <bas@basnieuwenhuizen.nl>
This commit is contained in:
Nicolai Hähnle 2017-11-16 13:33:36 +01:00 committed by Marek Olšák
parent 0c6c6810bd
commit 7bb9bb0540
4 changed files with 195 additions and 3 deletions

View File

@ -487,7 +487,11 @@ static struct pipe_context *si_create_context(struct pipe_screen *screen,
goto fail;
/* Initialize context functions used by graphics and compute. */
sctx->emit_cache_flush = si_emit_cache_flush;
if (sctx->chip_class >= GFX10)
sctx->emit_cache_flush = gfx10_emit_cache_flush;
else
sctx->emit_cache_flush = si_emit_cache_flush;
sctx->b.emit_string_marker = si_emit_string_marker;
sctx->b.set_debug_callback = si_set_debug_callback;
sctx->b.set_log_context = si_set_log_context;

View File

@ -65,9 +65,11 @@
#define SI_CONTEXT_FLUSH_FOR_RENDER_COND (1 << 2)
/* Instruction cache. */
#define SI_CONTEXT_INV_ICACHE (1 << 3)
/* Scalar L1 cache. */
/* Scalar cache. (GFX6-9: scalar L1; GFX10: scalar L0)
* GFX10: This also invalidates the L1 shader array cache. */
#define SI_CONTEXT_INV_SCACHE (1 << 4)
/* Vector L1 cache. */
/* Vector cache. (GFX6-9: vector L1; GFX10: vector L0)
* GFX10: This also invalidates the L1 shader array cache. */
#define SI_CONTEXT_INV_VCACHE (1 << 5)
/* L2 cache + L2 metadata cache writeback & invalidate.
* GFX6-8: Used by shaders only. GFX9-10: Used by everything. */

View File

@ -596,6 +596,7 @@ void si_shader_selector_key_vs(struct si_context *sctx,
void si_emit_surface_sync(struct si_context *sctx, struct radeon_cmdbuf *cs,
unsigned cp_coher_cntl);
void si_prim_discard_signal_next_compute_ib_start(struct si_context *sctx);
void gfx10_emit_cache_flush(struct si_context *sctx);
void si_emit_cache_flush(struct si_context *sctx);
void si_trace_emit(struct si_context *sctx);
void si_init_draw_functions(struct si_context *sctx);

View File

@ -951,6 +951,191 @@ void si_prim_discard_signal_next_compute_ib_start(struct si_context *sctx)
*sctx->last_pkt3_write_data = PKT3(PKT3_NOP, 3, 0);
}
void gfx10_emit_cache_flush(struct si_context *ctx)
{
struct radeon_cmdbuf *cs = ctx->gfx_cs;
uint32_t gcr_cntl = 0;
unsigned cb_db_event = 0;
unsigned flags = ctx->flags;
if (!ctx->has_graphics) {
/* Only process compute flags. */
flags &= SI_CONTEXT_INV_ICACHE |
SI_CONTEXT_INV_SCACHE |
SI_CONTEXT_INV_VCACHE |
SI_CONTEXT_INV_L2 |
SI_CONTEXT_WB_L2 |
SI_CONTEXT_INV_L2_METADATA |
SI_CONTEXT_CS_PARTIAL_FLUSH;
}
/* We don't need these. */
assert(!(flags & (SI_CONTEXT_VGT_FLUSH |
SI_CONTEXT_VGT_STREAMOUT_SYNC |
SI_CONTEXT_FLUSH_AND_INV_DB_META)));
if (flags & SI_CONTEXT_FLUSH_AND_INV_CB)
ctx->num_cb_cache_flushes++;
if (flags & SI_CONTEXT_FLUSH_AND_INV_DB)
ctx->num_db_cache_flushes++;
if (flags & SI_CONTEXT_INV_ICACHE)
gcr_cntl |= S_586_GLI_INV(V_586_GLI_ALL);
if (flags & SI_CONTEXT_INV_SCACHE) {
/* TODO: When writing to the SMEM L1 cache, we need to set SEQ
* to FORWARD when both L1 and L2 are written out (WB or INV).
*/
gcr_cntl |= S_586_GL1_INV(1) | S_586_GLK_INV(1);
}
if (flags & SI_CONTEXT_INV_VCACHE)
gcr_cntl |= S_586_GL1_INV(1) | S_586_GLV_INV(1);
if (flags & SI_CONTEXT_INV_L2) {
/* Writeback and invalidate everything in L2. */
gcr_cntl |= S_586_GL2_INV(1) | S_586_GLM_INV(1);
ctx->num_L2_invalidates++;
} else if (flags & SI_CONTEXT_WB_L2) {
/* Writeback but do not invalidate. */
gcr_cntl |= S_586_GL2_WB(1);
}
if (flags & SI_CONTEXT_INV_L2_METADATA)
gcr_cntl |= S_586_GLM_INV(1);
if (flags & (SI_CONTEXT_FLUSH_AND_INV_CB | SI_CONTEXT_FLUSH_AND_INV_DB)) {
if (flags & SI_CONTEXT_FLUSH_AND_INV_CB) {
/* Flush CMASK/FMASK/DCC. Will wait for idle later. */
radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cs, EVENT_TYPE(V_028A90_FLUSH_AND_INV_CB_META) |
EVENT_INDEX(0));
}
if (flags & SI_CONTEXT_FLUSH_AND_INV_DB) {
/* Flush HTILE. Will wait for idle later. */
radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cs, EVENT_TYPE(V_028A90_FLUSH_AND_INV_DB_META) |
EVENT_INDEX(0));
}
/* First flush CB/DB, then L1/L2. */
gcr_cntl |= S_586_SEQ(V_586_SEQ_FORWARD);
if ((flags & (SI_CONTEXT_FLUSH_AND_INV_CB | SI_CONTEXT_FLUSH_AND_INV_DB)) ==
(SI_CONTEXT_FLUSH_AND_INV_CB | SI_CONTEXT_FLUSH_AND_INV_DB)) {
cb_db_event = V_028A90_CACHE_FLUSH_AND_INV_TS_EVENT;
} else if (flags & SI_CONTEXT_FLUSH_AND_INV_CB) {
cb_db_event = V_028A90_FLUSH_AND_INV_CB_DATA_TS;
} else if (flags & SI_CONTEXT_FLUSH_AND_INV_DB) {
cb_db_event = V_028A90_FLUSH_AND_INV_DB_DATA_TS;
} else {
assert(0);
}
} else {
/* Wait for graphics shaders to go idle if requested. */
if (flags & SI_CONTEXT_PS_PARTIAL_FLUSH) {
radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cs, EVENT_TYPE(V_028A90_PS_PARTIAL_FLUSH) | EVENT_INDEX(4));
/* Only count explicit shader flushes, not implicit ones. */
ctx->num_vs_flushes++;
ctx->num_ps_flushes++;
} else if (flags & SI_CONTEXT_VS_PARTIAL_FLUSH) {
radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cs, EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4));
ctx->num_vs_flushes++;
}
}
if (flags & SI_CONTEXT_CS_PARTIAL_FLUSH && ctx->compute_is_busy) {
radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cs, EVENT_TYPE(V_028A90_CS_PARTIAL_FLUSH | EVENT_INDEX(4)));
ctx->num_cs_flushes++;
ctx->compute_is_busy = false;
}
if (cb_db_event) {
/* CB/DB flush and invalidate (or possibly just a wait for a
* meta flush) via RELEASE_MEM.
*
* Combine this with other cache flushes when possible; this
* requires affected shaders to be idle, so do it after the
* CS_PARTIAL_FLUSH before (VS/PS partial flushes are always
* implied).
*/
uint64_t va;
/* Do the flush (enqueue the event and wait for it). */
va = ctx->wait_mem_scratch->gpu_address;
ctx->wait_mem_number++;
/* Get GCR_CNTL fields, because the encoding is different in RELEASE_MEM. */
unsigned glm_wb = G_586_GLM_WB(gcr_cntl);
unsigned glm_inv = G_586_GLM_INV(gcr_cntl);
unsigned glv_inv = G_586_GLV_INV(gcr_cntl);
unsigned gl1_inv = G_586_GL1_INV(gcr_cntl);
assert(G_586_GL2_US(gcr_cntl) == 0);
assert(G_586_GL2_RANGE(gcr_cntl) == 0);
assert(G_586_GL2_DISCARD(gcr_cntl) == 0);
unsigned gl2_inv = G_586_GL2_INV(gcr_cntl);
unsigned gl2_wb = G_586_GL2_WB(gcr_cntl);
unsigned gcr_seq = G_586_SEQ(gcr_cntl);
gcr_cntl &= C_586_GLM_WB &
C_586_GLM_INV &
C_586_GLV_INV &
C_586_GL1_INV &
C_586_GL2_INV &
C_586_GL2_WB; /* keep SEQ */
si_cp_release_mem(ctx, cs, cb_db_event,
S_490_GLM_WB(glm_wb) |
S_490_GLM_INV(glm_inv) |
S_490_GLV_INV(glv_inv) |
S_490_GL1_INV(gl1_inv) |
S_490_GL2_INV(gl2_inv) |
S_490_GL2_WB(gl2_wb) |
S_490_SEQ(gcr_seq),
EOP_DST_SEL_MEM,
EOP_INT_SEL_SEND_DATA_AFTER_WR_CONFIRM,
EOP_DATA_SEL_VALUE_32BIT,
ctx->wait_mem_scratch, va,
ctx->wait_mem_number, SI_NOT_QUERY);
si_cp_wait_mem(ctx, ctx->gfx_cs, va, ctx->wait_mem_number, 0xffffffff,
WAIT_REG_MEM_EQUAL);
}
/* Ignore fields that only modify the behavior of other fields. */
if (gcr_cntl & C_586_GL1_RANGE & C_586_GL2_RANGE & C_586_SEQ) {
/* Flush caches and wait for the caches to assert idle.
* The cache flush is executed in the ME, but the PFP waits
* for completion.
*/
radeon_emit(cs, PKT3(PKT3_ACQUIRE_MEM, 6, 0));
radeon_emit(cs, 0); /* CP_COHER_CNTL */
radeon_emit(cs, 0xffffffff); /* CP_COHER_SIZE */
radeon_emit(cs, 0xffffff); /* CP_COHER_SIZE_HI */
radeon_emit(cs, 0); /* CP_COHER_BASE */
radeon_emit(cs, 0); /* CP_COHER_BASE_HI */
radeon_emit(cs, 0x0000000A); /* POLL_INTERVAL */
radeon_emit(cs, gcr_cntl); /* GCR_CNTL */
} else if (cb_db_event ||
(flags & (SI_CONTEXT_VS_PARTIAL_FLUSH |
SI_CONTEXT_PS_PARTIAL_FLUSH |
SI_CONTEXT_CS_PARTIAL_FLUSH))) {
/* We need to ensure that PFP waits as well. */
radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0));
radeon_emit(cs, 0);
}
if (flags & SI_CONTEXT_START_PIPELINE_STATS) {
radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cs, EVENT_TYPE(V_028A90_PIPELINESTAT_START) |
EVENT_INDEX(0));
} else if (flags & SI_CONTEXT_STOP_PIPELINE_STATS) {
radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cs, EVENT_TYPE(V_028A90_PIPELINESTAT_STOP) |
EVENT_INDEX(0));
}
ctx->flags = 0;
}
void si_emit_cache_flush(struct si_context *sctx)
{
struct radeon_cmdbuf *cs = sctx->gfx_cs;