anv: Use gen_mi_builder for conditional rendering

Reviewed-by: Lionel Landwerlin <lionel.g.landwerlin@intel.com>
This commit is contained in:
Jason Ekstrand 2019-03-30 18:11:48 -05:00
parent a3b0894afc
commit 48da45891e
2 changed files with 41 additions and 70 deletions

View File

@ -191,7 +191,7 @@ struct gen_l3_config;
/* We reserve this MI ALU register for the purpose of handling predication.
* Other code which uses the MI ALU should leave it alone.
*/
#define ANV_PREDICATE_RESULT_REG MI_ALU_REG15
#define ANV_PREDICATE_RESULT_REG 0x2678 /* MI_ALU_REG15 */
#define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))

View File

@ -39,15 +39,6 @@
#define __gen_address_offset anv_address_add
#include "common/gen_mi_builder.h"
static void
emit_lrm(struct anv_batch *batch, uint32_t reg, struct anv_address addr)
{
anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
lrm.RegisterAddress = reg;
lrm.MemoryAddress = addr;
}
}
static void
emit_lri(struct anv_batch *batch, uint32_t reg, uint32_t imm)
{
@ -57,17 +48,6 @@ emit_lri(struct anv_batch *batch, uint32_t reg, uint32_t imm)
}
}
#if GEN_IS_HASWELL || GEN_GEN >= 8
static void
emit_lrr(struct anv_batch *batch, uint32_t dst, uint32_t src)
{
anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
lrr.SourceRegisterAddress = src;
lrr.DestinationRegisterAddress = dst;
}
}
#endif
void
genX(cmd_buffer_emit_state_base_address)(struct anv_cmd_buffer *cmd_buffer)
{
@ -551,8 +531,6 @@ mi_alu(uint32_t opcode, uint32_t operand1, uint32_t operand2)
}
#endif
#define CS_GPR(n) (0x2600 + (n) * 8)
/* This is only really practical on haswell and above because it requires
* MI math in order to get it correct.
*/
@ -1485,8 +1463,10 @@ genX(CmdExecuteCommands)(
* with conditional rendering, we should satisfy this dependency
* regardless of conditional rendering being enabled in primary.
*/
emit_lri(&primary->batch, CS_GPR(ANV_PREDICATE_RESULT_REG), UINT32_MAX);
emit_lri(&primary->batch, CS_GPR(ANV_PREDICATE_RESULT_REG) + 4, UINT32_MAX);
struct gen_mi_builder b;
gen_mi_builder_init(&b, &primary->batch);
gen_mi_store(&b, gen_mi_reg64(ANV_PREDICATE_RESULT_REG),
gen_mi_imm(UINT64_MAX));
}
}
#endif
@ -3090,26 +3070,29 @@ void genX(CmdDrawIndexedIndirect)(
}
}
#define TMP_DRAW_COUNT_REG MI_ALU_REG14
#define TMP_DRAW_COUNT_REG 0x2670 /* MI_ALU_REG14 */
static void
prepare_for_draw_count_predicate(struct anv_cmd_buffer *cmd_buffer,
struct anv_address count_address,
const bool conditional_render_enabled)
{
struct gen_mi_builder b;
gen_mi_builder_init(&b, &cmd_buffer->batch);
if (conditional_render_enabled) {
#if GEN_GEN >= 8 || GEN_IS_HASWELL
emit_lrm(&cmd_buffer->batch, CS_GPR(TMP_DRAW_COUNT_REG), count_address);
emit_lri(&cmd_buffer->batch, CS_GPR(TMP_DRAW_COUNT_REG) + 4, 0);
gen_mi_store(&b, gen_mi_reg64(TMP_DRAW_COUNT_REG),
gen_mi_mem32(count_address));
#endif
} else {
/* Upload the current draw count from the draw parameters buffer to
* MI_PREDICATE_SRC0.
*/
emit_lrm(&cmd_buffer->batch, MI_PREDICATE_SRC0, count_address);
emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC0 + 4, 0);
gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0),
gen_mi_mem32(count_address));
emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC1 + 4, 0);
gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC1 + 4), gen_mi_imm(0));
}
}
@ -3117,8 +3100,11 @@ static void
emit_draw_count_predicate(struct anv_cmd_buffer *cmd_buffer,
uint32_t draw_index)
{
struct gen_mi_builder b;
gen_mi_builder_init(&b, &cmd_buffer->batch);
/* Upload the index of the current primitive to MI_PREDICATE_SRC1. */
emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC1, draw_index);
gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC1), gen_mi_imm(draw_index));
if (draw_index == 0) {
anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
@ -3148,38 +3134,22 @@ emit_draw_count_predicate_with_conditional_render(
struct anv_cmd_buffer *cmd_buffer,
uint32_t draw_index)
{
const int draw_index_reg = MI_ALU_REG0;
const int tmp_result_reg = MI_ALU_REG1;
struct gen_mi_builder b;
gen_mi_builder_init(&b, &cmd_buffer->batch);
emit_lri(&cmd_buffer->batch, CS_GPR(draw_index_reg), draw_index);
emit_lri(&cmd_buffer->batch, CS_GPR(draw_index_reg) + 4, 0);
uint32_t *dw;
/* Compute (draw_index < draw_count).
* We do this by subtracting and storing the carry bit.
*/
dw = anv_batch_emitn(&cmd_buffer->batch, 9, GENX(MI_MATH));
dw[1] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCA, draw_index_reg);
dw[2] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCB, TMP_DRAW_COUNT_REG);
dw[3] = mi_alu(MI_ALU_SUB, 0, 0);
dw[4] = mi_alu(MI_ALU_STORE, tmp_result_reg, MI_ALU_CF);
/* & condition */
dw[5] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCA, tmp_result_reg);
dw[6] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCB, ANV_PREDICATE_RESULT_REG);
dw[7] = mi_alu(MI_ALU_AND, 0, 0);
dw[8] = mi_alu(MI_ALU_STORE, tmp_result_reg, MI_ALU_ACCU);
struct gen_mi_value pred = gen_mi_ult(&b, gen_mi_imm(draw_index),
gen_mi_reg64(TMP_DRAW_COUNT_REG));
pred = gen_mi_iand(&b, pred, gen_mi_reg64(ANV_PREDICATE_RESULT_REG));
#if GEN_GEN >= 8
emit_lrr(&cmd_buffer->batch, MI_PREDICATE_RESULT, CS_GPR(tmp_result_reg));
gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_RESULT), pred);
#else
/* MI_PREDICATE_RESULT is not whitelisted in i915 command parser
* so we emit MI_PREDICATE to set it.
*/
emit_lrr(&cmd_buffer->batch, MI_PREDICATE_SRC0, CS_GPR(tmp_result_reg));
emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC0 + 4, 0);
emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC1, 0);
emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC1 + 4, 0);
gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0), pred);
gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
mip.LoadOperation = LOAD_LOADINV;
@ -3711,8 +3681,9 @@ void genX(CmdDispatchIndirect)(
#if GEN_IS_HASWELL
if (cmd_buffer->state.conditional_render_enabled) {
emit_lrr(batch, MI_PREDICATE_SRC0, CS_GPR(ANV_PREDICATE_RESULT_REG));
/* predicate &= !(conditional_rendering_predicate == 0); */
gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC0),
gen_mi_reg32(ANV_PREDICATE_RESULT_REG));
anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
mip.LoadOperation = LOAD_LOADINV;
mip.CombineOperation = COMBINE_AND;
@ -4690,10 +4661,12 @@ void
genX(cmd_emit_conditional_render_predicate)(struct anv_cmd_buffer *cmd_buffer)
{
#if GEN_GEN >= 8 || GEN_IS_HASWELL
emit_lrr(&cmd_buffer->batch, MI_PREDICATE_SRC0, CS_GPR(ANV_PREDICATE_RESULT_REG));
emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC0 + 4, 0);
emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC1, 0);
emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC1 + 4, 0);
struct gen_mi_builder b;
gen_mi_builder_init(&b, &cmd_buffer->batch);
gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0),
gen_mi_reg32(ANV_PREDICATE_RESULT_REG));
gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
mip.LoadOperation = LOAD_LOADINV;
@ -4721,6 +4694,9 @@ void genX(CmdBeginConditionalRenderingEXT)(
genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
struct gen_mi_builder b;
gen_mi_builder_init(&b, &cmd_buffer->batch);
/* Section 19.4 of the Vulkan 1.1.85 spec says:
*
* If the value of the predicate in buffer memory changes
@ -4732,20 +4708,15 @@ void genX(CmdBeginConditionalRenderingEXT)(
*
* So it's perfectly fine to read a value from the buffer once.
*/
emit_lrm(&cmd_buffer->batch, CS_GPR(MI_ALU_REG0), value_address);
/* Zero the top 32-bits of MI_PREDICATE_SRC0 */
emit_lri(&cmd_buffer->batch, CS_GPR(MI_ALU_REG0) + 4, 0);
struct gen_mi_value value = gen_mi_mem32(value_address);
/* Precompute predicate result, it is necessary to support secondary
* command buffers since it is unknown if conditional rendering is
* inverted when populating them.
*/
uint32_t *dw = anv_batch_emitn(&cmd_buffer->batch, 5, GENX(MI_MATH));
dw[1] = mi_alu(MI_ALU_LOAD0, MI_ALU_SRCA, 0);
dw[2] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCB, MI_ALU_REG0);
dw[3] = mi_alu(MI_ALU_SUB, 0, 0);
dw[4] = mi_alu(isInverted ? MI_ALU_STOREINV : MI_ALU_STORE,
ANV_PREDICATE_RESULT_REG, MI_ALU_CF);
gen_mi_store(&b, gen_mi_reg64(ANV_PREDICATE_RESULT_REG),
isInverted ? gen_mi_uge(&b, gen_mi_imm(0), value) :
gen_mi_ult(&b, gen_mi_imm(0), value));
}
void genX(CmdEndConditionalRenderingEXT)(