anv/meta: Implement vkCmdResolveImage

This handles multisample color images that have a floating-point or
normalized format and have a single array layer.

This does not yet handle integer formats nor multisample array images.
This commit is contained in:
Chad Versace 2016-01-20 17:10:41 -08:00
parent 8cc1e59d61
commit 4085f1f230
5 changed files with 813 additions and 18 deletions

View File

@ -82,6 +82,7 @@ VULKAN_SOURCES = \
anv_intel.c \
anv_meta.c \
anv_meta_clear.c \
anv_meta_resolve.c \
anv_nir_apply_dynamic_offsets.c \
anv_nir_apply_pipeline_layout.c \
anv_nir_lower_push_constants.c \

View File

@ -1508,18 +1508,6 @@ void anv_CmdCopyImageToBuffer(
meta_finish_blit(cmd_buffer, &saved_state);
}
void anv_CmdResolveImage(
VkCommandBuffer commandBuffer,
VkImage srcImage,
VkImageLayout srcImageLayout,
VkImage destImage,
VkImageLayout destImageLayout,
uint32_t regionCount,
const VkImageResolve* pRegions)
{
stub();
}
static void *
meta_alloc(void* _device, size_t size, size_t alignment,
VkSystemAllocationScope allocationScope)
@ -1549,6 +1537,8 @@ meta_free(void* _device, void *data)
VkResult
anv_device_init_meta(struct anv_device *device)
{
VkResult result;
device->meta_state.alloc = (VkAllocationCallbacks) {
.pUserData = device,
.pfnAllocation = meta_alloc,
@ -1556,23 +1546,32 @@ anv_device_init_meta(struct anv_device *device)
.pfnFree = meta_free,
};
VkResult result;
result = anv_device_init_meta_clear_state(device);
if (result != VK_SUCCESS)
return result;
goto fail_clear;
result = anv_device_init_meta_resolve_state(device);
if (result != VK_SUCCESS)
goto fail_resolve;
result = anv_device_init_meta_blit_state(device);
if (result != VK_SUCCESS) {
anv_device_finish_meta_clear_state(device);
return result;
}
if (result != VK_SUCCESS)
goto fail_blit;
return VK_SUCCESS;
fail_blit:
anv_device_finish_meta_resolve_state(device);
fail_resolve:
anv_device_finish_meta_clear_state(device);
fail_clear:
return result;
}
void
anv_device_finish_meta(struct anv_device *device)
{
anv_device_finish_meta_resolve_state(device);
anv_device_finish_meta_clear_state(device);
/* Blit */

View File

@ -47,6 +47,9 @@ struct anv_meta_saved_state {
VkResult anv_device_init_meta_clear_state(struct anv_device *device);
void anv_device_finish_meta_clear_state(struct anv_device *device);
VkResult anv_device_init_meta_resolve_state(struct anv_device *device);
void anv_device_finish_meta_resolve_state(struct anv_device *device);
void
anv_meta_save(struct anv_meta_saved_state *state,
const struct anv_cmd_buffer *cmd_buffer,

View File

@ -0,0 +1,781 @@
/*
* Copyright © 2016 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <assert.h>
#include <stdbool.h>
#include "anv_meta.h"
#include "anv_private.h"
#include "glsl/nir/nir_builder.h"
/**
* Vertex attributes used by all pipelines.
*/
struct vertex_attrs {
struct anv_vue_header vue_header;
float position[2]; /**< 3DPRIM_RECTLIST */
float tex_position[2];
};
static nir_shader *
build_nir_vs(void)
{
const struct glsl_type *vec4 = glsl_vec4_type();
nir_builder b;
nir_variable *a_position;
nir_variable *v_position;
nir_variable *a_tex_position;
nir_variable *v_tex_position;
nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_VERTEX, NULL);
b.shader->info.name = ralloc_strdup(b.shader, "meta_resolve_vs");
a_position = nir_variable_create(b.shader, nir_var_shader_in, vec4,
"a_position");
a_position->data.location = VERT_ATTRIB_GENERIC0;
v_position = nir_variable_create(b.shader, nir_var_shader_out, vec4,
"gl_Position");
v_position->data.location = VARYING_SLOT_POS;
a_tex_position = nir_variable_create(b.shader, nir_var_shader_in, vec4,
"a_tex_position");
a_tex_position->data.location = VERT_ATTRIB_GENERIC1;
v_tex_position = nir_variable_create(b.shader, nir_var_shader_out, vec4,
"v_tex_position");
v_tex_position->data.location = VARYING_SLOT_VAR0;
nir_copy_var(&b, v_position, a_position);
nir_copy_var(&b, v_tex_position, a_tex_position);
return b.shader;
}
static nir_shader *
build_nir_fs(uint32_t num_samples)
{
const struct glsl_type *vec4 = glsl_vec4_type();
const struct glsl_type *sampler2DMS =
glsl_sampler_type(GLSL_SAMPLER_DIM_MS,
/*is_shadow*/ false,
/*is_array*/ false,
GLSL_TYPE_FLOAT);
nir_builder b;
nir_variable *u_tex; /* uniform sampler */
nir_variable *v_position; /* vec4, varying fragment position */
nir_variable *v_tex_position; /* vec4, varying texture coordinate */
nir_variable *f_color; /* vec4, fragment output color */
nir_ssa_def *accum; /* vec4, accumulation of sample values */
nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_FRAGMENT, NULL);
b.shader->info.name = ralloc_asprintf(b.shader,
"meta_resolve_fs_samples%02d",
num_samples);
u_tex = nir_variable_create(b.shader, nir_var_uniform, sampler2DMS,
"u_tex");
u_tex->data.descriptor_set = 0;
u_tex->data.binding = 0;
v_position = nir_variable_create(b.shader, nir_var_shader_in, vec4,
"v_position");
v_position->data.location = VARYING_SLOT_POS;
v_tex_position = nir_variable_create(b.shader, nir_var_shader_in, vec4,
"v_tex_position");
v_tex_position->data.location = VARYING_SLOT_VAR0;
f_color = nir_variable_create(b.shader, nir_var_shader_out, vec4,
"f_color");
f_color->data.location = FRAG_RESULT_DATA0;
accum = nir_imm_vec4(&b, 0, 0, 0, 0);
nir_ssa_def *tex_position_ivec =
nir_f2i(&b, nir_load_var(&b, v_tex_position));
for (uint32_t i = 0; i < num_samples; ++i) {
nir_tex_instr *tex;
tex = nir_tex_instr_create(b.shader, /*num_srcs*/ 2);
tex->sampler = nir_deref_var_create(tex, u_tex);
tex->sampler_dim = GLSL_SAMPLER_DIM_MS;
tex->op = nir_texop_txf_ms;
tex->src[0].src = nir_src_for_ssa(tex_position_ivec);
tex->src[0].src_type = nir_tex_src_coord;
tex->src[1].src = nir_src_for_ssa(nir_imm_int(&b, i));
tex->src[1].src_type = nir_tex_src_ms_index;
tex->dest_type = nir_type_float;
tex->is_array = false;
tex->coord_components = 3;
nir_ssa_dest_init(&tex->instr, &tex->dest, /*num_components*/ 4, "tex");
nir_builder_instr_insert(&b, &tex->instr);
accum = nir_fadd(&b, accum, &tex->dest.ssa);
}
accum = nir_fdiv(&b, accum, nir_imm_float(&b, num_samples));
nir_store_var(&b, f_color, accum, /*writemask*/ 4);
return b.shader;
}
static VkResult
create_pass(struct anv_device *device, VkRenderPass *pass_h)
{
VkResult result;
VkDevice device_h = anv_device_to_handle(device);
const VkAllocationCallbacks *alloc = &device->meta_state.alloc;
result = anv_CreateRenderPass(device_h,
&(VkRenderPassCreateInfo) {
.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,
.attachmentCount = 1,
.pAttachments = &(VkAttachmentDescription) {
.format = VK_FORMAT_UNDEFINED, /* Our shaders don't care */
.samples = 1,
.loadOp = VK_ATTACHMENT_LOAD_OP_LOAD,
.storeOp = VK_ATTACHMENT_STORE_OP_STORE,
.initialLayout = VK_IMAGE_LAYOUT_GENERAL,
.finalLayout = VK_IMAGE_LAYOUT_GENERAL,
},
.subpassCount = 1,
.pSubpasses = &(VkSubpassDescription) {
.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS,
.inputAttachmentCount = 0,
.colorAttachmentCount = 1,
.pColorAttachments = &(VkAttachmentReference) {
.attachment = 0,
.layout = VK_IMAGE_LAYOUT_GENERAL,
},
.pResolveAttachments = NULL,
.pDepthStencilAttachment = &(VkAttachmentReference) {
.attachment = VK_ATTACHMENT_UNUSED,
},
.preserveAttachmentCount = 0,
.pPreserveAttachments = NULL,
},
.dependencyCount = 0,
},
alloc,
pass_h);
return result;
}
static VkResult
create_pipeline(struct anv_device *device,
uint32_t num_samples,
VkShaderModule vs_module_h,
VkRenderPass pass_h,
VkPipeline *pipeline_h)
{
VkResult result;
VkDevice device_h = anv_device_to_handle(device);
struct anv_shader_module fs_module = {
.nir = build_nir_fs(num_samples),
};
if (!fs_module.nir) {
/* XXX: Need more accurate error */
result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto fail;
}
result = anv_graphics_pipeline_create(device_h,
VK_NULL_HANDLE,
&(VkGraphicsPipelineCreateInfo) {
.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
.stageCount = 2,
.pStages = (VkPipelineShaderStageCreateInfo[]) {
{
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VK_SHADER_STAGE_VERTEX_BIT,
.module = vs_module_h,
.pName = "main",
},
{
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VK_SHADER_STAGE_FRAGMENT_BIT,
.module = anv_shader_module_to_handle(&fs_module),
.pName = "main",
},
},
.pVertexInputState = &(VkPipelineVertexInputStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,
.vertexBindingDescriptionCount = 1,
.pVertexBindingDescriptions = (VkVertexInputBindingDescription[]) {
{
.binding = 0,
.stride = sizeof(struct vertex_attrs),
.inputRate = VK_VERTEX_INPUT_RATE_VERTEX
},
},
.vertexAttributeDescriptionCount = 3,
.pVertexAttributeDescriptions = (VkVertexInputAttributeDescription[]) {
{
/* VUE Header */
.location = 0,
.binding = 0,
.format = VK_FORMAT_R32G32B32A32_UINT,
.offset = offsetof(struct vertex_attrs, vue_header),
},
{
/* Position */
.location = 1,
.binding = 0,
.format = VK_FORMAT_R32G32_SFLOAT,
.offset = offsetof(struct vertex_attrs, position),
},
{
/* Texture Coordinate */
.location = 2,
.binding = 0,
.format = VK_FORMAT_R32G32_SFLOAT,
.offset = offsetof(struct vertex_attrs, tex_position),
},
},
},
.pInputAssemblyState = &(VkPipelineInputAssemblyStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,
.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP,
.primitiveRestartEnable = false,
},
.pViewportState = &(VkPipelineViewportStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,
.viewportCount = 1,
.scissorCount = 1,
},
.pRasterizationState = &(VkPipelineRasterizationStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO,
.depthClampEnable = false,
.rasterizerDiscardEnable = false,
.polygonMode = VK_POLYGON_MODE_FILL,
.cullMode = VK_CULL_MODE_NONE,
.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE,
},
.pMultisampleState = &(VkPipelineMultisampleStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,
.rasterizationSamples = 1,
.sampleShadingEnable = false,
.pSampleMask = (VkSampleMask[]) { 0x1 },
.alphaToCoverageEnable = false,
.alphaToOneEnable = false,
},
.pColorBlendState = &(VkPipelineColorBlendStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,
.logicOpEnable = false,
.attachmentCount = 1,
.pAttachments = (VkPipelineColorBlendAttachmentState []) {
{
.colorWriteMask = VK_COLOR_COMPONENT_R_BIT |
VK_COLOR_COMPONENT_G_BIT |
VK_COLOR_COMPONENT_B_BIT |
VK_COLOR_COMPONENT_A_BIT,
},
},
},
.pDynamicState = &(VkPipelineDynamicStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO,
.dynamicStateCount = 2,
.pDynamicStates = (VkDynamicState[]) {
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR,
},
},
.layout = device->meta_state.resolve.pipeline_layout,
.renderPass = pass_h,
.subpass = 0,
},
&(struct anv_graphics_pipeline_create_info) {
.color_attachment_count = -1,
.use_repclear = false,
.disable_viewport = true,
.disable_scissor = true,
.disable_vs = true,
.use_rectlist = true
},
&device->meta_state.alloc,
pipeline_h);
if (result != VK_SUCCESS)
goto fail;
goto cleanup;
fail:
*pipeline_h = VK_NULL_HANDLE;
cleanup:
ralloc_free(fs_module.nir);
return result;
}
void
anv_device_finish_meta_resolve_state(struct anv_device *device)
{
struct anv_meta_state *state = &device->meta_state;
VkDevice device_h = anv_device_to_handle(device);
VkRenderPass pass_h = device->meta_state.resolve.pass;
VkPipelineLayout pipeline_layout_h = device->meta_state.resolve.pipeline_layout;
VkDescriptorSetLayout ds_layout_h = device->meta_state.resolve.ds_layout;
const VkAllocationCallbacks *alloc = &device->meta_state.alloc;
if (pass_h)
ANV_CALL(DestroyRenderPass)(device_h, pass_h,
&device->meta_state.alloc);
if (pipeline_layout_h)
ANV_CALL(DestroyPipelineLayout)(device_h, pipeline_layout_h, alloc);
if (ds_layout_h)
ANV_CALL(DestroyDescriptorSetLayout)(device_h, ds_layout_h, alloc);
for (uint32_t i = 0; i < ARRAY_SIZE(state->resolve.pipelines); ++i) {
VkPipeline pipeline_h = state->resolve.pipelines[i];
if (!pipeline_h) {
ANV_CALL(DestroyPipeline)(device_h, pipeline_h, alloc);
}
}
}
VkResult
anv_device_init_meta_resolve_state(struct anv_device *device)
{
VkResult res = VK_SUCCESS;
VkDevice device_h = anv_device_to_handle(device);
const VkAllocationCallbacks *alloc = &device->meta_state.alloc;
const isl_sample_count_mask_t sample_count_mask =
isl_device_get_sample_counts(&device->isl_dev);
zero(device->meta_state.resolve);
struct anv_shader_module vs_module = { .nir = build_nir_vs() };
if (!vs_module.nir) {
/* XXX: Need more accurate error */
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto fail;
}
VkShaderModule vs_module_h = anv_shader_module_to_handle(&vs_module);
res = anv_CreateDescriptorSetLayout(device_h,
&(VkDescriptorSetLayoutCreateInfo) {
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
.bindingCount = 1,
.pBindings = (VkDescriptorSetLayoutBinding[]) {
{
.binding = 0,
.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT,
},
},
},
alloc,
&device->meta_state.resolve.ds_layout);
if (res != VK_SUCCESS)
goto fail;
res = anv_CreatePipelineLayout(device_h,
&(VkPipelineLayoutCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
.setLayoutCount = 1,
.pSetLayouts = (VkDescriptorSetLayout[]) {
device->meta_state.resolve.ds_layout,
},
},
alloc,
&device->meta_state.resolve.pipeline_layout);
if (res != VK_SUCCESS)
goto fail;
res = create_pass(device, &device->meta_state.resolve.pass);
if (res != VK_SUCCESS)
goto fail;
for (uint32_t i = 0;
i < ARRAY_SIZE(device->meta_state.resolve.pipelines); ++i) {
uint32_t sample_count = 1 << i;
if (!(sample_count_mask & sample_count))
continue;
res = create_pipeline(device, sample_count, vs_module_h,
device->meta_state.resolve.pass,
&device->meta_state.resolve.pipelines[i]);
if (res != VK_SUCCESS)
goto fail;
}
goto cleanup;
fail:
anv_device_finish_meta_resolve_state(device);
cleanup:
ralloc_free(vs_module.nir);
return res;
}
static void
emit_resolve(struct anv_cmd_buffer *cmd_buffer,
struct anv_image_view *src_iview,
uint32_t src_level,
const VkOffset2D *src_offset,
struct anv_image_view *dest_iview,
uint32_t dest_level,
const VkOffset2D *dest_offset,
const VkExtent2D *resolve_extent)
{
struct anv_device *device = cmd_buffer->device;
VkDevice device_h = anv_device_to_handle(device);
VkCommandBuffer cmd_buffer_h = anv_cmd_buffer_to_handle(cmd_buffer);
const struct anv_image *src_image = src_iview->image;
const struct anv_image *dest_image = dest_iview->image;
VkDescriptorPool dummy_desc_pool_h = (VkDescriptorPool) 1;
uint32_t samples_log2 = ffs(src_image->samples) - 1;
const VkExtent2D dest_iview_extent = {
anv_minify(dest_image->extent.width, dest_level),
anv_minify(dest_image->extent.height, dest_level),
};
const struct vertex_attrs vertex_data[3] = {
{
.vue_header = {0},
.position = {
dest_offset->x + resolve_extent->width,
dest_offset->y + resolve_extent->height,
},
.tex_position = {
src_offset->x + resolve_extent->width,
src_offset->y + resolve_extent->height,
},
},
{
.vue_header = {0},
.position = {
dest_offset->x,
dest_offset->y + resolve_extent->height,
},
.tex_position = {
src_offset->x,
src_offset->y + resolve_extent->height,
},
},
{
.vue_header = {0},
.position = {
dest_offset->x,
dest_offset->y,
},
.tex_position = {
src_offset->x,
src_offset->y,
},
},
};
struct anv_state vertex_mem =
anv_cmd_buffer_emit_dynamic(cmd_buffer, vertex_data,
sizeof(vertex_data), 16);
struct anv_buffer vertex_buffer = {
.device = device,
.size = sizeof(vertex_data),
.bo = &cmd_buffer->dynamic_state_stream.block_pool->bo,
.offset = vertex_mem.offset,
};
VkBuffer vertex_buffer_h = anv_buffer_to_handle(&vertex_buffer);
anv_CmdBindVertexBuffers(cmd_buffer_h,
/*firstBinding*/ 0,
/*bindingCount*/ 1,
(VkBuffer[]) { vertex_buffer_h },
(VkDeviceSize[]) { 0 });
VkSampler sampler_h;
ANV_CALL(CreateSampler)(device_h,
&(VkSamplerCreateInfo) {
.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO,
.magFilter = VK_FILTER_NEAREST,
.minFilter = VK_FILTER_NEAREST,
.mipmapMode = VK_SAMPLER_MIPMAP_MODE_NEAREST,
.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE,
.addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE,
.addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE,
.mipLodBias = 0.0,
.anisotropyEnable = false,
.compareEnable = false,
.minLod = 0.0,
.maxLod = 0.0,
.unnormalizedCoordinates = false,
},
&cmd_buffer->pool->alloc,
&sampler_h);
VkDescriptorSet desc_set_h;
anv_AllocateDescriptorSets(device_h,
&(VkDescriptorSetAllocateInfo) {
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO,
.descriptorPool = dummy_desc_pool_h,
.descriptorSetCount = 1,
.pSetLayouts = (VkDescriptorSetLayout[]) {
device->meta_state.blit.ds_layout,
},
},
&desc_set_h);
ANV_FROM_HANDLE(anv_descriptor_set, desc_set, desc_set_h);
anv_UpdateDescriptorSets(device_h,
/*writeCount*/ 1,
(VkWriteDescriptorSet[]) {
{
.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstSet = desc_set_h,
.dstBinding = 0,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
.pImageInfo = (VkDescriptorImageInfo[]) {
{
.sampler = sampler_h,
.imageView = anv_image_view_to_handle(src_iview),
.imageLayout = VK_IMAGE_LAYOUT_GENERAL,
},
},
},
},
/*copyCount*/ 0,
/*copies */ NULL);
VkFramebuffer fb_h;
anv_CreateFramebuffer(device_h,
&(VkFramebufferCreateInfo) {
.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
.attachmentCount = 1,
.pAttachments = (VkImageView[]) {
anv_image_view_to_handle(dest_iview),
},
.width = dest_iview_extent.width,
.height = dest_iview_extent.height,
.layers = 1
},
&cmd_buffer->pool->alloc,
&fb_h);
ANV_CALL(CmdBeginRenderPass)(cmd_buffer_h,
&(VkRenderPassBeginInfo) {
.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,
.renderPass = device->meta_state.resolve.pass,
.framebuffer = fb_h,
.renderArea = {
.offset = { dest_offset->x, dest_offset->y },
.extent = { resolve_extent->width, resolve_extent->height },
},
.clearValueCount = 0,
.pClearValues = NULL,
},
VK_SUBPASS_CONTENTS_INLINE);
ANV_CALL(CmdSetViewport)(cmd_buffer_h,
/*firstViewport*/ 0,
/*viewportCount*/ 1,
(VkViewport[]) {
{
.x = 0,
.y = 0,
.width = dest_iview_extent.width,
.height = dest_iview_extent.height,
.minDepth = 0.0,
.maxDepth = 1.0,
},
});
ANV_CALL(CmdSetScissor)(cmd_buffer_h,
/*firstScissor*/ 0,
/*scissorCount*/ 1,
(VkRect2D[]) {
{
.offset = { 0, 0 },
.extent = dest_iview_extent,
},
});
VkPipeline pipeline_h = device->meta_state.resolve.pipelines[samples_log2];
ANV_FROM_HANDLE(anv_pipeline, pipeline, pipeline_h);
if (cmd_buffer->state.pipeline != pipeline) {
anv_CmdBindPipeline(cmd_buffer_h, VK_PIPELINE_BIND_POINT_GRAPHICS,
pipeline_h);
}
anv_CmdBindDescriptorSets(cmd_buffer_h,
VK_PIPELINE_BIND_POINT_GRAPHICS,
device->meta_state.resolve.pipeline_layout,
/*firstSet*/ 0,
/* setCount */ 1,
(VkDescriptorSet[]) {
desc_set_h,
},
/*copyCount*/ 0,
/*copies */ NULL);
ANV_CALL(CmdDraw)(cmd_buffer_h, 3, 1, 0, 0);
ANV_CALL(CmdEndRenderPass)(cmd_buffer_h);
/* All objects below are consumed by the draw call. We may safely destroy
* them.
*/
anv_descriptor_set_destroy(device, desc_set);
anv_DestroySampler(device_h, sampler_h,
&cmd_buffer->pool->alloc);
anv_DestroyFramebuffer(device_h, fb_h,
&cmd_buffer->pool->alloc);
}
void anv_CmdResolveImage(
VkCommandBuffer cmd_buffer_h,
VkImage src_image_h,
VkImageLayout src_image_layout,
VkImage dest_image_h,
VkImageLayout dest_image_layout,
uint32_t region_count,
const VkImageResolve* regions)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmd_buffer_h);
ANV_FROM_HANDLE(anv_image, src_image, src_image_h);
ANV_FROM_HANDLE(anv_image, dest_image, dest_image_h);
struct anv_meta_saved_state state;
anv_meta_save(&state, cmd_buffer, 0);
assert(src_image->samples > 1);
assert(dest_image->samples == 1);
if (src_image->samples >= 16) {
/* See commit aa3f9aaf31e9056a255f9e0472ebdfdaa60abe54 for the
* glBlitFramebuffer workaround for samples >= 16.
*/
anv_finishme("vkCmdResolveImage: need interpolation workaround when "
"samples >= 16");
}
if (src_image->array_size > 1)
anv_finishme("vkCmdResolveImage: multisample array images");
for (uint32_t r = 0; r < region_count; ++r) {
const VkImageResolve *region = &regions[r];
/* From the Vulkan 1.0 spec:
*
* - The aspectMask member of srcSubresource and dstSubresource must
* only contain VK_IMAGE_ASPECT_COLOR_BIT
*
* - The layerCount member of srcSubresource and dstSubresource must
* match
*/
assert(region->srcSubresource.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT);
assert(region->dstSubresource.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT);
assert(region->srcSubresource.layerCount ==
region->dstSubresource.layerCount);
const uint32_t src_base_layer =
anv_meta_get_iview_layer(src_image, &region->srcSubresource,
&region->srcOffset);
const uint32_t dest_base_layer =
anv_meta_get_iview_layer(dest_image, &region->dstSubresource,
&region->dstOffset);
for (uint32_t layer = 0; layer < region->srcSubresource.layerCount;
++layer) {
struct anv_image_view src_iview;
anv_image_view_init(&src_iview, cmd_buffer->device,
&(VkImageViewCreateInfo) {
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.image = src_image_h,
.viewType = anv_meta_get_view_type(src_image),
.format = src_image->format->vk_format,
.subresourceRange = {
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.baseMipLevel = region->srcSubresource.mipLevel,
.levelCount = 1,
.baseArrayLayer = src_base_layer + layer,
.layerCount = 1,
},
},
cmd_buffer, 0);
struct anv_image_view dest_iview;
anv_image_view_init(&dest_iview, cmd_buffer->device,
&(VkImageViewCreateInfo) {
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.image = dest_image_h,
.viewType = anv_meta_get_view_type(dest_image),
.format = dest_image->format->vk_format,
.subresourceRange = {
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.baseMipLevel = region->dstSubresource.mipLevel,
.levelCount = 1,
.baseArrayLayer = dest_base_layer + layer,
.layerCount = 1,
},
},
cmd_buffer, 0);
emit_resolve(cmd_buffer,
&src_iview,
region->srcSubresource.mipLevel,
&(VkOffset2D) {
.x = region->srcOffset.x,
.y = region->srcOffset.y,
},
&dest_iview,
region->dstSubresource.mipLevel,
&(VkOffset2D) {
.x = region->dstOffset.x,
.y = region->dstOffset.y,
},
&(VkExtent2D) {
.width = region->extent.width,
.height = region->extent.height,
});
}
}
anv_meta_restore(&state, cmd_buffer);
}

View File

@ -595,6 +595,17 @@ struct anv_meta_state {
VkPipelineLayout pipeline_layout;
VkDescriptorSetLayout ds_layout;
} blit;
struct {
/**
* Use pipeline `i` to resolve an image with `log2(i)` samples.
*/
VkPipeline pipelines[4];
VkRenderPass pass;
VkPipelineLayout pipeline_layout;
VkDescriptorSetLayout ds_layout;
} resolve;
};
struct anv_queue {