r600/nir: fetch sources and split uniforms before emittting alu instructions

Signed-off-by: Gert Wollny <gert.wollny@collabora.com>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/6706>
This commit is contained in:
Gert Wollny 2020-07-24 20:18:37 +02:00 committed by Marge Bot
parent 85f39cab8b
commit 688680decc
5 changed files with 168 additions and 107 deletions

View File

@ -49,7 +49,7 @@ bool EmitAluInstruction::do_emit(nir_instr* ir)
<< " bitsize: " << static_cast<int>(instr.dest.dest.ssa.bit_size)
<< "' (" << __func__ << ")\n";
split_constants(instr);
preload_src(instr);
switch (instr.op) {
case nir_op_b2f32: return emit_alu_b2f(instr);
@ -184,6 +184,66 @@ bool EmitAluInstruction::do_emit(nir_instr* ir)
}
}
void EmitAluInstruction::preload_src(const nir_alu_instr& instr)
{
const nir_op_info *op_info = &nir_op_infos[instr.op];
assert(op_info->num_inputs <= 4);
m_num_src_comp = num_src_comp(instr);
sfn_log << SfnLog::reg << "Preload:\n";
for (unsigned i = 0; i < op_info->num_inputs; ++i) {
for (unsigned c = 0; c < m_num_src_comp; ++c) {
m_src[i][c] = from_nir(instr.src[i], c);
sfn_log << SfnLog::reg << " " << *m_src[i][c];
}
sfn_log << SfnLog::reg << "\n";
}
if (instr.op == nir_op_fdph) {
m_src[1][3] = from_nir(instr.src[1], 3);
sfn_log << SfnLog::reg << " extra:" << *m_src[1][3] << "\n";
}
split_constants(instr);
}
unsigned EmitAluInstruction::num_src_comp(const nir_alu_instr& instr)
{
switch (instr.op) {
case nir_op_fdot2:
case nir_op_bany_inequal2:
case nir_op_ball_iequal2:
case nir_op_bany_fnequal2:
case nir_op_ball_fequal2:
return 2;
case nir_op_fdot3:
case nir_op_fdph:
case nir_op_bany_inequal3:
case nir_op_ball_iequal3:
case nir_op_bany_fnequal3:
case nir_op_ball_fequal3:
return 3;
case nir_op_fdot4:
case nir_op_bany_inequal4:
case nir_op_ball_iequal4:
case nir_op_bany_fnequal4:
case nir_op_ball_fequal4:
return 4;
case nir_op_vec2:
case nir_op_vec3:
case nir_op_vec4:
return 1;
default:
return nir_dest_num_components(instr.dest.dest);
}
}
void EmitAluInstruction::split_constants(const nir_alu_instr& instr)
{
const nir_op_info *op_info = &nir_op_infos[instr.op];
@ -194,14 +254,18 @@ void EmitAluInstruction::split_constants(const nir_alu_instr& instr)
std::array<const UniformValue *,4> c;
std::array<int,4> idx;
for (unsigned i = 0; i < op_info->num_inputs; ++i) {
PValue src = from_nir(instr.src[i], 0);
PValue& src = m_src[i][0];
assert(src);
sfn_log << SfnLog::reg << "Split test " << *src;
if (src->type() == Value::kconst) {
c[nconst] = static_cast<const UniformValue *>(src.get());
idx[nconst++] = i;
sfn_log << SfnLog::reg << "is constant " << i;
}
sfn_log << SfnLog::reg << "\n";
}
if (nconst < 2)
return;
@ -212,7 +276,14 @@ void EmitAluInstruction::split_constants(const nir_alu_instr& instr)
for (int i = 1; i < nconst; ++i) {
sfn_log << "sel[" << i << "] = " << c[i]->sel() << "\n";
if (c[i]->sel() != sel || c[i]->kcache_bank() != kcache) {
load_uniform(instr.src[idx[i]]);
AluInstruction *ir = nullptr;
auto v = get_temp_vec4();
for (unsigned k = 0; k < m_num_src_comp; ++k) {
ir = new AluInstruction(op1_mov, v[k], m_src[idx[i]][k], {write});
emit_instruction(ir);
m_src[idx[i]][k] = v[k];
}
make_last(ir);
}
}
}
@ -228,12 +299,11 @@ bool EmitAluInstruction::emit_alu_inot(const nir_alu_instr& instr)
for (int i = 0; i < 4 ; ++i) {
if (instr.dest.write_mask & (1 << i)){
ir = new AluInstruction(op1_not_int, from_nir(instr.dest, i),
from_nir(instr.src[0], i), write);
m_src[0][i], write);
emit_instruction(ir);
}
}
if (ir)
ir->set_flag(alu_last_instr);
make_last(ir);
return true;
}
@ -244,7 +314,7 @@ bool EmitAluInstruction::emit_alu_op1(const nir_alu_instr& instr, EAluOp opcode,
for (int i = 0; i < 4 ; ++i) {
if (instr.dest.write_mask & (1 << i)){
ir = new AluInstruction(opcode, from_nir(instr.dest, i),
from_nir(instr.src[0], i), write);
m_src[0][i], write);
if (flags.test(alu_src0_abs) || instr.src[0].abs)
ir->set_flag(alu_src0_abs);
@ -272,13 +342,8 @@ bool EmitAluInstruction::emit_mov(const nir_alu_instr& instr)
bool result = true;
for (int i = 0; i < 4 ; ++i) {
if (instr.dest.write_mask & (1 << i)){
auto src = from_nir(instr.src[0], i);
result &= inject_register(instr.dest.dest.ssa.index, i,
src, true);
if (src->type() == Value::kconst) {
add_uniform((instr.dest.dest.ssa.index << 2) + i, src);
}
m_src[0][i], true);
}
}
return result;
@ -304,7 +369,7 @@ bool EmitAluInstruction::emit_alu_trig_op1(const nir_alu_instr& instr, EAluOp op
if (!(instr.dest.write_mask & (1 << i)))
continue;
ir = new AluInstruction(op3_muladd_ieee, v[i],
{from_nir(instr.src[0],i), inv_pihalf, Value::zero_dot_5},
{m_src[0][i], inv_pihalf, Value::zero_dot_5},
{alu_write});
if (instr.src[0].negate) ir->set_flag(alu_src0_neg);
emit_instruction(ir);
@ -348,7 +413,7 @@ bool EmitAluInstruction::emit_alu_trans_op1(const nir_alu_instr& instr, EAluOp o
int last_slot = (instr.dest.write_mask & 0x8) ? 4 : 3;
for (int i = 0; i < last_slot; ++i) {
ir = new AluInstruction(opcode, from_nir(instr.dest, i),
from_nir(instr.src[0], 0), instr.dest.write_mask & (1 << i) ? write : empty);
m_src[0][0], instr.dest.write_mask & (1 << i) ? write : empty);
if (absolute || instr.src[0].abs) ir->set_flag(alu_src0_abs);
if (instr.src[0].negate) ir->set_flag(alu_src0_neg);
if (instr.dest.saturate) ir->set_flag(alu_dst_clamp);
@ -361,7 +426,7 @@ bool EmitAluInstruction::emit_alu_trans_op1(const nir_alu_instr& instr, EAluOp o
for (int i = 0; i < 4 ; ++i) {
if (instr.dest.write_mask & (1 << i)){
ir = new AluInstruction(opcode, from_nir(instr.dest, i),
from_nir(instr.src[0], i), last_write);
m_src[0][i], last_write);
if (absolute || instr.src[0].abs) ir->set_flag(alu_src0_abs);
if (instr.src[0].negate) ir->set_flag(alu_src0_neg);
if (instr.dest.saturate) ir->set_flag(alu_dst_clamp);
@ -381,7 +446,7 @@ bool EmitAluInstruction::emit_alu_f2i32_or_u32(const nir_alu_instr& instr, EAluO
if (!(instr.dest.write_mask & (1 << i)))
continue;
v[i] = from_nir(instr.dest, i);
ir = new AluInstruction(op1_trunc, v[i], from_nir(instr.src[0], i), {alu_write});
ir = new AluInstruction(op1_trunc, v[i], m_src[0][i], {alu_write});
if (instr.src[0].abs) ir->set_flag(alu_src0_abs);
if (instr.src[0].negate) ir->set_flag(alu_src0_neg);
emit_instruction(ir);
@ -413,7 +478,7 @@ bool EmitAluInstruction::emit_find_msb(const nir_alu_instr& instr, bool sgn)
if (!(instr.dest.write_mask & (1 << i)))
continue;
ir = new AluInstruction(opcode, tmp.reg_i(i), from_nir(instr.src[0], i), write);
ir = new AluInstruction(opcode, tmp.reg_i(i), m_src[0][i], write);
emit_instruction(ir);
}
make_last(ir);
@ -449,7 +514,7 @@ bool EmitAluInstruction::emit_b2i32(const nir_alu_instr& instr)
continue;
ir = new AluInstruction(op2_and_int, from_nir(instr.dest, i),
from_nir(instr.src[0], i), Value::one_i, write);
m_src[0][i], Value::one_i, write);
emit_instruction(ir);
}
make_last(ir);
@ -464,7 +529,7 @@ bool EmitAluInstruction::emit_pack_64_2x32_split(const nir_alu_instr& instr)
if (!(instr.dest.write_mask & (1 << i)))
continue;
ir = new AluInstruction(op1_mov, from_nir(instr.dest, i),
from_nir(instr.src[0], i), write);
m_src[0][i], write);
emit_instruction(ir);
}
ir->set_flag(alu_last_instr);
@ -474,7 +539,7 @@ bool EmitAluInstruction::emit_pack_64_2x32_split(const nir_alu_instr& instr)
bool EmitAluInstruction::emit_unpack_64_2x32_split(const nir_alu_instr& instr, unsigned comp)
{
emit_instruction(new AluInstruction(op1_mov, from_nir(instr.dest, 0),
from_nir(instr.src[0], comp), last_write));
m_src[0][comp], last_write));
return true;
}
@ -484,7 +549,7 @@ bool EmitAluInstruction::emit_create_vec(const nir_alu_instr& instr, unsigned nc
std::set<int> src_slot;
for(unsigned i = 0; i < nc; ++i) {
if (instr.dest.write_mask & (1 << i)){
auto src = from_nir(instr.src[i], 0);
auto src = m_src[i][0];
ir = new AluInstruction(op1_mov, from_nir(instr.dest, i), src, write);
if (instr.dest.saturate) ir->set_flag(alu_dst_clamp);
@ -513,7 +578,7 @@ bool EmitAluInstruction::emit_dot(const nir_alu_instr& instr, int n)
AluInstruction *ir = nullptr;
for (int i = 0; i < n ; ++i) {
ir = new AluInstruction(op2_dot4_ieee, from_nir(instr.dest, i),
from_nir(src0, i), from_nir(src1, i),
m_src[0][i], m_src[1][i],
instr.dest.write_mask & (1 << i) ? write : empty);
if (src0.negate) ir->set_flag(alu_src0_neg);
@ -544,7 +609,7 @@ bool EmitAluInstruction::emit_fdph(const nir_alu_instr& instr)
AluInstruction *ir = nullptr;
for (int i = 0; i < 3 ; ++i) {
ir = new AluInstruction(op2_dot4_ieee, from_nir(instr.dest, i),
from_nir(src0, i), from_nir(src1, i),
m_src[0][i], m_src[1][i],
instr.dest.write_mask & (1 << i) ? write : empty);
if (src0.negate) ir->set_flag(alu_src0_neg);
if (src0.abs) ir->set_flag(alu_src0_abs);
@ -555,7 +620,7 @@ bool EmitAluInstruction::emit_fdph(const nir_alu_instr& instr)
}
ir = new AluInstruction(op2_dot4_ieee, from_nir(instr.dest, 3), Value::one_f,
from_nir(src1, 3), (instr.dest.write_mask) & (1 << 3) ? write : empty);
m_src[1][3], (instr.dest.write_mask) & (1 << 3) ? write : empty);
if (src1.negate) ir->set_flag(alu_src1_neg);
if (src1.abs) ir->set_flag(alu_src1_abs);
emit_instruction(ir);
@ -571,7 +636,7 @@ bool EmitAluInstruction::emit_alu_i2orf2_b1(const nir_alu_instr& instr, EAluOp o
for (int i = 0; i < 4 ; ++i) {
if (instr.dest.write_mask & (1 << i)) {
ir = new AluInstruction(op, from_nir(instr.dest, i),
from_nir(instr.src[0], i), Value::zero,
m_src[0][i], Value::zero,
write);
emit_instruction(ir);
}
@ -587,7 +652,7 @@ bool EmitAluInstruction::emit_alu_b2f(const nir_alu_instr& instr)
for (int i = 0; i < 4 ; ++i) {
if (instr.dest.write_mask & (1 << i)){
ir = new AluInstruction(op2_and_int, from_nir(instr.dest, i),
from_nir(instr.src[0], i), Value::one_f, write);
m_src[0][i], Value::one_f, write);
if (instr.src[0].negate) ir->set_flag(alu_src0_neg);
if (instr.src[0].abs) ir->set_flag(alu_src0_abs);
if (instr.dest.saturate) ir->set_flag(alu_dst_clamp);
@ -615,8 +680,7 @@ bool EmitAluInstruction::emit_any_all_icomp(const nir_alu_instr& instr, EAluOp o
instr.src[0].abs == instr.src[1].abs) {
for (unsigned i = 0; i < nc ; ++i) {
ir = new AluInstruction(op, v[i], from_nir(instr.src[0], i),
from_nir(instr.src[1], i), write);
ir = new AluInstruction(op, v[i], m_src[0][i], m_src[1][i], write);
emit_instruction(ir);
}
if (ir)
@ -649,8 +713,7 @@ bool EmitAluInstruction::emit_any_all_fcomp(const nir_alu_instr& instr, EAluOp o
v[i] = from_nir(instr.dest, i);
for (unsigned i = 0; i < nc ; ++i) {
ir = new AluInstruction(op, v[i], from_nir(instr.src[0],i),
from_nir(instr.src[1],i), write);
ir = new AluInstruction(op, v[i], m_src[0][i], m_src[1][i], write);
if (instr.src[0].abs)
ir->set_flag(alu_src0_abs);
@ -705,8 +768,7 @@ bool EmitAluInstruction::emit_any_all_fcomp2(const nir_alu_instr& instr, EAluOp
v[i] = from_nir(instr.dest, i);
for (unsigned i = 0; i < 2 ; ++i) {
ir = new AluInstruction(op, v[i], from_nir(instr.src[0],i),
from_nir(instr.src[1],i), write);
ir = new AluInstruction(op, v[i], m_src[0][i], m_src[1][i], write);
if (instr.src[0].abs)
ir->set_flag(alu_src0_abs);
if (instr.src[0].negate)
@ -742,21 +804,21 @@ bool EmitAluInstruction::emit_alu_trans_op2(const nir_alu_instr& instr, EAluOp o
if (instr.dest.write_mask & (1 << k)) {
for (int i = 0; i < 4; i++) {
ir = new AluInstruction(opcode, from_nir(instr.dest, i), from_nir(src0, k), from_nir(src1, k), (i == k) ? write : empty);
ir = new AluInstruction(opcode, from_nir(instr.dest, i), m_src[0][k], m_src[0][k], (i == k) ? write : empty);
if (src0.negate) ir->set_flag(alu_src0_neg);
if (src0.abs) ir->set_flag(alu_src0_abs);
if (src1.negate) ir->set_flag(alu_src1_neg);
if (src1.abs) ir->set_flag(alu_src1_abs);
if (instr.dest.saturate) ir->set_flag(alu_dst_clamp);
if (i == 3) ir->set_flag(alu_last_instr);
emit_instruction(ir);
if (src0.abs) ir->set_flag(alu_src0_abs);
if (src1.negate) ir->set_flag(alu_src1_neg);
if (src1.abs) ir->set_flag(alu_src1_abs);
if (instr.dest.saturate) ir->set_flag(alu_dst_clamp);
if (i == 3) ir->set_flag(alu_last_instr);
emit_instruction(ir);
}
}
}
} else {
for (int i = 0; i < 4 ; ++i) {
if (instr.dest.write_mask & (1 << i)){
ir = new AluInstruction(opcode, from_nir(instr.dest, i), from_nir(src0, i), from_nir(src1, i), last_write);
ir = new AluInstruction(opcode, from_nir(instr.dest, i), m_src[0][i], m_src[1][i], last_write);
if (src0.negate) ir->set_flag(alu_src0_neg);
if (src0.abs) ir->set_flag(alu_src0_abs);
if (src1.negate) ir->set_flag(alu_src1_neg);
@ -788,8 +850,12 @@ bool EmitAluInstruction::emit_alu_op2(const nir_alu_instr& instr, EAluOp opcode,
const nir_alu_src *src0 = &instr.src[0];
const nir_alu_src *src1 = &instr.src[1];
if (ops & op2_opt_reverse)
int idx0 = 0;
int idx1 = 1;
if (ops & op2_opt_reverse) {
std::swap(src0, src1);
std::swap(idx0, idx1);
}
bool src1_negate = (ops & op2_opt_neg_src1) ^ src1->negate;
@ -797,7 +863,7 @@ bool EmitAluInstruction::emit_alu_op2(const nir_alu_instr& instr, EAluOp opcode,
for (int i = 0; i < 4 ; ++i) {
if (instr.dest.write_mask & (1 << i)){
ir = new AluInstruction(opcode, from_nir(instr.dest, i),
from_nir(*src0, i), from_nir(*src1, i), write);
m_src[idx0][i], m_src[idx1][i], write);
if (src0->negate) ir->set_flag(alu_src0_neg);
if (src0->abs) ir->set_flag(alu_src0_abs);
@ -822,11 +888,11 @@ bool EmitAluInstruction::emit_alu_op2_split_src_mods(const nir_alu_instr& instr,
GPRVector::Values v0;
for (int i = 0; i < 4 ; ++i)
v0[i] = from_nir(*src0, i);
v0[i] = m_src[0][i];
GPRVector::Values v1;
for (int i = 0; i < 4 ; ++i)
v1[i] = from_nir(*src1, i);
v1[i] = m_src[1][i];
if (src0->abs || src0->negate) {
int src0_tmp = allocate_temp_register();
@ -888,7 +954,7 @@ bool EmitAluInstruction::emit_alu_isign(const nir_alu_instr& instr)
for (int i = 0; i < 4 ; ++i) {
if (instr.dest.write_mask & (1 << i)){
help[i] = from_nir(instr.dest, i);
auto s = from_nir(instr.src[0], i);
auto s = m_src[0][i];
ir = new AluInstruction(op3_cndgt_int, help[i], s, Value::one_i, s, write);
emit_instruction(ir);
}
@ -926,7 +992,7 @@ bool EmitAluInstruction::emit_fsign(const nir_alu_instr& instr)
for (int i = 0; i < 4 ; ++i) {
help[i] = from_nir(instr.dest, i);
src[i] = from_nir(instr.src[0], i);
src[i] = m_src[0][i];
}
if (instr.src[0].abs) {
@ -995,8 +1061,10 @@ bool EmitAluInstruction::emit_alu_op3(const nir_alu_instr& instr, EAluOp opcode,
for (int i = 0; i < 4 ; ++i) {
if (instr.dest.write_mask & (1 << i)){
ir = new AluInstruction(opcode, from_nir(instr.dest, i),
from_nir(*src[0], i), from_nir(*src[1], i),
from_nir(*src[2], i), write);
m_src[reorder[0]][i],
m_src[reorder[1]][i],
m_src[reorder[2]][i],
write);
if (src[0]->negate) ir->set_flag(alu_src0_neg);
if (src[1]->negate) ir->set_flag(alu_src1_neg);
@ -1007,8 +1075,7 @@ bool EmitAluInstruction::emit_alu_op3(const nir_alu_instr& instr, EAluOp opcode,
emit_instruction(ir);
}
}
if (ir)
ir->set_flag(alu_last_instr);
make_last(ir);
return true;
}
@ -1018,7 +1085,7 @@ bool EmitAluInstruction::emit_alu_ineg(const nir_alu_instr& instr)
for (int i = 0; i < 4 ; ++i) {
if (instr.dest.write_mask & (1 << i)){
ir = new AluInstruction(op2_sub_int, from_nir(instr.dest, i), Value::zero,
from_nir(instr.src[0], i), write);
m_src[0][i], write);
emit_instruction(ir);
}
}
@ -1041,23 +1108,20 @@ bool EmitAluInstruction::emit_alu_iabs(const nir_alu_instr& instr)
AluInstruction *ir = nullptr;
for (int i = 0; i < 4 ; ++i) {
if (instr.dest.write_mask & (1 << i)){
src[i] = from_nir(instr.src[0],i);
ir = new AluInstruction(op2_sub_int, tmp.reg_i(i), Value::zero, src[i], write);
ir = new AluInstruction(op2_sub_int, tmp.reg_i(i), Value::zero, m_src[0][i], write);
emit_instruction(ir);
}
}
if (ir)
ir->set_flag(alu_last_instr);
make_last(ir);
for (int i = 0; i < 4 ; ++i) {
if (instr.dest.write_mask & (1 << i)){
ir = new AluInstruction(op3_cndge_int, from_nir(instr.dest, i), src[i],
src[i], tmp.reg_i(i), write);
ir = new AluInstruction(op3_cndge_int, from_nir(instr.dest, i), m_src[0][i],
m_src[0][i], tmp.reg_i(i), write);
emit_instruction(ir);
}
}
if (ir)
ir->set_flag(alu_last_instr);
make_last(ir);
return true;
}
@ -1081,8 +1145,8 @@ bool EmitAluInstruction::emit_alu_div_int(const nir_alu_instr& instr, bool use_s
for (int i = 0; i < 4 ; ++i) {
if (instr.dest.write_mask & (1 << i)) {
src0[i] = from_nir(instr.src[0], i);
src1[i] = from_nir(instr.src[1], i);
src0[i] = m_src[0][i];
src1[i] = m_src[1][i];
}
}
@ -1160,13 +1224,13 @@ bool EmitAluInstruction::emit_alu_div_int(const nir_alu_instr& instr, bool use_s
return true;
}
void EmitAluInstruction::split_alu_modifiers(const nir_alu_src& src, GPRVector::Values& s,
void EmitAluInstruction::split_alu_modifiers(const nir_alu_src& src,
GPRVector::Values& v, int ncomp)
{
AluInstruction *alu = nullptr;
for (int i = 0; i < ncomp; ++i) {
alu = new AluInstruction(op1_mov, v[i], s[i], {alu_write});
alu = new AluInstruction(op1_mov, v[i], v[i], {alu_write});
if (src.abs)
alu->set_flag(alu_src0_abs);
if (src.negate)
@ -1181,29 +1245,24 @@ bool EmitAluInstruction::emit_tex_fdd(const nir_alu_instr& instr, TexInstruction
{
GPRVector::Values v;
GPRVector::Values s;
GPRVector::Values *source = &s;
std::array<int, 4> writemask = {0,1,2,3};
int ncomp = instr.src[0].src.is_ssa ? instr.src[0].src.ssa->num_components :
instr.src[0].src.reg.reg->num_components;
int ncomp = nir_src_num_components(instr.src[0].src);
auto src = vec_from_nir_with_fetch_constant(instr.src[0].src, (1 << ncomp) - 1, {0,1,2,3});
if (instr.src[0].abs || instr.src[0].negate)
split_alu_modifiers(instr.src[0], src.values(), ncomp);
for (int i = 0; i < 4; ++i) {
writemask[i] = (instr.dest.write_mask & (1 << i)) ? i : 7;
v[i] = from_nir(instr.dest, (i < ncomp) ? i : 0);
s[i] = from_nir(instr.src[0], (i < ncomp) ? i : 0);
}
if (instr.src[0].abs || instr.src[0].negate) {
split_alu_modifiers(instr.src[0], s, v, ncomp);
source = &v;
}
/* This is querying the dreivatives of the output fb, so we would either need
* access to the neighboring pixels or to the framebuffer. Neither is currently
* implemented */
GPRVector dst(v);
GPRVector src(*source);
auto tex = new TexInstruction(op, dst, src, 0, R600_MAX_CONST_BUFFERS, PValue());
tex->set_dest_swizzle(writemask);
@ -1234,11 +1293,11 @@ bool EmitAluInstruction::emit_bitfield_extract(const nir_alu_instr& instr, EAluO
if (!(write_mask & (1<<i)))
continue;
dst[i] = from_nir(instr.dest, i);
src0[i] = from_nir(instr.src[0], i);
shift[i] = from_nir(instr.src[2], i);
src0[i] = m_src[0][i];
shift[i] = m_src[2][i];
ir = new AluInstruction(opcode, dst[i],
{src0[i], from_nir(instr.src[1], i), shift[i]},
{src0[i], m_src[1][i], shift[i]},
{alu_write});
emit_instruction(ir);
}
@ -1281,7 +1340,7 @@ bool EmitAluInstruction::emit_bitfield_insert(const nir_alu_instr& instr)
if (!(write_mask & (1<<i)))
continue;
ir = new AluInstruction(op2_setge_int, t0[i], {from_nir(instr.src[3], i), l32}, {alu_write});
ir = new AluInstruction(op2_setge_int, t0[i], {m_src[3][i], l32}, {alu_write});
emit_instruction(ir);
}
make_last(ir);
@ -1289,40 +1348,38 @@ bool EmitAluInstruction::emit_bitfield_insert(const nir_alu_instr& instr)
for (int i = 0; i < 4; i++) {
if (!(write_mask & (1<<i)))
continue;
ir = new AluInstruction(op2_bfm_int, t1[i], {from_nir(instr.src[3], i),
from_nir(instr.src[2], i)}, {alu_write});
ir = new AluInstruction(op2_bfm_int, t1[i], {m_src[3][i], m_src[2][i]}, {alu_write});
emit_instruction(ir);
}
ir->set_flag(alu_last_instr);
make_last(ir);
for (int i = 0; i < 4; i++) {
if (!(write_mask & (1<<i)))
continue;
ir = new AluInstruction(op2_lshl_int, t2[i], {from_nir(instr.src[1], i),
from_nir(instr.src[2], i)}, {alu_write});
ir = new AluInstruction(op2_lshl_int, t2[i], {m_src[1][i], m_src[2][i]}, {alu_write});
emit_instruction(ir);
}
ir->set_flag(alu_last_instr);
make_last(ir);
for (int i = 0; i < 4; i++) {
if (!(write_mask & (1<<i)))
continue;
ir = new AluInstruction(op3_bfi_int, from_nir(instr.dest, i),
{t1[i], t2[i], from_nir(instr.src[0], i)}, {alu_write});
{t1[i], t2[i], m_src[0][i]}, {alu_write});
emit_instruction(ir);
}
ir->set_flag(alu_last_instr);
make_last(ir);
for (int i = 0; i < 4; i++) {
if (!(write_mask & (1<<i)))
continue;
ir = new AluInstruction(op3_cnde_int, from_nir(instr.dest, i),
{t0[i], from_nir(instr.dest, i),
from_nir(instr.src[1], i)}, {alu_write});
m_src[1][i]}, {alu_write});
emit_instruction(ir);
}
ir->set_flag(alu_last_instr);
make_last(ir);
return true;
}
@ -1330,7 +1387,7 @@ bool EmitAluInstruction::emit_bitfield_insert(const nir_alu_instr& instr)
bool EmitAluInstruction::emit_unpack_32_2x16_split_y(const nir_alu_instr& instr)
{
emit_instruction(op2_lshr_int, from_nir(instr.dest, 0),
{from_nir(instr.src[0], 0), PValue(new LiteralValue(16))},
{m_src[0][0], PValue(new LiteralValue(16))},
{alu_write, alu_last_instr});
emit_instruction(op1_flt16_to_flt32, from_nir(instr.dest, 0),
@ -1342,18 +1399,17 @@ bool EmitAluInstruction::emit_unpack_32_2x16_split_y(const nir_alu_instr& instr)
bool EmitAluInstruction::emit_unpack_32_2x16_split_x(const nir_alu_instr& instr)
{
emit_instruction(op1_flt16_to_flt32, from_nir(instr.dest, 0),
{from_nir(instr.src[0], 0)},{alu_write, alu_last_instr});
{m_src[0][0]},{alu_write, alu_last_instr});
return true;
}
bool EmitAluInstruction::emit_pack_32_2x16_split(const nir_alu_instr& instr)
{
int it0 = allocate_temp_register();
PValue x(new GPRValue(it0, 0));
PValue y(new GPRValue(it0, 1));
PValue x = get_temp_register();
PValue y = get_temp_register();
emit_instruction(op1_flt32_to_flt16, x,{from_nir(instr.src[0], 0)},{alu_write});
emit_instruction(op1_flt32_to_flt16, y,{from_nir(instr.src[1], 0)},{alu_write, alu_last_instr});
emit_instruction(op1_flt32_to_flt16, x,{m_src[0][0]},{alu_write});
emit_instruction(op1_flt32_to_flt16, y,{m_src[1][0]},{alu_write, alu_last_instr});
emit_instruction(op2_lshl_int, y, {y, PValue(new LiteralValue(16))},{alu_write, alu_last_instr});

View File

@ -100,10 +100,15 @@ private:
private:
void make_last(AluInstruction *ir) const;
void split_alu_modifiers(const nir_alu_src &src, GPRVector::Values& s, GPRVector::Values& v, int ncomp);
void split_alu_modifiers(const nir_alu_src &src, GPRVector::Values& v, int ncomp);
void preload_src(const nir_alu_instr& instr);
unsigned num_src_comp(const nir_alu_instr& instr);
using vreg = std::array<PValue, 4>;
unsigned m_num_src_comp;
std::array<PValue, 4> m_src[4];
};
inline void EmitAluInstruction::make_last(AluInstruction *ir) const

View File

@ -857,7 +857,7 @@ bool ShaderFromNirProcessor::emit_load_ubo(nir_intrinsic_instr* instr)
assert(cmp < 4);
auto u = PValue(new UniformValue(512 + buf_ofs, cmp, bufid + 1));
if (instr->dest.is_ssa)
add_uniform((instr->dest.ssa.index << 2) + i, u);
load_preloaded_value(instr->dest, i, u);
else {
ir = new AluInstruction(op1_mov, from_nir(instr->dest, i), u, {alu_write});
emit_instruction(ir);
@ -946,7 +946,7 @@ bool ShaderFromNirProcessor::reserve_uniform(nir_intrinsic_instr* instr)
<< instr->dest.ssa.index << " const["<< i << "]: "<< instr->const_index[i] << "\n";
if (instr->dest.is_ssa)
add_uniform((instr->dest.ssa.index << 2) + i, u);
load_preloaded_value(instr->dest, i, u);
else {
ir = new AluInstruction(op1_mov, from_nir(instr->dest, i),
u, {alu_write});
@ -982,9 +982,6 @@ bool ShaderFromNirProcessor::load_uniform_indirect(nir_intrinsic_instr* instr, P
auto ir = new FetchInstruction(vc_fetch, no_index_offset, trgt, addr, offest,
bufferid, PValue(), bim_none);
emit_instruction(ir);
for (int i = 0; i < instr->num_components ; ++i) {
add_uniform((instr->dest.ssa.index << 2) + i, trgt.reg_i(i));
}
m_sh_info.indirect_files |= 1 << TGSI_FILE_CONSTANT;
return true;
}

View File

@ -101,6 +101,7 @@ public:
PValue z() const {return m_elms[2];}
PValue w() const {return m_elms[3];}
Values& values() { return m_elms;}
private:
void do_print(std::ostream& os) const override;

View File

@ -154,10 +154,12 @@ PValue ValuePool::from_nir(const nir_alu_src &v, unsigned component)
PValue ValuePool::get_temp_register(int channel)
{
/* Skip to next register to get the channel we want */
if (next_temp_reg_comp <= channel)
next_temp_reg_comp = channel;
else
next_temp_reg_comp = 4;
if (channel >= 0) {
if (next_temp_reg_comp <= channel)
next_temp_reg_comp = channel;
else
next_temp_reg_comp = 4;
}
if (next_temp_reg_comp > 3) {
current_temp_reg_index = allocate_temp_register();