tu: Rewrite flushing to use barriers

Replace the various ad-hoc flushes that we've inserted, copied from
freedreno, etc. with a unified system that uses the user-supplied
information via vkCmdPipelineBarrier() and subpass dependencies.

There are a few notable differences in behavior:

- We now move setting RB_CCU_CNTL up a little in the gmem case, but
hopefully that won't matter too much. This matches what the Vulkan blob
does.

- We properly implement delayed setting of events, completing our
implementaton of events.

- Finally, of course, we should be a lot less flush-happy. We won't emit
useless CCU/cache flushes with multiple copies, renderpasses, etc. that
don't depend on each other, and also won't flush/invalidate the cache
around renderpasses unless we actually need to.

Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/4964>
This commit is contained in:
Connor Abbott 2020-04-02 17:48:19 +02:00 committed by Marge Bot
parent 29abf49886
commit 487aa807bd
4 changed files with 1048 additions and 153 deletions

View File

@ -468,18 +468,7 @@ r2d_setup(struct tu_cmd_buffer *cmd,
bool clear,
uint8_t mask)
{
const struct tu_physical_device *phys_dev = cmd->device->physical_device;
/* TODO: flushing with barriers instead of blindly always flushing */
tu6_emit_event_write(cmd, cs, PC_CCU_FLUSH_COLOR_TS);
tu6_emit_event_write(cmd, cs, PC_CCU_FLUSH_DEPTH_TS);
tu6_emit_event_write(cmd, cs, PC_CCU_INVALIDATE_COLOR);
tu6_emit_event_write(cmd, cs, PC_CCU_INVALIDATE_DEPTH);
tu6_emit_event_write(cmd, cs, CACHE_INVALIDATE);
tu_cs_emit_wfi(cs);
tu_cs_emit_regs(cs,
A6XX_RB_CCU_CNTL(.offset = phys_dev->ccu_offset_bypass));
tu_emit_cache_flush_ccu(cmd, cs, TU_CMD_CCU_SYSMEM);
r2d_setup_common(cmd, cs, vk_format, rotation, clear, mask, false);
}
@ -489,11 +478,6 @@ r2d_run(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
{
tu_cs_emit_pkt7(cs, CP_BLIT, 1);
tu_cs_emit(cs, CP_BLIT_0_OP(BLIT_OP_SCALE));
/* TODO: flushing with barriers instead of blindly always flushing */
tu6_emit_event_write(cmd, cs, PC_CCU_FLUSH_COLOR_TS);
tu6_emit_event_write(cmd, cs, PC_CCU_FLUSH_DEPTH_TS);
tu6_emit_event_write(cmd, cs, CACHE_INVALIDATE);
}
/* r3d_ = shader path operations */
@ -912,21 +896,11 @@ r3d_setup(struct tu_cmd_buffer *cmd,
bool clear,
uint8_t mask)
{
const struct tu_physical_device *phys_dev = cmd->device->physical_device;
if (!cmd->state.pass) {
/* TODO: flushing with barriers instead of blindly always flushing */
tu6_emit_event_write(cmd, cs, PC_CCU_FLUSH_COLOR_TS);
tu6_emit_event_write(cmd, cs, PC_CCU_FLUSH_DEPTH_TS);
tu6_emit_event_write(cmd, cs, PC_CCU_INVALIDATE_COLOR);
tu6_emit_event_write(cmd, cs, PC_CCU_INVALIDATE_DEPTH);
tu6_emit_event_write(cmd, cs, CACHE_INVALIDATE);
tu_cs_emit_regs(cs,
A6XX_RB_CCU_CNTL(.offset = phys_dev->ccu_offset_bypass));
tu_emit_cache_flush_ccu(cmd, cs, TU_CMD_CCU_SYSMEM);
tu6_emit_window_scissor(cs, 0, 0, 0x7fff, 0x7fff);
}
tu_cs_emit_regs(cs, A6XX_GRAS_BIN_CONTROL(.dword = 0xc00000));
tu_cs_emit_regs(cs, A6XX_RB_BIN_CONTROL(.dword = 0xc00000));
@ -979,13 +953,6 @@ r3d_run(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
CP_DRAW_INDX_OFFSET_0_VIS_CULL(IGNORE_VISIBILITY));
tu_cs_emit(cs, 1); /* instance count */
tu_cs_emit(cs, 2); /* vertex count */
if (!cmd->state.pass) {
/* TODO: flushing with barriers instead of blindly always flushing */
tu6_emit_event_write(cmd, cs, PC_CCU_FLUSH_COLOR_TS);
tu6_emit_event_write(cmd, cs, PC_CCU_FLUSH_DEPTH_TS);
tu6_emit_event_write(cmd, cs, CACHE_INVALIDATE);
}
}
/* blit ops - common interface for 2d/shader paths */
@ -1941,15 +1908,38 @@ tu_clear_sysmem_attachments_2d(struct tu_cmd_buffer *cmd,
struct tu_cs *cs = &cmd->draw_cs;
for (uint32_t j = 0; j < attachment_count; j++) {
/* The vulkan spec, section 17.2 "Clearing Images Inside a Render
* Pass Instance" says that:
*
* Unlike other clear commands, vkCmdClearAttachments executes as
* a drawing command, rather than a transfer command, with writes
* performed by it executing in rasterization order. Clears to
* color attachments are executed as color attachment writes, by
* the VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT stage.
* Clears to depth/stencil attachments are executed as depth
* writes and writes by the
* VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT and
* VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT stages.
*
* However, the 2d path here is executed the same way as a
* transfer command, using the CCU color cache exclusively with
* a special depth-as-color format for depth clears. This means that
* we can't rely on the normal pipeline barrier mechanism here, and
* have to manually flush whenever using a different cache domain
* from what the 3d path would've used. This happens when we clear
* depth/stencil, since normally depth attachments use CCU depth, but
* we clear it using a special depth-as-color format. Since the clear
* potentially uses a different attachment state we also need to
* invalidate color beforehand and flush it afterwards.
*/
uint32_t a;
if (attachments[j].aspectMask & VK_IMAGE_ASPECT_COLOR_BIT) {
a = subpass->color_attachments[attachments[j].colorAttachment].attachment;
tu6_emit_event_write(cmd, cs, PC_CCU_FLUSH_COLOR_TS);
} else {
a = subpass->depth_stencil_attachment.attachment;
/* sync depth into color */
tu6_emit_event_write(cmd, cs, PC_CCU_FLUSH_DEPTH_TS);
/* also flush color to avoid losing contents from invalidate */
tu6_emit_event_write(cmd, cs, PC_CCU_FLUSH_COLOR_TS);
tu6_emit_event_write(cmd, cs, PC_CCU_INVALIDATE_COLOR);
}
@ -1971,6 +1961,9 @@ tu_clear_sysmem_attachments_2d(struct tu_cmd_buffer *cmd,
ops->setup(cmd, cs, iview->image->vk_format, ROTATE_0, true, mask);
ops->clear_value(cs, iview->image->vk_format, &attachments[j].clearValue);
/* Wait for the flushes we triggered manually to complete */
tu_cs_emit_wfi(cs);
for (uint32_t i = 0; i < rect_count; i++) {
ops->coords(cs, &rects[i].rect.offset, NULL, &rects[i].rect.extent);
for (uint32_t layer = 0; layer < rects[i].layerCount; layer++) {
@ -1980,11 +1973,8 @@ tu_clear_sysmem_attachments_2d(struct tu_cmd_buffer *cmd,
}
if (attachments[j].aspectMask & VK_IMAGE_ASPECT_COLOR_BIT) {
/* does not use CCU - flush
* note: cache invalidate might be needed to, and just not covered by test cases
*/
if (attachments[j].colorAttachment > 0)
tu6_emit_event_write(cmd, cs, PC_CCU_FLUSH_COLOR_TS);
tu6_emit_event_write(cmd, cs, PC_CCU_FLUSH_COLOR_TS);
tu6_emit_event_write(cmd, cs, PC_CCU_INVALIDATE_COLOR);
} else {
/* sync color into depth */
tu6_emit_event_write(cmd, cs, PC_CCU_FLUSH_COLOR_TS);
@ -2313,10 +2303,30 @@ tu_clear_sysmem_attachment(struct tu_cmd_buffer *cmd,
ops->coords(cs, &info->renderArea.offset, NULL, &info->renderArea.extent);
ops->clear_value(cs, attachment->format, &info->pClearValues[a]);
/* Wait for any flushes at the beginning of the renderpass to complete */
tu_cs_emit_wfi(cs);
for (uint32_t i = 0; i < fb->layers; i++) {
ops->dst(cs, iview, i);
ops->run(cmd, cs);
}
/* The spec doesn't explicitly say, but presumably the initial renderpass
* clear is considered part of the renderpass, and therefore barriers
* aren't required inside the subpass/renderpass. Therefore we need to
* flush CCU color into CCU depth here, just like with
* vkCmdClearAttachments(). Note that because this only happens at the
* beginning of a renderpass, and renderpass writes are considered
* "incoherent", we shouldn't have to worry about syncing depth into color
* beforehand as depth should already be flushed.
*/
if (vk_format_is_depth_or_stencil(attachment->format)) {
tu6_emit_event_write(cmd, cs, PC_CCU_FLUSH_COLOR_TS);
tu6_emit_event_write(cmd, cs, PC_CCU_INVALIDATE_DEPTH);
} else {
tu6_emit_event_write(cmd, cs, PC_CCU_FLUSH_COLOR_TS);
tu6_emit_event_write(cmd, cs, PC_CCU_INVALIDATE_COLOR);
}
}
void
@ -2488,14 +2498,18 @@ tu_store_gmem_attachment(struct tu_cmd_buffer *cmd,
A6XX_SP_PS_2D_SRC_HI(),
A6XX_SP_PS_2D_SRC_PITCH(.pitch = tiling->tile0.extent.width * src->cpp));
/* sync GMEM writes with CACHE */
/* sync GMEM writes with CACHE. */
tu6_emit_event_write(cmd, cs, CACHE_INVALIDATE);
/* Wait for CACHE_INVALIDATE to land */
tu_cs_emit_wfi(cs);
tu_cs_emit_pkt7(cs, CP_BLIT, 1);
tu_cs_emit(cs, CP_BLIT_0_OP(BLIT_OP_SCALE));
/* TODO: flushing with barriers instead of blindly always flushing */
/* CP_BLIT writes to the CCU, unlike CP_EVENT_WRITE::BLIT which writes to
* sysmem, and we generally assume that GMEM renderpasses leave their
* results in sysmem, so we need to flush manually here.
*/
tu6_emit_event_write(cmd, cs, PC_CCU_FLUSH_COLOR_TS);
tu6_emit_event_write(cmd, cs, PC_CCU_FLUSH_DEPTH_TS);
tu6_emit_event_write(cmd, cs, CACHE_INVALIDATE);
}

View File

@ -344,11 +344,102 @@ tu6_emit_event_write(struct tu_cmd_buffer *cmd,
}
static void
tu6_emit_wfi(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
tu6_emit_flushes(struct tu_cmd_buffer *cmd_buffer,
struct tu_cs *cs,
enum tu_cmd_flush_bits flushes)
{
if (cmd->wait_for_idle) {
/* Experiments show that invalidating CCU while it still has data in it
* doesn't work, so make sure to always flush before invalidating in case
* any data remains that hasn't yet been made available through a barrier.
* However it does seem to work for UCHE.
*/
if (flushes & (TU_CMD_FLAG_CCU_FLUSH_COLOR |
TU_CMD_FLAG_CCU_INVALIDATE_COLOR))
tu6_emit_event_write(cmd_buffer, cs, PC_CCU_FLUSH_COLOR_TS);
if (flushes & (TU_CMD_FLAG_CCU_FLUSH_DEPTH |
TU_CMD_FLAG_CCU_INVALIDATE_DEPTH))
tu6_emit_event_write(cmd_buffer, cs, PC_CCU_FLUSH_DEPTH_TS);
if (flushes & TU_CMD_FLAG_CCU_INVALIDATE_COLOR)
tu6_emit_event_write(cmd_buffer, cs, PC_CCU_INVALIDATE_COLOR);
if (flushes & TU_CMD_FLAG_CCU_INVALIDATE_DEPTH)
tu6_emit_event_write(cmd_buffer, cs, PC_CCU_INVALIDATE_DEPTH);
if (flushes & TU_CMD_FLAG_CACHE_FLUSH)
tu6_emit_event_write(cmd_buffer, cs, CACHE_FLUSH_TS);
if (flushes & TU_CMD_FLAG_CACHE_INVALIDATE)
tu6_emit_event_write(cmd_buffer, cs, CACHE_INVALIDATE);
if (flushes & TU_CMD_FLAG_WFI)
tu_cs_emit_wfi(cs);
cmd->wait_for_idle = false;
}
/* "Normal" cache flushes, that don't require any special handling */
static void
tu_emit_cache_flush(struct tu_cmd_buffer *cmd_buffer,
struct tu_cs *cs)
{
tu6_emit_flushes(cmd_buffer, cs, cmd_buffer->state.cache.flush_bits);
cmd_buffer->state.cache.flush_bits = 0;
}
/* Renderpass cache flushes */
static void
tu_emit_cache_flush_renderpass(struct tu_cmd_buffer *cmd_buffer,
struct tu_cs *cs)
{
tu6_emit_flushes(cmd_buffer, cs, cmd_buffer->state.renderpass_cache.flush_bits);
cmd_buffer->state.renderpass_cache.flush_bits = 0;
}
/* Cache flushes for things that use the color/depth read/write path (i.e.
* blits and draws). This deals with changing CCU state as well as the usual
* cache flushing.
*/
void
tu_emit_cache_flush_ccu(struct tu_cmd_buffer *cmd_buffer,
struct tu_cs *cs,
enum tu_cmd_ccu_state ccu_state)
{
enum tu_cmd_flush_bits flushes = cmd_buffer->state.cache.flush_bits;
assert(ccu_state != TU_CMD_CCU_UNKNOWN);
/* Changing CCU state must involve invalidating the CCU. In sysmem mode,
* the CCU may also contain data that we haven't flushed out yet, so we
* also need to flush. Also, in order to program RB_CCU_CNTL, we need to
* emit a WFI as it isn't pipelined.
*/
if (ccu_state != cmd_buffer->state.ccu_state) {
if (cmd_buffer->state.ccu_state != TU_CMD_CCU_GMEM) {
flushes |=
TU_CMD_FLAG_CCU_FLUSH_COLOR |
TU_CMD_FLAG_CCU_FLUSH_DEPTH;
cmd_buffer->state.cache.pending_flush_bits &= ~(
TU_CMD_FLAG_CCU_FLUSH_COLOR |
TU_CMD_FLAG_CCU_FLUSH_DEPTH);
}
flushes |=
TU_CMD_FLAG_CCU_INVALIDATE_COLOR |
TU_CMD_FLAG_CCU_INVALIDATE_DEPTH |
TU_CMD_FLAG_WFI;
cmd_buffer->state.cache.pending_flush_bits &= ~(
TU_CMD_FLAG_CCU_INVALIDATE_COLOR |
TU_CMD_FLAG_CCU_INVALIDATE_DEPTH);
}
tu6_emit_flushes(cmd_buffer, cs, flushes);
cmd_buffer->state.cache.flush_bits = 0;
if (ccu_state != cmd_buffer->state.ccu_state) {
struct tu_physical_device *phys_dev = cmd_buffer->device->physical_device;
tu_cs_emit_regs(cs,
A6XX_RB_CCU_CNTL(.offset =
ccu_state == TU_CMD_CCU_GMEM ?
phys_dev->ccu_offset_gmem :
phys_dev->ccu_offset_bypass,
.gmem = ccu_state == TU_CMD_CCU_GMEM));
cmd_buffer->state.ccu_state = ccu_state;
}
}
@ -704,6 +795,49 @@ tu6_emit_sysmem_resolve(struct tu_cmd_buffer *cmd,
tu_resolve_sysmem(cmd, cs, src, dst, fb->layers, &cmd->state.tiling_config.render_area);
}
static void
tu6_emit_sysmem_resolves(struct tu_cmd_buffer *cmd,
struct tu_cs *cs,
const struct tu_subpass *subpass)
{
if (subpass->resolve_attachments) {
/* From the documentation for vkCmdNextSubpass, section 7.4 "Render Pass
* Commands":
*
* End-of-subpass multisample resolves are treated as color
* attachment writes for the purposes of synchronization. That is,
* they are considered to execute in the
* VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT pipeline stage and
* their writes are synchronized with
* VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT. Synchronization between
* rendering within a subpass and any resolve operations at the end
* of the subpass occurs automatically, without need for explicit
* dependencies or pipeline barriers. However, if the resolve
* attachment is also used in a different subpass, an explicit
* dependency is needed.
*
* We use the CP_BLIT path for sysmem resolves, which is really a
* transfer command, so we have to manually flush similar to the gmem
* resolve case. However, a flush afterwards isn't needed because of the
* last sentence and the fact that we're in sysmem mode.
*/
tu6_emit_event_write(cmd, cs, PC_CCU_FLUSH_COLOR_TS);
tu6_emit_event_write(cmd, cs, CACHE_INVALIDATE);
/* Wait for the flushes to land before using the 2D engine */
tu_cs_emit_wfi(cs);
for (unsigned i = 0; i < subpass->color_count; i++) {
uint32_t a = subpass->resolve_attachments[i].attachment;
if (a == VK_ATTACHMENT_UNUSED)
continue;
tu6_emit_sysmem_resolve(cmd, cs, a,
subpass->color_attachments[i].attachment);
}
}
}
static void
tu6_emit_tile_store(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
{
@ -758,6 +892,7 @@ tu6_init_hw(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
tu_cs_emit_regs(cs,
A6XX_RB_CCU_CNTL(.offset = phys_dev->ccu_offset_bypass));
cmd->state.ccu_state = TU_CMD_CCU_SYSMEM;
tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8E04, 0x00100000);
tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE04, 0x8);
tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE00, 0);
@ -1073,8 +1208,6 @@ tu6_emit_binning_pass(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
tu_cs_emit(cs, 0x0);
cmd->wait_for_idle = false;
}
static void
@ -1109,7 +1242,6 @@ static void
tu6_sysmem_render_begin(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
const struct VkRect2D *renderArea)
{
const struct tu_physical_device *phys_dev = cmd->device->physical_device;
const struct tu_framebuffer *fb = cmd->state.framebuffer;
assert(fb->width > 0 && fb->height > 0);
@ -1126,13 +1258,7 @@ tu6_sysmem_render_begin(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
tu_cs_emit(cs, 0x0);
tu6_emit_event_write(cmd, cs, PC_CCU_INVALIDATE_COLOR);
tu6_emit_event_write(cmd, cs, PC_CCU_INVALIDATE_DEPTH);
tu6_emit_event_write(cmd, cs, CACHE_INVALIDATE);
tu6_emit_wfi(cmd, cs);
tu_cs_emit_regs(cs,
A6XX_RB_CCU_CNTL(.offset = phys_dev->ccu_offset_bypass));
tu_emit_cache_flush_ccu(cmd, cs, TU_CMD_CCU_SYSMEM);
/* enable stream-out, with sysmem there is only one pass: */
tu_cs_emit_regs(cs,
@ -1153,15 +1279,7 @@ tu6_sysmem_render_end(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
/* Do any resolves of the last subpass. These are handled in the
* tile_store_ib in the gmem path.
*/
const struct tu_subpass *subpass = cmd->state.subpass;
if (subpass->resolve_attachments) {
for (unsigned i = 0; i < subpass->color_count; i++) {
uint32_t a = subpass->resolve_attachments[i].attachment;
if (a != VK_ATTACHMENT_UNUSED)
tu6_emit_sysmem_resolve(cmd, cs, a,
subpass->color_attachments[i].attachment);
}
}
tu6_emit_sysmem_resolves(cmd, cs, cmd->state.subpass);
tu_cs_emit_call(cs, &cmd->draw_epilogue_cs);
@ -1170,9 +1288,6 @@ tu6_sysmem_render_end(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
tu6_emit_event_write(cmd, cs, PC_CCU_FLUSH_COLOR_TS);
tu6_emit_event_write(cmd, cs, PC_CCU_FLUSH_DEPTH_TS);
tu_cs_sanity_check(cs);
}
@ -1186,20 +1301,10 @@ tu6_tile_render_begin(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
/* lrz clear? */
tu6_emit_event_write(cmd, cs, CACHE_INVALIDATE);
tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
tu_cs_emit(cs, 0x0);
/* TODO: flushing with barriers instead of blindly always flushing */
tu6_emit_event_write(cmd, cs, PC_CCU_FLUSH_COLOR_TS);
tu6_emit_event_write(cmd, cs, PC_CCU_FLUSH_DEPTH_TS);
tu6_emit_event_write(cmd, cs, PC_CCU_INVALIDATE_COLOR);
tu6_emit_event_write(cmd, cs, PC_CCU_INVALIDATE_DEPTH);
tu_cs_emit_wfi(cs);
tu_cs_emit_regs(cs,
A6XX_RB_CCU_CNTL(.offset = phys_dev->ccu_offset_gmem, .gmem = 1));
tu_emit_cache_flush_ccu(cmd, cs, TU_CMD_CCU_GMEM);
const struct tu_tiling_config *tiling = &cmd->state.tiling_config;
if (use_hw_binning(cmd)) {
@ -1253,7 +1358,6 @@ tu6_render_tile(struct tu_cmd_buffer *cmd,
tu6_emit_tile_select(cmd, cs, tile);
tu_cs_emit_call(cs, &cmd->draw_cs);
cmd->wait_for_idle = true;
if (use_hw_binning(cmd)) {
tu_cs_emit_pkt7(cs, CP_REG_TEST, 1);
@ -1318,7 +1422,6 @@ tu_cmd_render_sysmem(struct tu_cmd_buffer *cmd)
tu6_sysmem_render_begin(cmd, &cmd->cs, &tiling->render_area);
tu_cs_emit_call(&cmd->cs, &cmd->draw_cs);
cmd->wait_for_idle = true;
tu6_sysmem_render_end(cmd, &cmd->cs);
}
@ -1576,8 +1679,6 @@ tu_cmd_buffer_destroy(struct tu_cmd_buffer *cmd_buffer)
static VkResult
tu_reset_cmd_buffer(struct tu_cmd_buffer *cmd_buffer)
{
cmd_buffer->wait_for_idle = true;
cmd_buffer->record_result = VK_SUCCESS;
tu_bo_list_reset(&cmd_buffer->bo_list);
@ -1677,6 +1778,16 @@ tu_ResetCommandBuffer(VkCommandBuffer commandBuffer,
return tu_reset_cmd_buffer(cmd_buffer);
}
/* Initialize the cache, assuming all necessary flushes have happened but *not*
* invalidations.
*/
static void
tu_cache_init(struct tu_cache_state *cache)
{
cache->flush_bits = 0;
cache->pending_flush_bits = TU_CMD_FLAG_ALL_INVALIDATE;
}
VkResult
tu_BeginCommandBuffer(VkCommandBuffer commandBuffer,
const VkCommandBufferBeginInfo *pBeginInfo)
@ -1694,6 +1805,8 @@ tu_BeginCommandBuffer(VkCommandBuffer commandBuffer,
}
memset(&cmd_buffer->state, 0, sizeof(cmd_buffer->state));
tu_cache_init(&cmd_buffer->state.cache);
tu_cache_init(&cmd_buffer->state.renderpass_cache);
cmd_buffer->usage_flags = pBeginInfo->flags;
tu_cs_begin(&cmd_buffer->cs);
@ -1709,11 +1822,18 @@ tu_BeginCommandBuffer(VkCommandBuffer commandBuffer,
default:
break;
}
} else if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY &&
(pBeginInfo->flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT)) {
assert(pBeginInfo->pInheritanceInfo);
cmd_buffer->state.pass = tu_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
cmd_buffer->state.subpass = &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
} else if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) {
if (pBeginInfo->flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
assert(pBeginInfo->pInheritanceInfo);
cmd_buffer->state.pass = tu_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
cmd_buffer->state.subpass =
&cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
} else {
/* When executing in the middle of another command buffer, the CCU
* state is unknown.
*/
cmd_buffer->state.ccu_state = TU_CMD_CCU_UNKNOWN;
}
}
cmd_buffer->status = TU_CMD_BUFFER_STATUS_RECORDING;
@ -1921,11 +2041,44 @@ tu_CmdPushConstants(VkCommandBuffer commandBuffer,
cmd->state.dirty |= TU_CMD_DIRTY_PUSH_CONSTANTS;
}
/* Flush everything which has been made available but we haven't actually
* flushed yet.
*/
static void
tu_flush_all_pending(struct tu_cache_state *cache)
{
cache->flush_bits |= cache->pending_flush_bits & TU_CMD_FLAG_ALL_FLUSH;
cache->pending_flush_bits &= ~TU_CMD_FLAG_ALL_FLUSH;
}
VkResult
tu_EndCommandBuffer(VkCommandBuffer commandBuffer)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
/* We currently flush CCU at the end of the command buffer, like
* what the blob does. There's implicit synchronization around every
* vkQueueSubmit, but the kernel only flushes the UCHE, and we don't
* know yet if this command buffer will be the last in the submit so we
* have to defensively flush everything else.
*
* TODO: We could definitely do better than this, since these flushes
* aren't required by Vulkan, but we'd need kernel support to do that.
* Ideally, we'd like the kernel to flush everything afterwards, so that we
* wouldn't have to do any flushes here, and when submitting multiple
* command buffers there wouldn't be any unnecessary flushes in between.
*/
if (cmd_buffer->state.pass) {
tu_flush_all_pending(&cmd_buffer->state.renderpass_cache);
tu_emit_cache_flush_renderpass(cmd_buffer, &cmd_buffer->draw_cs);
} else {
tu_flush_all_pending(&cmd_buffer->state.cache);
cmd_buffer->state.cache.flush_bits |=
TU_CMD_FLAG_CCU_FLUSH_COLOR |
TU_CMD_FLAG_CCU_FLUSH_DEPTH;
tu_emit_cache_flush(cmd_buffer, &cmd_buffer->cs);
}
tu_bo_list_add(&cmd_buffer->bo_list, &cmd_buffer->scratch_bo,
MSM_SUBMIT_BO_WRITE);
@ -2128,6 +2281,206 @@ tu_CmdSetSampleLocationsEXT(VkCommandBuffer commandBuffer,
tu6_emit_sample_locations(&cmd->draw_cs, pSampleLocationsInfo);
}
static void
tu_flush_for_access(struct tu_cache_state *cache,
enum tu_cmd_access_mask src_mask,
enum tu_cmd_access_mask dst_mask)
{
enum tu_cmd_flush_bits flush_bits = 0;
if (src_mask & TU_ACCESS_SYSMEM_WRITE) {
cache->pending_flush_bits |= TU_CMD_FLAG_ALL_INVALIDATE;
}
#define SRC_FLUSH(domain, flush, invalidate) \
if (src_mask & TU_ACCESS_##domain##_WRITE) { \
cache->pending_flush_bits |= TU_CMD_FLAG_##flush | \
(TU_CMD_FLAG_ALL_INVALIDATE & ~TU_CMD_FLAG_##invalidate); \
}
SRC_FLUSH(UCHE, CACHE_FLUSH, CACHE_INVALIDATE)
SRC_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
SRC_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
#undef SRC_FLUSH
#define SRC_INCOHERENT_FLUSH(domain, flush, invalidate) \
if (src_mask & TU_ACCESS_##domain##_INCOHERENT_WRITE) { \
flush_bits |= TU_CMD_FLAG_##flush; \
cache->pending_flush_bits |= \
(TU_CMD_FLAG_ALL_INVALIDATE & ~TU_CMD_FLAG_##invalidate); \
}
SRC_INCOHERENT_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
SRC_INCOHERENT_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
#undef SRC_INCOHERENT_FLUSH
if (dst_mask & (TU_ACCESS_SYSMEM_READ | TU_ACCESS_SYSMEM_WRITE)) {
flush_bits |= cache->pending_flush_bits & TU_CMD_FLAG_ALL_FLUSH;
}
#define DST_FLUSH(domain, flush, invalidate) \
if (dst_mask & (TU_ACCESS_##domain##_READ | \
TU_ACCESS_##domain##_WRITE)) { \
flush_bits |= cache->pending_flush_bits & \
(TU_CMD_FLAG_##invalidate | \
(TU_CMD_FLAG_ALL_FLUSH & ~TU_CMD_FLAG_##flush)); \
}
DST_FLUSH(UCHE, CACHE_FLUSH, CACHE_INVALIDATE)
DST_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
DST_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
#undef DST_FLUSH
#define DST_INCOHERENT_FLUSH(domain, flush, invalidate) \
if (dst_mask & (TU_ACCESS_##domain##_READ | \
TU_ACCESS_##domain##_WRITE)) { \
flush_bits |= TU_CMD_FLAG_##invalidate | \
(cache->pending_flush_bits & \
(TU_CMD_FLAG_ALL_FLUSH & ~TU_CMD_FLAG_##flush)); \
}
DST_INCOHERENT_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
DST_INCOHERENT_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
#undef DST_INCOHERENT_FLUSH
if (dst_mask & TU_ACCESS_WFI_READ) {
flush_bits |= TU_CMD_FLAG_WFI;
}
cache->flush_bits |= flush_bits;
cache->pending_flush_bits &= ~flush_bits;
}
static enum tu_cmd_access_mask
vk2tu_access(VkAccessFlags flags, bool gmem)
{
enum tu_cmd_access_mask mask = 0;
/* If the GPU writes a buffer that is then read by an indirect draw
* command, we theoretically need a WFI + WAIT_FOR_ME combination to
* wait for the writes to complete. The WAIT_FOR_ME is performed as part
* of the draw by the firmware, so we just need to execute a WFI.
*/
if (flags &
(VK_ACCESS_INDIRECT_COMMAND_READ_BIT |
VK_ACCESS_MEMORY_READ_BIT)) {
mask |= TU_ACCESS_WFI_READ;
}
if (flags &
(VK_ACCESS_INDIRECT_COMMAND_READ_BIT | /* Read performed by CP */
VK_ACCESS_TRANSFORM_FEEDBACK_COUNTER_READ_BIT_EXT | /* Read performed by CP, I think */
VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT | /* Read performed by CP */
VK_ACCESS_HOST_READ_BIT | /* sysmem by definition */
VK_ACCESS_MEMORY_READ_BIT)) {
mask |= TU_ACCESS_SYSMEM_READ;
}
if (flags &
(VK_ACCESS_HOST_WRITE_BIT |
VK_ACCESS_TRANSFORM_FEEDBACK_COUNTER_WRITE_BIT_EXT | /* Write performed by CP, I think */
VK_ACCESS_MEMORY_WRITE_BIT)) {
mask |= TU_ACCESS_SYSMEM_WRITE;
}
if (flags &
(VK_ACCESS_INDEX_READ_BIT | /* Read performed by PC, I think */
VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT | /* Read performed by VFD */
VK_ACCESS_UNIFORM_READ_BIT | /* Read performed by SP */
/* TODO: Is there a no-cache bit for textures so that we can ignore
* these?
*/
VK_ACCESS_INPUT_ATTACHMENT_READ_BIT | /* Read performed by TP */
VK_ACCESS_SHADER_READ_BIT | /* Read perfomed by SP/TP */
VK_ACCESS_MEMORY_READ_BIT)) {
mask |= TU_ACCESS_UCHE_READ;
}
if (flags &
(VK_ACCESS_SHADER_WRITE_BIT | /* Write performed by SP */
VK_ACCESS_TRANSFORM_FEEDBACK_WRITE_BIT_EXT | /* Write performed by VPC */
VK_ACCESS_MEMORY_WRITE_BIT)) {
mask |= TU_ACCESS_UCHE_WRITE;
}
/* When using GMEM, the CCU is always flushed automatically to GMEM, and
* then GMEM is flushed to sysmem. Furthermore, we already had to flush any
* previous writes in sysmem mode when transitioning to GMEM. Therefore we
* can ignore CCU and pretend that color attachments and transfers use
* sysmem directly.
*/
if (flags &
(VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |
VK_ACCESS_COLOR_ATTACHMENT_READ_NONCOHERENT_BIT_EXT |
VK_ACCESS_MEMORY_READ_BIT)) {
if (gmem)
mask |= TU_ACCESS_SYSMEM_READ;
else
mask |= TU_ACCESS_CCU_COLOR_INCOHERENT_READ;
}
if (flags &
(VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT |
VK_ACCESS_MEMORY_READ_BIT)) {
if (gmem)
mask |= TU_ACCESS_SYSMEM_READ;
else
mask |= TU_ACCESS_CCU_DEPTH_INCOHERENT_READ;
}
if (flags &
(VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
VK_ACCESS_MEMORY_WRITE_BIT)) {
if (gmem) {
mask |= TU_ACCESS_SYSMEM_WRITE;
} else {
mask |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
}
}
if (flags &
(VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT |
VK_ACCESS_MEMORY_WRITE_BIT)) {
if (gmem) {
mask |= TU_ACCESS_SYSMEM_WRITE;
} else {
mask |= TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE;
}
}
/* When the dst access is a transfer read/write, it seems we sometimes need
* to insert a WFI after any flushes, to guarantee that the flushes finish
* before the 2D engine starts. However the opposite (i.e. a WFI after
* CP_BLIT and before any subsequent flush) does not seem to be needed, and
* the blob doesn't emit such a WFI.
*/
if (flags &
(VK_ACCESS_TRANSFER_WRITE_BIT |
VK_ACCESS_MEMORY_WRITE_BIT)) {
if (gmem) {
mask |= TU_ACCESS_SYSMEM_WRITE;
} else {
mask |= TU_ACCESS_CCU_COLOR_WRITE;
}
mask |= TU_ACCESS_WFI_READ;
}
if (flags &
(VK_ACCESS_TRANSFER_READ_BIT | /* Access performed by TP */
VK_ACCESS_MEMORY_READ_BIT)) {
mask |= TU_ACCESS_UCHE_READ | TU_ACCESS_WFI_READ;
}
return mask;
}
void
tu_CmdExecuteCommands(VkCommandBuffer commandBuffer,
uint32_t commandBufferCount,
@ -2138,6 +2491,15 @@ tu_CmdExecuteCommands(VkCommandBuffer commandBuffer,
assert(commandBufferCount > 0);
/* Emit any pending flushes. */
if (cmd->state.pass) {
tu_flush_all_pending(&cmd->state.renderpass_cache);
tu_emit_cache_flush_renderpass(cmd, &cmd->draw_cs);
} else {
tu_flush_all_pending(&cmd->state.cache);
tu_emit_cache_flush(cmd, &cmd->cs);
}
for (uint32_t i = 0; i < commandBufferCount; i++) {
TU_FROM_HANDLE(tu_cmd_buffer, secondary, pCmdBuffers[i]);
@ -2176,6 +2538,17 @@ tu_CmdExecuteCommands(VkCommandBuffer commandBuffer,
}
}
cmd->state.dirty = ~0u; /* TODO: set dirty only what needs to be */
/* After executing secondary command buffers, there may have been arbitrary
* flushes executed, so when we encounter a pipeline barrier with a
* srcMask, we have to assume that we need to invalidate. Therefore we need
* to re-initialize the cache with all pending invalidate bits set.
*/
if (cmd->state.pass) {
tu_cache_init(&cmd->state.renderpass_cache);
} else {
tu_cache_init(&cmd->state.cache);
}
}
VkResult
@ -2269,6 +2642,29 @@ tu_TrimCommandPool(VkDevice device,
}
}
static void
tu_subpass_barrier(struct tu_cmd_buffer *cmd_buffer,
const struct tu_subpass_barrier *barrier,
bool external)
{
/* Note: we don't know until the end of the subpass whether we'll use
* sysmem, so assume sysmem here to be safe.
*/
struct tu_cache_state *cache =
external ? &cmd_buffer->state.cache : &cmd_buffer->state.renderpass_cache;
enum tu_cmd_access_mask src_flags =
vk2tu_access(barrier->src_access_mask, false);
enum tu_cmd_access_mask dst_flags =
vk2tu_access(barrier->dst_access_mask, false);
if (barrier->incoherent_ccu_color)
src_flags |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
if (barrier->incoherent_ccu_depth)
src_flags |= TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE;
tu_flush_for_access(cache, src_flags, dst_flags);
}
void
tu_CmdBeginRenderPass(VkCommandBuffer commandBuffer,
const VkRenderPassBeginInfo *pRenderPassBegin,
@ -2285,6 +2681,15 @@ tu_CmdBeginRenderPass(VkCommandBuffer commandBuffer,
tu_cmd_update_tiling_config(cmd, &pRenderPassBegin->renderArea);
tu_cmd_prepare_tile_store_ib(cmd);
/* Note: because this is external, any flushes will happen before draw_cs
* gets called. However deferred flushes could have to happen later as part
* of the subpass.
*/
tu_subpass_barrier(cmd, &pass->subpasses[0].start_barrier, true);
cmd->state.renderpass_cache.pending_flush_bits =
cmd->state.cache.pending_flush_bits;
cmd->state.renderpass_cache.flush_bits = 0;
tu_emit_load_clear(cmd, pRenderPassBegin);
tu6_emit_zs(cmd, cmd->state.subpass, &cmd->draw_cs);
@ -2353,32 +2758,12 @@ tu_CmdNextSubpass(VkCommandBuffer commandBuffer, VkSubpassContents contents)
tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_SYSMEM);
/* Emit flushes so that input attachments will read the correct value.
* TODO: use subpass dependencies to flush or not
*/
tu6_emit_event_write(cmd, cs, PC_CCU_FLUSH_COLOR_TS);
tu6_emit_event_write(cmd, cs, PC_CCU_FLUSH_DEPTH_TS);
if (subpass->resolve_attachments) {
tu6_emit_event_write(cmd, cs, CACHE_INVALIDATE);
for (unsigned i = 0; i < subpass->color_count; i++) {
uint32_t a = subpass->resolve_attachments[i].attachment;
if (a == VK_ATTACHMENT_UNUSED)
continue;
tu6_emit_sysmem_resolve(cmd, cs, a,
subpass->color_attachments[i].attachment);
}
tu6_emit_event_write(cmd, cs, PC_CCU_FLUSH_COLOR_TS);
}
tu6_emit_sysmem_resolves(cmd, cs, subpass);
tu_cond_exec_end(cs);
/* subpass->input_count > 0 then texture cache invalidate is likely to be needed */
if (cmd->state.subpass->input_count)
tu6_emit_event_write(cmd, cs, CACHE_INVALIDATE);
/* Handle dependencies for the next subpass */
tu_subpass_barrier(cmd, &cmd->state.subpass->start_barrier, false);
/* emit mrt/zs/msaa/ubwc state for the subpass that is starting */
tu6_emit_zs(cmd, cmd->state.subpass, cs);
@ -3276,6 +3661,8 @@ tu_draw(struct tu_cmd_buffer *cmd, const struct tu_draw_info *draw)
struct tu_cs *cs = &cmd->draw_cs;
VkResult result;
tu_emit_cache_flush_renderpass(cmd, cs);
result = tu6_bind_draw_states(cmd, cs, draw);
if (result != VK_SUCCESS) {
cmd->record_result = result;
@ -3294,8 +3681,6 @@ tu_draw(struct tu_cmd_buffer *cmd, const struct tu_draw_info *draw)
}
}
cmd->wait_for_idle = true;
tu_cs_sanity_check(cs);
}
@ -3475,6 +3860,11 @@ tu_dispatch(struct tu_cmd_buffer *cmd,
&cmd->descriptors[VK_PIPELINE_BIND_POINT_COMPUTE];
VkResult result;
/* TODO: We could probably flush less if we add a compute_flush_bits
* bitfield.
*/
tu_emit_cache_flush(cmd, cs);
if (cmd->state.dirty & TU_CMD_DIRTY_COMPUTE_PIPELINE)
tu_cs_emit_ib(cs, &pipeline->program.state_ib);
@ -3571,8 +3961,6 @@ tu_dispatch(struct tu_cmd_buffer *cmd,
}
tu_cs_emit_wfi(cs);
tu6_emit_event_write(cmd, cs, CACHE_INVALIDATE);
}
void
@ -3641,6 +4029,10 @@ tu_CmdEndRenderPass(VkCommandBuffer commandBuffer)
tu_cs_discard_entries(&cmd_buffer->draw_epilogue_cs);
tu_cs_begin(&cmd_buffer->draw_epilogue_cs);
cmd_buffer->state.cache.pending_flush_bits |=
cmd_buffer->state.renderpass_cache.pending_flush_bits;
tu_subpass_barrier(cmd_buffer, &cmd_buffer->state.pass->end_barrier, true);
cmd_buffer->state.pass = NULL;
cmd_buffer->state.subpass = NULL;
cmd_buffer->state.framebuffer = NULL;
@ -3670,16 +4062,67 @@ tu_barrier(struct tu_cmd_buffer *cmd,
const VkImageMemoryBarrier *pImageMemoryBarriers,
const struct tu_barrier_info *info)
{
/* renderpass case is only for subpass self-dependencies
* which means syncing the render output with texture cache
* note: only the CACHE_INVALIDATE is needed in GMEM mode
* and in sysmem mode we might not need either color/depth flush
struct tu_cs *cs = cmd->state.pass ? &cmd->draw_cs : &cmd->cs;
VkAccessFlags srcAccessMask = 0;
VkAccessFlags dstAccessMask = 0;
for (uint32_t i = 0; i < memoryBarrierCount; i++) {
srcAccessMask |= pMemoryBarriers[i].srcAccessMask;
dstAccessMask |= pMemoryBarriers[i].dstAccessMask;
}
for (uint32_t i = 0; i < bufferMemoryBarrierCount; i++) {
srcAccessMask |= pBufferMemoryBarriers[i].srcAccessMask;
dstAccessMask |= pBufferMemoryBarriers[i].dstAccessMask;
}
enum tu_cmd_access_mask src_flags = 0;
enum tu_cmd_access_mask dst_flags = 0;
for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) {
TU_FROM_HANDLE(tu_image, image, pImageMemoryBarriers[i].image);
VkImageLayout old_layout = pImageMemoryBarriers[i].oldLayout;
/* For non-linear images, PREINITIALIZED is the same as UNDEFINED */
if (old_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
(image->tiling != VK_IMAGE_TILING_LINEAR &&
old_layout == VK_IMAGE_LAYOUT_PREINITIALIZED)) {
/* The underlying memory for this image may have been used earlier
* within the same queue submission for a different image, which
* means that there may be old, stale cache entries which are in the
* "wrong" location, which could cause problems later after writing
* to the image. We don't want these entries being flushed later and
* overwriting the actual image, so we need to flush the CCU.
*/
src_flags |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
}
srcAccessMask |= pImageMemoryBarriers[i].srcAccessMask;
dstAccessMask |= pImageMemoryBarriers[i].dstAccessMask;
}
/* Inside a renderpass, we don't know yet whether we'll be using sysmem
* so we have to use the sysmem flushes.
*/
if (cmd->state.pass) {
tu6_emit_event_write(cmd, &cmd->draw_cs, PC_CCU_FLUSH_COLOR_TS);
tu6_emit_event_write(cmd, &cmd->draw_cs, PC_CCU_FLUSH_DEPTH_TS);
tu6_emit_event_write(cmd, &cmd->draw_cs, CACHE_INVALIDATE);
return;
bool gmem = cmd->state.ccu_state == TU_CMD_CCU_GMEM &&
!cmd->state.pass;
src_flags |= vk2tu_access(srcAccessMask, gmem);
dst_flags |= vk2tu_access(dstAccessMask, gmem);
struct tu_cache_state *cache =
cmd->state.pass ? &cmd->state.renderpass_cache : &cmd->state.cache;
tu_flush_for_access(cache, src_flags, dst_flags);
for (uint32_t i = 0; i < info->eventCount; i++) {
TU_FROM_HANDLE(tu_event, event, info->pEvents[i]);
tu_bo_list_add(&cmd->bo_list, &event->bo, MSM_SUBMIT_BO_READ);
tu_cs_emit_pkt7(cs, CP_WAIT_REG_MEM, 6);
tu_cs_emit(cs, CP_WAIT_REG_MEM_0_FUNCTION(WRITE_EQ) |
CP_WAIT_REG_MEM_0_POLL_MEMORY);
tu_cs_emit_qw(cs, event->bo.iova); /* POLL_ADDR_LO/HI */
tu_cs_emit(cs, CP_WAIT_REG_MEM_3_REF(1));
tu_cs_emit(cs, CP_WAIT_REG_MEM_4_MASK(~0u));
tu_cs_emit(cs, CP_WAIT_REG_MEM_5_DELAY_LOOP_CYCLES(20));
}
}
@ -3708,17 +4151,36 @@ tu_CmdPipelineBarrier(VkCommandBuffer commandBuffer,
}
static void
write_event(struct tu_cmd_buffer *cmd, struct tu_event *event, unsigned value)
write_event(struct tu_cmd_buffer *cmd, struct tu_event *event,
VkPipelineStageFlags stageMask, unsigned value)
{
struct tu_cs *cs = &cmd->cs;
/* vkCmdSetEvent/vkCmdResetEvent cannot be called inside a render pass */
assert(!cmd->state.pass);
tu_emit_cache_flush(cmd, cs);
tu_bo_list_add(&cmd->bo_list, &event->bo, MSM_SUBMIT_BO_WRITE);
/* TODO: any flush required before/after ? */
/* Flags that only require a top-of-pipe event. DrawIndirect parameters are
* read by the CP, so the draw indirect stage counts as top-of-pipe too.
*/
VkPipelineStageFlags top_of_pipe_flags =
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT |
VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT;
tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 3);
tu_cs_emit_qw(cs, event->bo.iova); /* ADDR_LO/HI */
tu_cs_emit(cs, value);
if (!(stageMask & ~top_of_pipe_flags)) {
tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 3);
tu_cs_emit_qw(cs, event->bo.iova); /* ADDR_LO/HI */
tu_cs_emit(cs, value);
} else {
/* Use a RB_DONE_TS event to wait for everything to complete. */
tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 4);
tu_cs_emit(cs, CP_EVENT_WRITE_0_EVENT(RB_DONE_TS));
tu_cs_emit_qw(cs, event->bo.iova);
tu_cs_emit(cs, value);
}
}
void
@ -3729,7 +4191,7 @@ tu_CmdSetEvent(VkCommandBuffer commandBuffer,
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
TU_FROM_HANDLE(tu_event, event, _event);
write_event(cmd, event, 1);
write_event(cmd, event, stageMask, 1);
}
void
@ -3740,7 +4202,7 @@ tu_CmdResetEvent(VkCommandBuffer commandBuffer,
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
TU_FROM_HANDLE(tu_event, event, _event);
write_event(cmd, event, 0);
write_event(cmd, event, stageMask, 0);
}
void
@ -3757,23 +4219,15 @@ tu_CmdWaitEvents(VkCommandBuffer commandBuffer,
const VkImageMemoryBarrier *pImageMemoryBarriers)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
struct tu_cs *cs = &cmd->cs;
struct tu_barrier_info info;
/* TODO: any flush required before/after? (CP_WAIT_FOR_ME?) */
info.eventCount = eventCount;
info.pEvents = pEvents;
info.srcStageMask = 0;
for (uint32_t i = 0; i < eventCount; i++) {
TU_FROM_HANDLE(tu_event, event, pEvents[i]);
tu_bo_list_add(&cmd->bo_list, &event->bo, MSM_SUBMIT_BO_READ);
tu_cs_emit_pkt7(cs, CP_WAIT_REG_MEM, 6);
tu_cs_emit(cs, CP_WAIT_REG_MEM_0_FUNCTION(WRITE_EQ) |
CP_WAIT_REG_MEM_0_POLL_MEMORY);
tu_cs_emit_qw(cs, event->bo.iova); /* POLL_ADDR_LO/HI */
tu_cs_emit(cs, CP_WAIT_REG_MEM_3_REF(1));
tu_cs_emit(cs, CP_WAIT_REG_MEM_4_MASK(~0u));
tu_cs_emit(cs, CP_WAIT_REG_MEM_5_DELAY_LOOP_CYCLES(20));
}
tu_barrier(cmd, memoryBarrierCount, pMemoryBarriers,
bufferMemoryBarrierCount, pBufferMemoryBarriers,
imageMemoryBarrierCount, pImageMemoryBarriers, &info);
}
void

View File

@ -29,6 +29,257 @@
#include "vk_util.h"
#include "vk_format.h"
static void
tu_render_pass_add_subpass_dep(struct tu_render_pass *pass,
const VkSubpassDependency2 *dep)
{
uint32_t src = dep->srcSubpass;
uint32_t dst = dep->dstSubpass;
/* Ignore subpass self-dependencies as they allow the app to call
* vkCmdPipelineBarrier() inside the render pass and the driver should only
* do the barrier when called, not when starting the render pass.
*/
if (src == dst)
return;
struct tu_subpass_barrier *src_barrier;
if (src == VK_SUBPASS_EXTERNAL) {
src_barrier = &pass->subpasses[0].start_barrier;
} else if (src == pass->subpass_count - 1) {
src_barrier = &pass->end_barrier;
} else {
src_barrier = &pass->subpasses[src + 1].start_barrier;
}
struct tu_subpass_barrier *dst_barrier;
if (dst == VK_SUBPASS_EXTERNAL) {
dst_barrier = &pass->end_barrier;
} else {
dst_barrier = &pass->subpasses[dst].start_barrier;
}
if (dep->dstStageMask != VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT)
src_barrier->src_stage_mask |= dep->srcStageMask;
src_barrier->src_access_mask |= dep->srcAccessMask;
dst_barrier->dst_access_mask |= dep->dstAccessMask;
if (src == VK_SUBPASS_EXTERNAL)
pass->subpasses[dst].has_external_src = true;
if (dst == VK_SUBPASS_EXTERNAL)
pass->subpasses[src].has_external_dst = true;
}
/* We currently only care about undefined layouts, because we have to
* flush/invalidate CCU for those. PREINITIALIZED is the same thing as
* UNDEFINED for anything not linear tiled, but we don't know yet whether the
* images used are tiled, so just assume they are.
*/
static bool
layout_undefined(VkImageLayout layout)
{
return layout == VK_IMAGE_LAYOUT_UNDEFINED ||
layout == VK_IMAGE_LAYOUT_PREINITIALIZED;
}
/* This implements the following bit of spec text:
*
* If there is no subpass dependency from VK_SUBPASS_EXTERNAL to the
* first subpass that uses an attachment, then an implicit subpass
* dependency exists from VK_SUBPASS_EXTERNAL to the first subpass it is
* used in. The implicit subpass dependency only exists if there
* exists an automatic layout transition away from initialLayout.
* The subpass dependency operates as if defined with the
* following parameters:
*
* VkSubpassDependency implicitDependency = {
* .srcSubpass = VK_SUBPASS_EXTERNAL;
* .dstSubpass = firstSubpass; // First subpass attachment is used in
* .srcStageMask = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT;
* .dstStageMask = VK_PIPELINE_STAGE_ALL_COMMANDS_BIT;
* .srcAccessMask = 0;
* .dstAccessMask = VK_ACCESS_INPUT_ATTACHMENT_READ_BIT |
* VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |
* VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
* VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT |
* VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
* .dependencyFlags = 0;
* };
*
* Similarly, if there is no subpass dependency from the last subpass
* that uses an attachment to VK_SUBPASS_EXTERNAL, then an implicit
* subpass dependency exists from the last subpass it is used in to
* VK_SUBPASS_EXTERNAL. The implicit subpass dependency only exists
* if there exists an automatic layout transition into finalLayout.
* The subpass dependency operates as if defined with the following
* parameters:
*
* VkSubpassDependency implicitDependency = {
* .srcSubpass = lastSubpass; // Last subpass attachment is used in
* .dstSubpass = VK_SUBPASS_EXTERNAL;
* .srcStageMask = VK_PIPELINE_STAGE_ALL_COMMANDS_BIT;
* .dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
* .srcAccessMask = VK_ACCESS_INPUT_ATTACHMENT_READ_BIT |
* VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |
* VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
* VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT |
* VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
* .dstAccessMask = 0;
* .dependencyFlags = 0;
* };
*
* Note: currently this is the only use we have for layout transitions,
* besides needing to invalidate CCU at the beginning, so we also flag
* transitions from UNDEFINED here.
*/
static void
tu_render_pass_add_implicit_deps(struct tu_render_pass *pass)
{
bool att_used[pass->attachment_count];
memset(att_used, 0, sizeof(att_used));
for (unsigned i = 0; i < pass->subpass_count; i++) {
struct tu_subpass *subpass = &pass->subpasses[i];
if (!subpass->has_external_src)
continue;
bool src_implicit_dep = false;
for (unsigned j = 0; j < subpass->input_count; j++) {
unsigned att_idx = subpass->input_attachments[j].attachment;
if (att_idx == VK_ATTACHMENT_UNUSED)
continue;
struct tu_render_pass_attachment *att = &pass->attachments[att_idx];
if (att->initial_layout != subpass->input_attachments[j].layout &&
!att_used[att_idx]) {
src_implicit_dep = true;
}
att_used[att_idx] = true;
}
for (unsigned j = 0; j < subpass->color_count; j++) {
unsigned att_idx = subpass->color_attachments[j].attachment;
if (att_idx == VK_ATTACHMENT_UNUSED)
continue;
struct tu_render_pass_attachment *att = &pass->attachments[att_idx];
if (att->initial_layout != subpass->color_attachments[j].layout &&
!att_used[att_idx]) {
src_implicit_dep = true;
}
att_used[att_idx] = true;
}
if (subpass->resolve_attachments) {
for (unsigned j = 0; j < subpass->color_count; j++) {
unsigned att_idx = subpass->resolve_attachments[j].attachment;
if (att_idx == VK_ATTACHMENT_UNUSED)
continue;
struct tu_render_pass_attachment *att = &pass->attachments[att_idx];
if (att->initial_layout != subpass->resolve_attachments[j].layout &&
!att_used[att_idx]) {
src_implicit_dep = true;
}
att_used[att_idx] = true;
}
}
if (src_implicit_dep) {
tu_render_pass_add_subpass_dep(pass, &(VkSubpassDependency2KHR) {
.srcSubpass = VK_SUBPASS_EXTERNAL,
.dstSubpass = i,
.srcStageMask = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
.dstStageMask = VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
.srcAccessMask = 0,
.dstAccessMask = VK_ACCESS_INPUT_ATTACHMENT_READ_BIT |
VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT |
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT,
.dependencyFlags = 0,
});
}
}
memset(att_used, 0, sizeof(att_used));
for (int i = pass->subpass_count - 1; i >= 0; i--) {
struct tu_subpass *subpass = &pass->subpasses[i];
if (!subpass->has_external_dst)
continue;
bool dst_implicit_dep = false;
for (unsigned j = 0; j < subpass->input_count; j++) {
unsigned att_idx = subpass->input_attachments[j].attachment;
if (att_idx == VK_ATTACHMENT_UNUSED)
continue;
struct tu_render_pass_attachment *att = &pass->attachments[att_idx];
if (att->final_layout != subpass->input_attachments[j].layout &&
!att_used[att_idx]) {
dst_implicit_dep = true;
}
att_used[att_idx] = true;
}
for (unsigned j = 0; j < subpass->color_count; j++) {
unsigned att_idx = subpass->color_attachments[j].attachment;
if (att_idx == VK_ATTACHMENT_UNUSED)
continue;
struct tu_render_pass_attachment *att = &pass->attachments[att_idx];
if (att->final_layout != subpass->color_attachments[j].layout &&
!att_used[att_idx]) {
dst_implicit_dep = true;
}
att_used[att_idx] = true;
}
if (subpass->resolve_attachments) {
for (unsigned j = 0; j < subpass->color_count; j++) {
unsigned att_idx = subpass->resolve_attachments[j].attachment;
if (att_idx == VK_ATTACHMENT_UNUSED)
continue;
struct tu_render_pass_attachment *att = &pass->attachments[att_idx];
if (att->final_layout != subpass->resolve_attachments[j].layout &&
!att_used[att_idx]) {
dst_implicit_dep = true;
}
att_used[att_idx] = true;
}
}
if (dst_implicit_dep) {
tu_render_pass_add_subpass_dep(pass, &(VkSubpassDependency2KHR) {
.srcSubpass = i,
.dstSubpass = VK_SUBPASS_EXTERNAL,
.srcStageMask = VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
.dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
.srcAccessMask = VK_ACCESS_INPUT_ATTACHMENT_READ_BIT |
VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT |
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT,
.dstAccessMask = 0,
.dependencyFlags = 0,
});
}
}
/* Handle UNDEFINED transitions, similar to the handling in tu_barrier().
* Assume that if an attachment has an initial layout of UNDEFINED, it gets
* transitioned eventually.
*/
for (unsigned i = 0; i < pass->attachment_count; i++) {
if (layout_undefined(pass->attachments[i].initial_layout)) {
if (vk_format_is_depth_or_stencil(pass->attachments[i].format)) {
pass->subpasses[0].start_barrier.incoherent_ccu_depth = true;
} else {
pass->subpasses[0].start_barrier.incoherent_ccu_color = true;
}
}
}
}
static void update_samples(struct tu_subpass *subpass,
VkSampleCountFlagBits samples)
{
@ -119,6 +370,8 @@ create_render_pass_common(struct tu_render_pass *pass,
att->load = false;
}
}
tu_render_pass_add_implicit_deps(pass);
}
static void
@ -193,6 +446,8 @@ tu_CreateRenderPass(VkDevice _device,
att->format = pCreateInfo->pAttachments[i].format;
att->samples = pCreateInfo->pAttachments[i].samples;
att->cpp = vk_format_get_blocksize(att->format) * att->samples;
att->initial_layout = pCreateInfo->pAttachments[i].initialLayout;
att->final_layout = pCreateInfo->pAttachments[i].finalLayout;
att->gmem_offset = -1;
attachment_set_ops(att,
@ -240,6 +495,8 @@ tu_CreateRenderPass(VkDevice _device,
for (uint32_t j = 0; j < desc->inputAttachmentCount; j++) {
uint32_t a = desc->pInputAttachments[j].attachment;
subpass->input_attachments[j].attachment = a;
subpass->input_attachments[j].layout =
desc->pInputAttachments[j].layout;
if (a != VK_ATTACHMENT_UNUSED)
pass->attachments[a].gmem_offset = 0;
}
@ -252,6 +509,8 @@ tu_CreateRenderPass(VkDevice _device,
for (uint32_t j = 0; j < desc->colorAttachmentCount; j++) {
uint32_t a = desc->pColorAttachments[j].attachment;
subpass->color_attachments[j].attachment = a;
subpass->color_attachments[j].layout =
desc->pColorAttachments[j].layout;
if (a != VK_ATTACHMENT_UNUSED) {
pass->attachments[a].gmem_offset = 0;
@ -266,6 +525,8 @@ tu_CreateRenderPass(VkDevice _device,
for (uint32_t j = 0; j < desc->colorAttachmentCount; j++) {
subpass->resolve_attachments[j].attachment =
desc->pResolveAttachments[j].attachment;
subpass->resolve_attachments[j].layout =
desc->pResolveAttachments[j].layout;
}
}
@ -274,12 +535,28 @@ tu_CreateRenderPass(VkDevice _device,
subpass->depth_stencil_attachment.attachment = a;
if (a != VK_ATTACHMENT_UNUSED) {
pass->attachments[a].gmem_offset = 0;
subpass->depth_stencil_attachment.layout =
desc->pDepthStencilAttachment->layout;
update_samples(subpass, pCreateInfo->pAttachments[a].samples);
}
subpass->samples = subpass->samples ?: 1;
}
for (unsigned i = 0; i < pCreateInfo->dependencyCount; ++i) {
/* Convert to a Dependency2 */
struct VkSubpassDependency2 dep2 = {
.srcSubpass = pCreateInfo->pDependencies[i].srcSubpass,
.dstSubpass = pCreateInfo->pDependencies[i].dstSubpass,
.srcStageMask = pCreateInfo->pDependencies[i].srcStageMask,
.dstStageMask = pCreateInfo->pDependencies[i].dstStageMask,
.srcAccessMask = pCreateInfo->pDependencies[i].srcAccessMask,
.dstAccessMask = pCreateInfo->pDependencies[i].dstAccessMask,
.dependencyFlags = pCreateInfo->pDependencies[i].dependencyFlags,
};
tu_render_pass_add_subpass_dep(pass, &dep2);
}
*pRenderPass = tu_render_pass_to_handle(pass);
create_render_pass_common(pass, device->physical_device);
@ -321,6 +598,8 @@ tu_CreateRenderPass2(VkDevice _device,
att->format = pCreateInfo->pAttachments[i].format;
att->samples = pCreateInfo->pAttachments[i].samples;
att->cpp = vk_format_get_blocksize(att->format) * att->samples;
att->initial_layout = pCreateInfo->pAttachments[i].initialLayout;
att->final_layout = pCreateInfo->pAttachments[i].finalLayout;
att->gmem_offset = -1;
attachment_set_ops(att,
@ -367,6 +646,8 @@ tu_CreateRenderPass2(VkDevice _device,
for (uint32_t j = 0; j < desc->inputAttachmentCount; j++) {
uint32_t a = desc->pInputAttachments[j].attachment;
subpass->input_attachments[j].attachment = a;
subpass->input_attachments[j].layout =
desc->pInputAttachments[j].layout;
if (a != VK_ATTACHMENT_UNUSED)
pass->attachments[a].gmem_offset = 0;
}
@ -379,6 +660,8 @@ tu_CreateRenderPass2(VkDevice _device,
for (uint32_t j = 0; j < desc->colorAttachmentCount; j++) {
uint32_t a = desc->pColorAttachments[j].attachment;
subpass->color_attachments[j].attachment = a;
subpass->color_attachments[j].layout =
desc->pColorAttachments[j].layout;
if (a != VK_ATTACHMENT_UNUSED) {
pass->attachments[a].gmem_offset = 0;
@ -393,6 +676,8 @@ tu_CreateRenderPass2(VkDevice _device,
for (uint32_t j = 0; j < desc->colorAttachmentCount; j++) {
subpass->resolve_attachments[j].attachment =
desc->pResolveAttachments[j].attachment;
subpass->resolve_attachments[j].layout =
desc->pResolveAttachments[j].layout;
}
}
@ -402,12 +687,18 @@ tu_CreateRenderPass2(VkDevice _device,
subpass->depth_stencil_attachment.attachment = a;
if (a != VK_ATTACHMENT_UNUSED) {
pass->attachments[a].gmem_offset = 0;
subpass->depth_stencil_attachment.layout =
desc->pDepthStencilAttachment->layout;
update_samples(subpass, pCreateInfo->pAttachments[a].samples);
}
subpass->samples = subpass->samples ?: 1;
}
for (unsigned i = 0; i < pCreateInfo->dependencyCount; ++i) {
tu_render_pass_add_subpass_dep(pass, &pCreateInfo->pDependencies[i]);
}
*pRenderPass = tu_render_pass_to_handle(pass);
create_render_pass_common(pass, device->physical_device);

View File

@ -901,6 +901,116 @@ struct tu_streamout_state {
uint32_t vpc_so_buf_cntl;
};
/* There are only three cache domains we have to care about: the CCU, or
* color cache unit, which is used for color and depth/stencil attachments
* and copy/blit destinations, and is split conceptually into color and depth,
* and the universal cache or UCHE which is used for pretty much everything
* else, except for the CP (uncached) and host. We need to flush whenever data
* crosses these boundaries.
*/
enum tu_cmd_access_mask {
TU_ACCESS_UCHE_READ = 1 << 0,
TU_ACCESS_UCHE_WRITE = 1 << 1,
TU_ACCESS_CCU_COLOR_READ = 1 << 2,
TU_ACCESS_CCU_COLOR_WRITE = 1 << 3,
TU_ACCESS_CCU_DEPTH_READ = 1 << 4,
TU_ACCESS_CCU_DEPTH_WRITE = 1 << 5,
/* Experiments have shown that while it's safe to avoid flushing the CCU
* after each blit/renderpass, it's not safe to assume that subsequent
* lookups with a different attachment state will hit unflushed cache
* entries. That is, the CCU needs to be flushed and possibly invalidated
* when accessing memory with a different attachment state. Writing to an
* attachment under the following conditions after clearing using the
* normal 2d engine path is known to have issues:
*
* - It isn't the 0'th layer.
* - There are more than one attachment, and this isn't the 0'th attachment
* (this seems to also depend on the cpp of the attachments).
*
* Our best guess is that the layer/MRT state is used when computing
* the location of a cache entry in CCU, to avoid conflicts. We assume that
* any access in a renderpass after or before an access by a transfer needs
* a flush/invalidate, and use the _INCOHERENT variants to represent access
* by a transfer.
*/
TU_ACCESS_CCU_COLOR_INCOHERENT_READ = 1 << 6,
TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE = 1 << 7,
TU_ACCESS_CCU_DEPTH_INCOHERENT_READ = 1 << 8,
TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE = 1 << 9,
TU_ACCESS_SYSMEM_READ = 1 << 10,
TU_ACCESS_SYSMEM_WRITE = 1 << 11,
/* Set if a WFI is required due to data being read by the CP or the 2D
* engine.
*/
TU_ACCESS_WFI_READ = 1 << 12,
TU_ACCESS_READ =
TU_ACCESS_UCHE_READ |
TU_ACCESS_CCU_COLOR_READ |
TU_ACCESS_CCU_DEPTH_READ |
TU_ACCESS_CCU_COLOR_INCOHERENT_READ |
TU_ACCESS_CCU_DEPTH_INCOHERENT_READ |
TU_ACCESS_SYSMEM_READ,
TU_ACCESS_WRITE =
TU_ACCESS_UCHE_WRITE |
TU_ACCESS_CCU_COLOR_WRITE |
TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE |
TU_ACCESS_CCU_DEPTH_WRITE |
TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE |
TU_ACCESS_SYSMEM_WRITE,
TU_ACCESS_ALL =
TU_ACCESS_READ |
TU_ACCESS_WRITE,
};
enum tu_cmd_flush_bits {
TU_CMD_FLAG_CCU_FLUSH_DEPTH = 1 << 0,
TU_CMD_FLAG_CCU_FLUSH_COLOR = 1 << 1,
TU_CMD_FLAG_CCU_INVALIDATE_DEPTH = 1 << 2,
TU_CMD_FLAG_CCU_INVALIDATE_COLOR = 1 << 3,
TU_CMD_FLAG_CACHE_FLUSH = 1 << 4,
TU_CMD_FLAG_CACHE_INVALIDATE = 1 << 5,
TU_CMD_FLAG_ALL_FLUSH =
TU_CMD_FLAG_CCU_FLUSH_DEPTH |
TU_CMD_FLAG_CCU_FLUSH_COLOR |
TU_CMD_FLAG_CACHE_FLUSH,
TU_CMD_FLAG_ALL_INVALIDATE =
TU_CMD_FLAG_CCU_INVALIDATE_DEPTH |
TU_CMD_FLAG_CCU_INVALIDATE_COLOR |
TU_CMD_FLAG_CACHE_INVALIDATE,
TU_CMD_FLAG_WFI = 1 << 6,
};
/* Changing the CCU from sysmem mode to gmem mode or vice-versa is pretty
* heavy, involving a CCU cache flush/invalidate and a WFI in order to change
* which part of the gmem is used by the CCU. Here we keep track of what the
* state of the CCU.
*/
enum tu_cmd_ccu_state {
TU_CMD_CCU_SYSMEM,
TU_CMD_CCU_GMEM,
TU_CMD_CCU_UNKNOWN,
};
struct tu_cache_state {
/* Caches which must be made available (flushed) eventually if there are
* any users outside that cache domain, and caches which must be
* invalidated eventually if there are any reads.
*/
enum tu_cmd_flush_bits pending_flush_bits;
/* Pending flushes */
enum tu_cmd_flush_bits flush_bits;
};
struct tu_cmd_state
{
uint32_t dirty;
@ -935,6 +1045,17 @@ struct tu_cmd_state
uint32_t max_index_count;
uint64_t index_va;
/* Renderpasses are tricky, because we may need to flush differently if
* using sysmem vs. gmem and therefore we have to delay any flushing that
* happens before a renderpass. So we have to have two copies of the flush
* state, one for intra-renderpass flushes (i.e. renderpass dependencies)
* and one for outside a renderpass.
*/
struct tu_cache_state cache;
struct tu_cache_state renderpass_cache;
enum tu_cmd_ccu_state ccu_state;
const struct tu_render_pass *pass;
const struct tu_subpass *subpass;
const struct tu_framebuffer *framebuffer;
@ -1054,8 +1175,6 @@ struct tu_cmd_buffer
uint32_t vsc_draw_strm_pitch;
uint32_t vsc_prim_strm_pitch;
bool use_vsc_data;
bool wait_for_idle;
};
/* Temporary struct for tracking a register state to be written, used by
@ -1071,6 +1190,10 @@ struct tu_reg_value {
uint32_t bo_shift;
};
void tu_emit_cache_flush_ccu(struct tu_cmd_buffer *cmd_buffer,
struct tu_cs *cs,
enum tu_cmd_ccu_state ccu_state);
void
tu6_emit_event_write(struct tu_cmd_buffer *cmd,
struct tu_cs *cs,
@ -1602,9 +1725,17 @@ struct tu_framebuffer
struct tu_attachment_info attachments[0];
};
struct tu_subpass_barrier {
VkPipelineStageFlags src_stage_mask;
VkAccessFlags src_access_mask;
VkAccessFlags dst_access_mask;
bool incoherent_ccu_color, incoherent_ccu_depth;
};
struct tu_subpass_attachment
{
uint32_t attachment;
VkImageLayout layout;
};
struct tu_subpass
@ -1617,8 +1748,11 @@ struct tu_subpass
struct tu_subpass_attachment depth_stencil_attachment;
VkSampleCountFlagBits samples;
bool has_external_src, has_external_dst;
uint32_t srgb_cntl;
struct tu_subpass_barrier start_barrier;
};
struct tu_render_pass_attachment
@ -1629,6 +1763,7 @@ struct tu_render_pass_attachment
VkImageAspectFlags clear_mask;
bool load;
bool store;
VkImageLayout initial_layout, final_layout;
int32_t gmem_offset;
};
@ -1640,6 +1775,7 @@ struct tu_render_pass
uint32_t tile_align_w;
struct tu_subpass_attachment *subpass_attachments;
struct tu_render_pass_attachment *attachments;
struct tu_subpass_barrier end_barrier;
struct tu_subpass subpasses[0];
};