radv: remove the secure compile support feature

Steam was the only client of this feature and it seems no longer used.

Signed-off-by: Samuel Pitoiset <samuel.pitoiset@gmail.com>
Reviewed-by: Bas Nieuwenhuizen <bas@basnieuwenhuizen.nl>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/5869>
This commit is contained in:
Samuel Pitoiset 2020-07-12 13:59:14 +02:00
parent 59b4c623c9
commit 7324977e42
6 changed files with 16 additions and 920 deletions

View File

@ -588,8 +588,6 @@ RADV driver environment variables
``tccompatcmask``
enable TC-compat cmask for MSAA images
``RADV_SECURE_COMPILE_THREADS``
maximum number of secure compile threads (up to 32)
``RADV_TEX_ANISO``
force anisotropy filter (up to 16)
``RADV_TRACE_FILE``

View File

@ -643,19 +643,9 @@ VkResult radv_CreateInstance(
if (instance->apiVersion == 0)
instance->apiVersion = VK_API_VERSION_1_0;
/* Get secure compile thread count. NOTE: We cap this at 32 */
#define MAX_SC_PROCS 32
char *num_sc_threads = getenv("RADV_SECURE_COMPILE_THREADS");
if (num_sc_threads)
instance->num_sc_threads = MIN2(strtoul(num_sc_threads, NULL, 10), MAX_SC_PROCS);
instance->debug_flags = parse_debug_string(getenv("RADV_DEBUG"),
radv_debug_options);
/* Disable memory cache when secure compile is set */
if (radv_device_use_secure_compile(instance))
instance->debug_flags |= RADV_DEBUG_NO_MEMORY_CACHE;
instance->perftest_flags = parse_debug_string(getenv("RADV_PERFTEST"),
radv_perftest_options);
@ -2372,537 +2362,6 @@ radv_get_int_debug_option(const char *name, int default_value)
return result;
}
static int install_seccomp_filter() {
struct sock_filter filter[] = {
/* Check arch is 64bit x86 */
BPF_STMT(BPF_LD + BPF_W + BPF_ABS, (offsetof(struct seccomp_data, arch))),
BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, AUDIT_ARCH_X86_64, 0, 12),
/* Futex is required for mutex locks */
#if defined __NR__newselect
BPF_STMT(BPF_LD + BPF_W + BPF_ABS, (offsetof(struct seccomp_data, nr))),
BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, __NR__newselect, 11, 0),
#elif defined __NR_select
BPF_STMT(BPF_LD + BPF_W + BPF_ABS, (offsetof(struct seccomp_data, nr))),
BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, __NR_select, 11, 0),
#else
BPF_STMT(BPF_LD + BPF_W + BPF_ABS, (offsetof(struct seccomp_data, nr))),
BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, __NR_pselect6, 11, 0),
#endif
/* Allow system exit calls for the forked process */
BPF_STMT(BPF_LD + BPF_W + BPF_ABS, (offsetof(struct seccomp_data, nr))),
BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, __NR_exit_group, 9, 0),
/* Allow system read calls */
BPF_STMT(BPF_LD + BPF_W + BPF_ABS, (offsetof(struct seccomp_data, nr))),
BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, __NR_read, 7, 0),
/* Allow system write calls */
BPF_STMT(BPF_LD + BPF_W + BPF_ABS, (offsetof(struct seccomp_data, nr))),
BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, __NR_write, 5, 0),
/* Allow system brk calls (we need this for malloc) */
BPF_STMT(BPF_LD + BPF_W + BPF_ABS, (offsetof(struct seccomp_data, nr))),
BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, __NR_brk, 3, 0),
/* Futex is required for mutex locks */
BPF_STMT(BPF_LD + BPF_W + BPF_ABS, (offsetof(struct seccomp_data, nr))),
BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, __NR_futex, 1, 0),
/* Return error if we hit a system call not on the whitelist */
BPF_STMT(BPF_RET + BPF_K, SECCOMP_RET_ERRNO | (EPERM & SECCOMP_RET_DATA)),
/* Allow whitelisted system calls */
BPF_STMT(BPF_RET + BPF_K, SECCOMP_RET_ALLOW),
};
struct sock_fprog prog = {
.len = (unsigned short)(sizeof(filter) / sizeof(filter[0])),
.filter = filter,
};
if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0))
return -1;
if (prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog))
return -1;
return 0;
}
/* Helper function with timeout support for reading from the pipe between
* processes used for secure compile.
*/
bool radv_sc_read(int fd, void *buf, size_t size, bool timeout)
{
fd_set fds;
struct timeval tv;
FD_ZERO(&fds);
FD_SET(fd, &fds);
while (true) {
/* We can't rely on the value of tv after calling select() so
* we must reset it on each iteration of the loop.
*/
tv.tv_sec = 5;
tv.tv_usec = 0;
int rval = select(fd + 1, &fds, NULL, NULL, timeout ? &tv : NULL);
if (rval == -1) {
/* select error */
return false;
} else if (rval) {
ssize_t bytes_read = read(fd, buf, size);
if (bytes_read < 0)
return false;
buf += bytes_read;
size -= bytes_read;
if (size == 0)
return true;
} else {
/* select timeout */
return false;
}
}
}
static bool radv_close_all_fds(const int *keep_fds, int keep_fd_count)
{
DIR *d;
struct dirent *dir;
d = opendir("/proc/self/fd");
if (!d)
return false;
int dir_fd = dirfd(d);
while ((dir = readdir(d)) != NULL) {
if (dir->d_name[0] == '.')
continue;
int fd = atoi(dir->d_name);
if (fd == dir_fd)
continue;
bool keep = false;
for (int i = 0; !keep && i < keep_fd_count; ++i)
if (keep_fds[i] == fd)
keep = true;
if (keep)
continue;
close(fd);
}
closedir(d);
return true;
}
static bool secure_compile_open_fifo_fds(struct radv_secure_compile_state *sc,
int *fd_server, int *fd_client,
unsigned process, bool make_fifo)
{
bool result = false;
char *fifo_server_path = NULL;
char *fifo_client_path = NULL;
if (asprintf(&fifo_server_path, "/tmp/radv_server_%s_%u", sc->uid, process) == -1)
goto open_fifo_exit;
if (asprintf(&fifo_client_path, "/tmp/radv_client_%s_%u", sc->uid, process) == -1)
goto open_fifo_exit;
if (make_fifo) {
int file1 = mkfifo(fifo_server_path, 0666);
if(file1 < 0)
goto open_fifo_exit;
int file2 = mkfifo(fifo_client_path, 0666);
if(file2 < 0)
goto open_fifo_exit;
}
*fd_server = open(fifo_server_path, O_RDWR);
if(*fd_server < 1)
goto open_fifo_exit;
*fd_client = open(fifo_client_path, O_RDWR);
if(*fd_client < 1) {
close(*fd_server);
goto open_fifo_exit;
}
result = true;
open_fifo_exit:
free(fifo_server_path);
free(fifo_client_path);
return result;
}
static void run_secure_compile_device(struct radv_device *device, unsigned process,
int fd_idle_device_output)
{
int fd_secure_input;
int fd_secure_output;
bool fifo_result = secure_compile_open_fifo_fds(device->sc_state,
&fd_secure_input,
&fd_secure_output,
process, false);
enum radv_secure_compile_type sc_type;
const int needed_fds[] = {
fd_secure_input,
fd_secure_output,
fd_idle_device_output,
};
if (!fifo_result || !radv_close_all_fds(needed_fds, ARRAY_SIZE(needed_fds)) ||
install_seccomp_filter() == -1) {
sc_type = RADV_SC_TYPE_INIT_FAILURE;
} else {
sc_type = RADV_SC_TYPE_INIT_SUCCESS;
device->sc_state->secure_compile_processes[process].fd_secure_input = fd_secure_input;
device->sc_state->secure_compile_processes[process].fd_secure_output = fd_secure_output;
}
write(fd_idle_device_output, &sc_type, sizeof(sc_type));
if (sc_type == RADV_SC_TYPE_INIT_FAILURE)
goto secure_compile_exit;
while (true) {
radv_sc_read(fd_secure_input, &sc_type, sizeof(sc_type), false);
if (sc_type == RADV_SC_TYPE_COMPILE_PIPELINE) {
struct radv_pipeline *pipeline;
bool sc_read = true;
pipeline = vk_zalloc2(&device->vk.alloc, NULL, sizeof(*pipeline), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
pipeline->device = device;
/* Read pipeline layout */
struct radv_pipeline_layout layout;
sc_read = radv_sc_read(fd_secure_input, &layout, sizeof(struct radv_pipeline_layout), true);
sc_read &= radv_sc_read(fd_secure_input, &layout.num_sets, sizeof(uint32_t), true);
if (!sc_read)
goto secure_compile_exit;
for (uint32_t set = 0; set < layout.num_sets; set++) {
uint32_t layout_size;
sc_read &= radv_sc_read(fd_secure_input, &layout_size, sizeof(uint32_t), true);
if (!sc_read)
goto secure_compile_exit;
layout.set[set].layout = malloc(layout_size);
layout.set[set].layout->layout_size = layout_size;
sc_read &= radv_sc_read(fd_secure_input, layout.set[set].layout,
layout.set[set].layout->layout_size, true);
}
pipeline->layout = &layout;
/* Read pipeline key */
struct radv_pipeline_key key;
sc_read &= radv_sc_read(fd_secure_input, &key, sizeof(struct radv_pipeline_key), true);
/* Read pipeline create flags */
VkPipelineCreateFlags flags;
sc_read &= radv_sc_read(fd_secure_input, &flags, sizeof(VkPipelineCreateFlags), true);
/* Read stage and shader information */
uint32_t num_stages;
const VkPipelineShaderStageCreateInfo *pStages[MESA_SHADER_STAGES] = { 0, };
sc_read &= radv_sc_read(fd_secure_input, &num_stages, sizeof(uint32_t), true);
if (!sc_read)
goto secure_compile_exit;
for (uint32_t i = 0; i < num_stages; i++) {
/* Read stage */
gl_shader_stage stage;
sc_read &= radv_sc_read(fd_secure_input, &stage, sizeof(gl_shader_stage), true);
VkPipelineShaderStageCreateInfo *pStage = calloc(1, sizeof(VkPipelineShaderStageCreateInfo));
/* Read entry point name */
size_t name_size;
sc_read &= radv_sc_read(fd_secure_input, &name_size, sizeof(size_t), true);
if (!sc_read)
goto secure_compile_exit;
char *ep_name = malloc(name_size);
sc_read &= radv_sc_read(fd_secure_input, ep_name, name_size, true);
pStage->pName = ep_name;
/* Read shader module */
size_t module_size;
sc_read &= radv_sc_read(fd_secure_input, &module_size, sizeof(size_t), true);
if (!sc_read)
goto secure_compile_exit;
struct radv_shader_module *module = malloc(module_size);
sc_read &= radv_sc_read(fd_secure_input, module, module_size, true);
pStage->module = radv_shader_module_to_handle(module);
/* Read specialization info */
bool has_spec_info;
sc_read &= radv_sc_read(fd_secure_input, &has_spec_info, sizeof(bool), true);
if (!sc_read)
goto secure_compile_exit;
if (has_spec_info) {
VkSpecializationInfo *specInfo = malloc(sizeof(VkSpecializationInfo));
pStage->pSpecializationInfo = specInfo;
sc_read &= radv_sc_read(fd_secure_input, &specInfo->dataSize, sizeof(size_t), true);
if (!sc_read)
goto secure_compile_exit;
void *si_data = malloc(specInfo->dataSize);
sc_read &= radv_sc_read(fd_secure_input, si_data, specInfo->dataSize, true);
specInfo->pData = si_data;
sc_read &= radv_sc_read(fd_secure_input, &specInfo->mapEntryCount, sizeof(uint32_t), true);
if (!sc_read)
goto secure_compile_exit;
VkSpecializationMapEntry *mapEntries = malloc(sizeof(VkSpecializationMapEntry) * specInfo->mapEntryCount);
for (uint32_t j = 0; j < specInfo->mapEntryCount; j++) {
sc_read &= radv_sc_read(fd_secure_input, &mapEntries[j], sizeof(VkSpecializationMapEntry), true);
if (!sc_read)
goto secure_compile_exit;
}
specInfo->pMapEntries = mapEntries;
}
pStages[stage] = pStage;
}
/* Compile the shaders */
VkPipelineCreationFeedbackEXT *stage_feedbacks[MESA_SHADER_STAGES] = { 0 };
/* Not fully to spec but if we're doing sandboxed compilations already this doesn't matter. */
flags &= ~VK_PIPELINE_CREATE_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT_EXT;
radv_create_shaders(pipeline, device, NULL, &key, pStages, flags, NULL, stage_feedbacks);
/* free memory allocated above */
for (uint32_t set = 0; set < layout.num_sets; set++)
free(layout.set[set].layout);
for (uint32_t i = 0; i < MESA_SHADER_STAGES; i++) {
if (!pStages[i])
continue;
free((void *) pStages[i]->pName);
free(radv_shader_module_from_handle(pStages[i]->module));
if (pStages[i]->pSpecializationInfo) {
free((void *) pStages[i]->pSpecializationInfo->pData);
free((void *) pStages[i]->pSpecializationInfo->pMapEntries);
free((void *) pStages[i]->pSpecializationInfo);
}
free((void *) pStages[i]);
}
vk_free(&device->vk.alloc, pipeline);
sc_type = RADV_SC_TYPE_COMPILE_PIPELINE_FINISHED;
write(fd_secure_output, &sc_type, sizeof(sc_type));
} else if (sc_type == RADV_SC_TYPE_DESTROY_DEVICE) {
goto secure_compile_exit;
}
}
secure_compile_exit:
close(fd_secure_input);
close(fd_secure_output);
close(fd_idle_device_output);
_exit(0);
}
static enum radv_secure_compile_type fork_secure_compile_device(struct radv_device *device, unsigned process)
{
int fd_secure_input[2];
int fd_secure_output[2];
/* create pipe descriptors (used to communicate between processes) */
if (pipe(fd_secure_input) == -1 || pipe(fd_secure_output) == -1)
return RADV_SC_TYPE_INIT_FAILURE;
int sc_pid;
if ((sc_pid = fork()) == 0) {
device->sc_state->secure_compile_thread_counter = process;
run_secure_compile_device(device, process, fd_secure_output[1]);
} else {
if (sc_pid == -1)
return RADV_SC_TYPE_INIT_FAILURE;
/* Read the init result returned from the secure process */
enum radv_secure_compile_type sc_type;
bool sc_read = radv_sc_read(fd_secure_output[0], &sc_type, sizeof(sc_type), true);
if (sc_type == RADV_SC_TYPE_INIT_FAILURE || !sc_read) {
close(fd_secure_input[0]);
close(fd_secure_input[1]);
close(fd_secure_output[1]);
close(fd_secure_output[0]);
int status;
waitpid(sc_pid, &status, 0);
return RADV_SC_TYPE_INIT_FAILURE;
} else {
assert(sc_type == RADV_SC_TYPE_INIT_SUCCESS);
write(device->sc_state->secure_compile_processes[process].fd_secure_output, &sc_type, sizeof(sc_type));
close(fd_secure_input[0]);
close(fd_secure_input[1]);
close(fd_secure_output[1]);
close(fd_secure_output[0]);
int status;
waitpid(sc_pid, &status, 0);
}
}
return RADV_SC_TYPE_INIT_SUCCESS;
}
/* Run a bare bones fork of a device that was forked right after its creation.
* This device will have low overhead when it is forked again before each
* pipeline compilation. This device sits idle and its only job is to fork
* itself.
*/
static void run_secure_compile_idle_device(struct radv_device *device, unsigned process,
int fd_secure_input, int fd_secure_output)
{
enum radv_secure_compile_type sc_type = RADV_SC_TYPE_INIT_SUCCESS;
device->sc_state->secure_compile_processes[process].fd_secure_input = fd_secure_input;
device->sc_state->secure_compile_processes[process].fd_secure_output = fd_secure_output;
write(fd_secure_output, &sc_type, sizeof(sc_type));
while (true) {
radv_sc_read(fd_secure_input, &sc_type, sizeof(sc_type), false);
if (sc_type == RADV_SC_TYPE_FORK_DEVICE) {
sc_type = fork_secure_compile_device(device, process);
if (sc_type == RADV_SC_TYPE_INIT_FAILURE)
goto secure_compile_exit;
} else if (sc_type == RADV_SC_TYPE_DESTROY_DEVICE) {
goto secure_compile_exit;
}
}
secure_compile_exit:
close(fd_secure_input);
close(fd_secure_output);
_exit(0);
}
static void destroy_secure_compile_device(struct radv_device *device, unsigned process)
{
int fd_secure_input = device->sc_state->secure_compile_processes[process].fd_secure_input;
enum radv_secure_compile_type sc_type = RADV_SC_TYPE_DESTROY_DEVICE;
write(fd_secure_input, &sc_type, sizeof(sc_type));
close(device->sc_state->secure_compile_processes[process].fd_secure_input);
close(device->sc_state->secure_compile_processes[process].fd_secure_output);
int status;
waitpid(device->sc_state->secure_compile_processes[process].sc_pid, &status, 0);
}
static VkResult fork_secure_compile_idle_device(struct radv_device *device)
{
device->sc_state = vk_zalloc(&device->vk.alloc,
sizeof(struct radv_secure_compile_state),
8, VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
mtx_init(&device->sc_state->secure_compile_mutex, mtx_plain);
pid_t upid = getpid();
time_t seconds = time(NULL);
char *uid;
if (asprintf(&uid, "%ld_%ld", (long) upid, (long) seconds) == -1)
return VK_ERROR_INITIALIZATION_FAILED;
device->sc_state->uid = uid;
uint8_t sc_threads = device->instance->num_sc_threads;
int fd_secure_input[MAX_SC_PROCS][2];
int fd_secure_output[MAX_SC_PROCS][2];
/* create pipe descriptors (used to communicate between processes) */
for (unsigned i = 0; i < sc_threads; i++) {
if (pipe(fd_secure_input[i]) == -1 ||
pipe(fd_secure_output[i]) == -1) {
return VK_ERROR_INITIALIZATION_FAILED;
}
}
device->sc_state->secure_compile_processes = vk_zalloc(&device->vk.alloc,
sizeof(struct radv_secure_compile_process) * sc_threads, 8,
VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
for (unsigned process = 0; process < sc_threads; process++) {
if ((device->sc_state->secure_compile_processes[process].sc_pid = fork()) == 0) {
device->sc_state->secure_compile_thread_counter = process;
run_secure_compile_idle_device(device, process, fd_secure_input[process][0], fd_secure_output[process][1]);
} else {
if (device->sc_state->secure_compile_processes[process].sc_pid == -1)
return VK_ERROR_INITIALIZATION_FAILED;
/* Read the init result returned from the secure process */
enum radv_secure_compile_type sc_type;
bool sc_read = radv_sc_read(fd_secure_output[process][0], &sc_type, sizeof(sc_type), true);
bool fifo_result;
if (sc_read && sc_type == RADV_SC_TYPE_INIT_SUCCESS) {
fifo_result = secure_compile_open_fifo_fds(device->sc_state,
&device->sc_state->secure_compile_processes[process].fd_server,
&device->sc_state->secure_compile_processes[process].fd_client,
process, true);
device->sc_state->secure_compile_processes[process].fd_secure_input = fd_secure_input[process][1];
device->sc_state->secure_compile_processes[process].fd_secure_output = fd_secure_output[process][0];
}
if (sc_type == RADV_SC_TYPE_INIT_FAILURE || !sc_read || !fifo_result) {
close(fd_secure_input[process][0]);
close(fd_secure_input[process][1]);
close(fd_secure_output[process][1]);
close(fd_secure_output[process][0]);
int status;
waitpid(device->sc_state->secure_compile_processes[process].sc_pid, &status, 0);
/* Destroy any forks that were created sucessfully */
for (unsigned i = 0; i < process; i++) {
destroy_secure_compile_device(device, i);
}
return VK_ERROR_INITIALIZATION_FAILED;
}
}
}
return VK_SUCCESS;
}
static void
radv_device_init_dispatch(struct radv_device *device)
{
@ -3215,11 +2674,6 @@ VkResult radv_CreateDevice(
goto fail;
}
/* Temporarily disable secure compile while we create meta shaders, etc */
uint8_t sc_threads = device->instance->num_sc_threads;
if (sc_threads)
device->instance->num_sc_threads = 0;
device->keep_shader_info = keep_shader_info;
result = radv_device_init_meta(device);
if (result != VK_SUCCESS)
@ -3278,15 +2732,6 @@ VkResult radv_CreateDevice(
1 << util_logbase2(device->force_aniso));
}
/* Fork device for secure compile as required */
device->instance->num_sc_threads = sc_threads;
if (radv_device_use_secure_compile(device->instance)) {
result = fork_secure_compile_idle_device(device);
if (result != VK_SUCCESS)
goto fail_meta;
}
*pDevice = radv_device_to_handle(device);
return VK_SUCCESS;
@ -3355,17 +2800,6 @@ void radv_DestroyDevice(
radv_thread_trace_finish(device);
if (radv_device_use_secure_compile(device->instance)) {
for (unsigned i = 0; i < device->instance->num_sc_threads; i++ ) {
destroy_secure_compile_device(device, i);
}
}
if (device->sc_state) {
free(device->sc_state->uid);
vk_free(&device->vk.alloc, device->sc_state->secure_compile_processes);
}
vk_free(&device->vk.alloc, device->sc_state);
vk_free(&device->vk.alloc, device);
}

View File

@ -4773,197 +4773,6 @@ radv_pipeline_get_streamout_shader(struct radv_pipeline *pipeline)
return NULL;
}
static VkResult
radv_secure_compile(struct radv_pipeline *pipeline,
struct radv_device *device,
const struct radv_pipeline_key *key,
const VkPipelineShaderStageCreateInfo **pStages,
const VkPipelineCreateFlags flags,
unsigned num_stages)
{
uint8_t allowed_pipeline_hashes[2][20];
radv_hash_shaders(allowed_pipeline_hashes[0], pStages,
pipeline->layout, key, get_hash_flags(device));
/* Generate the GC copy hash */
memcpy(allowed_pipeline_hashes[1], allowed_pipeline_hashes[0], 20);
allowed_pipeline_hashes[1][0] ^= 1;
uint8_t allowed_hashes[2][20];
for (unsigned i = 0; i < 2; ++i) {
disk_cache_compute_key(device->physical_device->disk_cache,
allowed_pipeline_hashes[i], 20,
allowed_hashes[i]);
}
/* Do an early exit if all cache entries are already there. */
bool may_need_copy_shader = pStages[MESA_SHADER_GEOMETRY];
void *main_entry = disk_cache_get(device->physical_device->disk_cache, allowed_hashes[0], NULL);
void *copy_entry = NULL;
if (may_need_copy_shader)
copy_entry = disk_cache_get(device->physical_device->disk_cache, allowed_hashes[1], NULL);
bool has_all_cache_entries = main_entry && (!may_need_copy_shader || copy_entry);
free(main_entry);
free(copy_entry);
if(has_all_cache_entries)
return VK_SUCCESS;
unsigned process = 0;
uint8_t sc_threads = device->instance->num_sc_threads;
while (true) {
mtx_lock(&device->sc_state->secure_compile_mutex);
if (device->sc_state->secure_compile_thread_counter < sc_threads) {
device->sc_state->secure_compile_thread_counter++;
for (unsigned i = 0; i < sc_threads; i++) {
if (!device->sc_state->secure_compile_processes[i].in_use) {
device->sc_state->secure_compile_processes[i].in_use = true;
process = i;
break;
}
}
mtx_unlock(&device->sc_state->secure_compile_mutex);
break;
}
mtx_unlock(&device->sc_state->secure_compile_mutex);
}
int fd_secure_input = device->sc_state->secure_compile_processes[process].fd_secure_input;
int fd_secure_output = device->sc_state->secure_compile_processes[process].fd_secure_output;
/* Fork a copy of the slim untainted secure compile process */
enum radv_secure_compile_type sc_type = RADV_SC_TYPE_FORK_DEVICE;
write(fd_secure_input, &sc_type, sizeof(sc_type));
if (!radv_sc_read(fd_secure_output, &sc_type, sizeof(sc_type), true) ||
sc_type != RADV_SC_TYPE_INIT_SUCCESS)
return VK_ERROR_DEVICE_LOST;
fd_secure_input = device->sc_state->secure_compile_processes[process].fd_server;
fd_secure_output = device->sc_state->secure_compile_processes[process].fd_client;
/* Write pipeline / shader module out to secure process via pipe */
sc_type = RADV_SC_TYPE_COMPILE_PIPELINE;
write(fd_secure_input, &sc_type, sizeof(sc_type));
/* Write pipeline layout out to secure process */
struct radv_pipeline_layout *layout = pipeline->layout;
write(fd_secure_input, layout, sizeof(struct radv_pipeline_layout));
write(fd_secure_input, &layout->num_sets, sizeof(uint32_t));
for (uint32_t set = 0; set < layout->num_sets; set++) {
write(fd_secure_input, &layout->set[set].layout->layout_size, sizeof(uint32_t));
write(fd_secure_input, layout->set[set].layout, layout->set[set].layout->layout_size);
}
/* Write pipeline key out to secure process */
write(fd_secure_input, key, sizeof(struct radv_pipeline_key));
/* Write pipeline create flags out to secure process */
write(fd_secure_input, &flags, sizeof(VkPipelineCreateFlags));
/* Write stage and shader information out to secure process */
write(fd_secure_input, &num_stages, sizeof(uint32_t));
for (uint32_t i = 0; i < MESA_SHADER_STAGES; i++) {
if (!pStages[i])
continue;
/* Write stage out to secure process */
gl_shader_stage stage = ffs(pStages[i]->stage) - 1;
write(fd_secure_input, &stage, sizeof(gl_shader_stage));
/* Write entry point name out to secure process */
size_t name_size = strlen(pStages[i]->pName) + 1;
write(fd_secure_input, &name_size, sizeof(size_t));
write(fd_secure_input, pStages[i]->pName, name_size);
/* Write shader module out to secure process */
struct radv_shader_module *module = radv_shader_module_from_handle(pStages[i]->module);
assert(!module->nir);
size_t module_size = sizeof(struct radv_shader_module) + module->size;
write(fd_secure_input, &module_size, sizeof(size_t));
write(fd_secure_input, module, module_size);
/* Write specialization info out to secure process */
const VkSpecializationInfo *specInfo = pStages[i]->pSpecializationInfo;
bool has_spec_info = specInfo ? true : false;
write(fd_secure_input, &has_spec_info, sizeof(bool));
if (specInfo) {
write(fd_secure_input, &specInfo->dataSize, sizeof(size_t));
write(fd_secure_input, specInfo->pData, specInfo->dataSize);
write(fd_secure_input, &specInfo->mapEntryCount, sizeof(uint32_t));
for (uint32_t j = 0; j < specInfo->mapEntryCount; j++)
write(fd_secure_input, &specInfo->pMapEntries[j], sizeof(VkSpecializationMapEntry));
}
}
/* Read the data returned from the secure process */
while (sc_type != RADV_SC_TYPE_COMPILE_PIPELINE_FINISHED) {
if (!radv_sc_read(fd_secure_output, &sc_type, sizeof(sc_type), true))
return VK_ERROR_DEVICE_LOST;
if (sc_type == RADV_SC_TYPE_WRITE_DISK_CACHE) {
assert(device->physical_device->disk_cache);
uint8_t disk_sha1[20];
if (!radv_sc_read(fd_secure_output, disk_sha1, sizeof(uint8_t) * 20, true))
return VK_ERROR_DEVICE_LOST;
if (memcmp(disk_sha1, allowed_hashes[0], 20) &&
memcmp(disk_sha1, allowed_hashes[1], 20))
return VK_ERROR_DEVICE_LOST;
uint32_t entry_size;
if (!radv_sc_read(fd_secure_output, &entry_size, sizeof(uint32_t), true))
return VK_ERROR_DEVICE_LOST;
struct cache_entry *entry = malloc(entry_size);
if (!radv_sc_read(fd_secure_output, entry, entry_size, true))
return VK_ERROR_DEVICE_LOST;
disk_cache_put(device->physical_device->disk_cache,
disk_sha1, entry, entry_size,
NULL);
free(entry);
} else if (sc_type == RADV_SC_TYPE_READ_DISK_CACHE) {
uint8_t disk_sha1[20];
if (!radv_sc_read(fd_secure_output, disk_sha1, sizeof(uint8_t) * 20, true))
return VK_ERROR_DEVICE_LOST;
if (memcmp(disk_sha1, allowed_hashes[0], 20) &&
memcmp(disk_sha1, allowed_hashes[1], 20))
return VK_ERROR_DEVICE_LOST;
size_t size;
struct cache_entry *entry = (struct cache_entry *)
disk_cache_get(device->physical_device->disk_cache,
disk_sha1, &size);
uint8_t found = entry ? 1 : 0;
write(fd_secure_input, &found, sizeof(uint8_t));
if (found) {
write(fd_secure_input, &size, sizeof(size_t));
write(fd_secure_input, entry, size);
}
free(entry);
}
}
sc_type = RADV_SC_TYPE_DESTROY_DEVICE;
write(fd_secure_input, &sc_type, sizeof(sc_type));
mtx_lock(&device->sc_state->secure_compile_mutex);
device->sc_state->secure_compile_thread_counter--;
device->sc_state->secure_compile_processes[process].in_use = false;
mtx_unlock(&device->sc_state->secure_compile_mutex);
return VK_SUCCESS;
}
static VkResult
radv_pipeline_init(struct radv_pipeline *pipeline,
struct radv_device *device,
@ -5001,15 +4810,12 @@ radv_pipeline_init(struct radv_pipeline *pipeline,
}
struct radv_pipeline_key key = radv_generate_graphics_pipeline_key(pipeline, pCreateInfo, &blend, has_view_index);
if (radv_device_use_secure_compile(device->instance)) {
return radv_secure_compile(pipeline, device, &key, pStages, pCreateInfo->flags, pCreateInfo->stageCount);
} else {
result = radv_create_shaders(pipeline, device, cache, &key, pStages,
pCreateInfo->flags, pipeline_feedback,
stage_feedbacks);
if (result != VK_SUCCESS)
return result;
}
result = radv_create_shaders(pipeline, device, cache, &key, pStages,
pCreateInfo->flags, pipeline_feedback,
stage_feedbacks);
if (result != VK_SUCCESS)
return result;
pipeline->graphics.spi_baryc_cntl = S_0286E0_FRONT_FACE_ALL_BITS(1);
radv_pipeline_init_multisample_state(pipeline, &blend, pCreateInfo);
@ -5313,19 +5119,12 @@ static VkResult radv_compute_pipeline_create(
struct radv_pipeline_key key =
radv_generate_compute_pipeline_key(pipeline, pCreateInfo);
if (radv_device_use_secure_compile(device->instance)) {
result = radv_secure_compile(pipeline, device, &key, pStages, pCreateInfo->flags, 1);
*pPipeline = radv_pipeline_to_handle(pipeline);
result = radv_create_shaders(pipeline, device, cache, &key, pStages,
pCreateInfo->flags, pipeline_feedback,
stage_feedbacks);
if (result != VK_SUCCESS) {
radv_pipeline_destroy(device, pipeline, pAllocator);
return result;
} else {
result = radv_create_shaders(pipeline, device, cache, &key, pStages,
pCreateInfo->flags, pipeline_feedback,
stage_feedbacks);
if (result != VK_SUCCESS) {
radv_pipeline_destroy(device, pipeline, pAllocator);
return result;
}
}
pipeline->user_data_0[MESA_SHADER_COMPUTE] = radv_pipeline_stage_to_user_data_0(pipeline, MESA_SHADER_COMPUTE, device->physical_device->rad_info.chip_class);

View File

@ -262,67 +262,6 @@ radv_is_cache_disabled(struct radv_device *device)
return (device->instance->debug_flags & RADV_DEBUG_NO_CACHE);
}
/*
* Secure compiles cannot open files so we get the parent process to load the
* cache entry for us.
*/
static struct cache_entry *
radv_sc_read_from_disk_cache(struct radv_device *device, uint8_t *disk_sha1)
{
struct cache_entry *entry;
unsigned process = device->sc_state->secure_compile_thread_counter;
enum radv_secure_compile_type sc_type = RADV_SC_TYPE_READ_DISK_CACHE;
write(device->sc_state->secure_compile_processes[process].fd_secure_output,
&sc_type, sizeof(enum radv_secure_compile_type));
write(device->sc_state->secure_compile_processes[process].fd_secure_output,
disk_sha1, sizeof(uint8_t) * 20);
uint8_t found_cache_entry;
if (!radv_sc_read(device->sc_state->secure_compile_processes[process].fd_secure_input,
&found_cache_entry, sizeof(uint8_t), true))
return NULL;
if (found_cache_entry) {
size_t entry_size;
if (!radv_sc_read(device->sc_state->secure_compile_processes[process].fd_secure_input,
&entry_size, sizeof(size_t), true))
return NULL;
entry = malloc(entry_size);
if (!radv_sc_read(device->sc_state->secure_compile_processes[process].fd_secure_input,
entry, entry_size, true))
return NULL;
return entry;
}
return NULL;
}
/*
* Secure compiles cannot open files so we get the parent process to write to
* the disk cache for us.
*/
static void
radv_sc_write_to_disk_cache(struct radv_device *device, uint8_t *disk_sha1,
struct cache_entry *entry)
{
unsigned process = device->sc_state->secure_compile_thread_counter;
enum radv_secure_compile_type sc_type = RADV_SC_TYPE_WRITE_DISK_CACHE;
write(device->sc_state->secure_compile_processes[process].fd_secure_output,
&sc_type, sizeof(enum radv_secure_compile_type));
write(device->sc_state->secure_compile_processes[process].fd_secure_output,
disk_sha1, sizeof(uint8_t) * 20);
uint32_t size = entry_size(entry);
write(device->sc_state->secure_compile_processes[process].fd_secure_output,
&size, sizeof(uint32_t));
write(device->sc_state->secure_compile_processes[process].fd_secure_output,
entry, size);
}
bool
radv_create_shader_variants_from_pipeline_cache(struct radv_device *device,
struct radv_pipeline_cache *cache,
@ -356,14 +295,9 @@ radv_create_shader_variants_from_pipeline_cache(struct radv_device *device,
disk_cache_compute_key(device->physical_device->disk_cache,
sha1, 20, disk_sha1);
if (radv_device_use_secure_compile(device->instance)) {
entry = radv_sc_read_from_disk_cache(device, disk_sha1);
} else {
entry = (struct cache_entry *)
disk_cache_get(device->physical_device->disk_cache,
disk_sha1, NULL);
}
entry = (struct cache_entry *)
disk_cache_get(device->physical_device->disk_cache,
disk_sha1, NULL);
if (!entry) {
radv_pipeline_cache_unlock(cache);
return false;
@ -489,16 +423,8 @@ radv_pipeline_cache_insert_shaders(struct radv_device *device,
disk_cache_compute_key(device->physical_device->disk_cache, sha1, 20,
disk_sha1);
/* Write the cache item out to the parent of this forked
* process.
*/
if (radv_device_use_secure_compile(device->instance)) {
radv_sc_write_to_disk_cache(device, disk_sha1, entry);
} else {
disk_cache_put(device->physical_device->disk_cache,
disk_sha1, entry, entry_size(entry),
NULL);
}
disk_cache_put(device->physical_device->disk_cache, disk_sha1,
entry, entry_size(entry), NULL);
}
if (device->instance->debug_flags & RADV_DEBUG_NO_MEMORY_CACHE &&

View File

@ -95,18 +95,6 @@ typedef uint32_t xcb_window_t;
#define RADV_SUPPORT_ANDROID_HARDWARE_BUFFER 0
#endif
enum radv_secure_compile_type {
RADV_SC_TYPE_INIT_SUCCESS,
RADV_SC_TYPE_INIT_FAILURE,
RADV_SC_TYPE_COMPILE_PIPELINE,
RADV_SC_TYPE_COMPILE_PIPELINE_FINISHED,
RADV_SC_TYPE_READ_DISK_CACHE,
RADV_SC_TYPE_WRITE_DISK_CACHE,
RADV_SC_TYPE_FORK_DEVICE,
RADV_SC_TYPE_DESTROY_DEVICE,
RADV_SC_TYPE_COUNT
};
#define radv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
static inline uint32_t
@ -337,7 +325,6 @@ struct radv_instance {
uint64_t debug_flags;
uint64_t perftest_flags;
uint8_t num_sc_threads;
struct vk_debug_report_instance debug_report_callbacks;
@ -358,12 +345,6 @@ struct radv_instance {
bool enable_mrt_output_nan_fixup;
};
static inline
bool radv_device_use_secure_compile(struct radv_instance *instance)
{
return instance->num_sc_threads;
}
VkResult radv_init_wsi(struct radv_physical_device *physical_device);
void radv_finish_wsi(struct radv_physical_device *physical_device);
@ -743,36 +724,6 @@ VkResult radv_bo_list_add(struct radv_device *device,
void radv_bo_list_remove(struct radv_device *device,
struct radeon_winsys_bo *bo);
struct radv_secure_compile_process {
/* Secure process file descriptors. Used to communicate between the
* user facing device and the idle forked device used to fork a clean
* process for each new pipeline compile.
*/
int fd_secure_input;
int fd_secure_output;
/* FIFO file descriptors used to communicate between the user facing
* device and the secure process that does the actual secure compile.
*/
int fd_server;
int fd_client;
/* Secure compile process id */
pid_t sc_pid;
/* Is the secure compile process currently in use by a thread */
bool in_use;
};
struct radv_secure_compile_state {
struct radv_secure_compile_process *secure_compile_processes;
uint32_t secure_compile_thread_counter;
mtx_t secure_compile_mutex;
/* Unique process ID used to build name for FIFO file descriptor */
char *uid;
};
#define RADV_BORDER_COLOR_COUNT 4096
#define RADV_BORDER_COLOR_BUFFER_SIZE (sizeof(VkClearColorValue) * RADV_BORDER_COLOR_COUNT)
@ -859,8 +810,6 @@ struct radv_device {
struct radv_device_border_color_data border_color_data;
struct radv_secure_compile_state *sc_state;
/* Condition variable for legacy timelines, to notify waiters when a
* new point gets submitted. */
pthread_cond_t timeline_cond;
@ -1221,9 +1170,6 @@ radv_initialise_ds_surface(struct radv_device *device,
struct radv_ds_buffer_info *ds,
struct radv_image_view *iview);
bool
radv_sc_read(int fd, void *buf, size_t size, bool timeout);
/**
* Attachment state when recording a renderpass instance.
*

View File

@ -1036,13 +1036,6 @@ radv_shader_variant_create(struct radv_device *device,
radv_postprocess_config(device->physical_device, &config, &binary->info,
binary->stage, &variant->config);
if (radv_device_use_secure_compile(device->instance)) {
if (binary->type == RADV_BINARY_TYPE_RTLD)
ac_rtld_close(&rtld_binary);
return variant;
}
void *dest_ptr = radv_alloc_shader_memory(device, variant);
if (!dest_ptr) {
if (binary->type == RADV_BINARY_TYPE_RTLD)