i965: Add Gen8+ INTEL_performance_query support

Enables access to OA unit metrics on Gen8+ via INTEL_performance_query.

v2: make use of new parameters coming from gen_device_info (Lionel)

Signed-off-by: Robert Bragg <robert@sixbynine.org>
Signed-off-by: Lionel Landwerlin <lionel.g.landwerlin@intel.com>
Reviewed-by: Kenneth Graunke <kenneth@whitecape.org>
This commit is contained in:
Robert Bragg 2015-11-25 16:41:04 +00:00 committed by Lionel Landwerlin
parent 243909d41e
commit 1fc7b95127
3 changed files with 288 additions and 33 deletions

View File

@ -116,7 +116,7 @@ EXTRA_DIST = \
# .c and .h files in one go so we don't hit problems with parallel
# make and multiple invocations of the same script trying to write
# to the same files.
brw_oa_hsw.h: brw_oa.py brw_oa_hsw.xml
$(PYTHON2) $(PYTHON_FLAGS) $(srcdir)/brw_oa.py --header=$(builddir)/brw_oa_hsw.h --chipset=hsw $(srcdir)/brw_oa_hsw.xml
brw_oa_hsw.c: brw_oa.py brw_oa_hsw.xml
$(PYTHON2) $(PYTHON_FLAGS) $(srcdir)/brw_oa.py --code=$(builddir)/brw_oa_hsw.c --chipset=hsw $(srcdir)/brw_oa_hsw.xml
brw_oa_%.h: brw_oa.py brw_oa_%.xml Makefile.am
$(PYTHON2) $(PYTHON_FLAGS) $(srcdir)/brw_oa.py --header=$(builddir)/brw_oa_$(*).h --chipset=$(*) $(srcdir)/brw_oa_$(*).xml
brw_oa_%.c: brw_oa.py brw_oa_%.xml Makefile.am
$(PYTHON2) $(PYTHON_FLAGS) $(srcdir)/brw_oa.py --code=$(builddir)/brw_oa_$(*).c --chipset=$(*) $(srcdir)/brw_oa_$(*).xml

View File

@ -1350,6 +1350,7 @@ enum brw_pixel_shader_coverage_mask_mode {
#define GEN6_MI_REPORT_PERF_COUNT ((0x28 << 23) | (3 - 2))
#define GEN8_MI_REPORT_PERF_COUNT ((0x28 << 23) | (4 - 2))
/* Maximum number of entries that can be addressed using a binding table
* pointer of type SURFTYPE_BUFFER

View File

@ -72,16 +72,33 @@
#include "brw_defines.h"
#include "brw_performance_query.h"
#include "brw_oa_hsw.h"
#include "brw_oa_bdw.h"
#include "brw_oa_chv.h"
#include "brw_oa_sklgt2.h"
#include "brw_oa_sklgt3.h"
#include "brw_oa_sklgt4.h"
#include "brw_oa_bxt.h"
#include "intel_batchbuffer.h"
#define FILE_DEBUG_FLAG DEBUG_PERFMON
/*
* The largest OA format we can use on Haswell includes:
* 1 timestamp, 45 A counters, 8 B counters and 8 C counters.
* The largest OA formats we can use include:
* For Haswell:
* 1 timestamp, 45 A counters, 8 B counters and 8 C counters.
* For Gen8+
* 1 timestamp, 1 clock, 36 A counters, 8 B counters and 8 C counters
*/
#define MAX_OA_REPORT_COUNTERS 62
#define OAREPORT_REASON_MASK 0x3f
#define OAREPORT_REASON_SHIFT 19
#define OAREPORT_REASON_TIMER (1<<0)
#define OAREPORT_REASON_TRIGGER1 (1<<1)
#define OAREPORT_REASON_TRIGGER2 (1<<2)
#define OAREPORT_REASON_CTX_SWITCH (1<<3)
#define OAREPORT_REASON_GO_TRANSITION (1<<4)
#define I915_PERF_OA_SAMPLE_SIZE (8 + /* drm_i915_perf_record_header */ \
256) /* OA counter report */
@ -535,9 +552,10 @@ drop_from_unaccumulated_query_list(struct brw_context *brw,
static uint64_t
timebase_scale(struct brw_context *brw, uint32_t u32_time_delta)
{
const struct gen_device_info *devinfo = &brw->screen->devinfo;
uint64_t tmp = ((uint64_t)u32_time_delta) * 1000000000ull;
return tmp ? tmp / brw->perfquery.sys_vars.timestamp_frequency : 0;
return tmp ? tmp / devinfo->timestamp_frequency : 0;
}
static void
@ -548,6 +566,28 @@ accumulate_uint32(const uint32_t *report0,
*accumulator += (uint32_t)(*report1 - *report0);
}
static void
accumulate_uint40(int a_index,
const uint32_t *report0,
const uint32_t *report1,
uint64_t *accumulator)
{
const uint8_t *high_bytes0 = (uint8_t *)(report0 + 40);
const uint8_t *high_bytes1 = (uint8_t *)(report1 + 40);
uint64_t high0 = (uint64_t)(high_bytes0[a_index]) << 32;
uint64_t high1 = (uint64_t)(high_bytes1[a_index]) << 32;
uint64_t value0 = report0[a_index + 4] | high0;
uint64_t value1 = report1[a_index + 4] | high1;
uint64_t delta;
if (value0 > value1)
delta = (1ULL << 40) + value1 - value0;
else
delta = value1 - value0;
*accumulator += delta;
}
/**
* Given pointers to starting and ending OA snapshots, add the deltas for each
* counter to the results.
@ -560,9 +600,27 @@ add_deltas(struct brw_context *brw,
{
const struct brw_perf_query_info *query = obj->query;
uint64_t *accumulator = obj->oa.accumulator;
int idx = 0;
int i;
switch (query->oa_format) {
case I915_OA_FORMAT_A32u40_A4u32_B8_C8:
accumulate_uint32(start + 1, end + 1, accumulator + idx++); /* timestamp */
accumulate_uint32(start + 3, end + 3, accumulator + idx++); /* clock */
/* 32x 40bit A counters... */
for (i = 0; i < 32; i++)
accumulate_uint40(i, start, end, accumulator + idx++);
/* 4x 32bit A counters... */
for (i = 0; i < 4; i++)
accumulate_uint32(start + 36 + i, end + 36 + i, accumulator + idx++);
/* 8x 32bit B counters + 8x 32bit C counters... */
for (i = 0; i < 16; i++)
accumulate_uint32(start + 48 + i, end + 48 + i, accumulator + idx++);
break;
case I915_OA_FORMAT_A45_B8_C8:
accumulate_uint32(start + 1, end + 1, accumulator); /* timestamp */
@ -671,7 +729,10 @@ read_oa_samples(struct brw_context *brw)
*
* These periodic snapshots help to ensure we handle counter overflow
* correctly by being frequent enough to ensure we don't miss multiple
* overflows of a counter between snapshots.
* overflows of a counter between snapshots. For Gen8+ the i915 perf
* snapshots provide the extra context-switch reports that let us
* subtract out the progress of counters associated with other
* contexts running on the system.
*/
static void
accumulate_oa_reports(struct brw_context *brw,
@ -683,6 +744,8 @@ accumulate_oa_reports(struct brw_context *brw,
uint32_t *last;
uint32_t *end;
struct exec_node *first_samples_node;
bool in_ctx = true;
uint32_t ctx_id;
assert(o->Ready);
@ -704,6 +767,8 @@ accumulate_oa_reports(struct brw_context *brw,
goto error;
}
ctx_id = start[2];
/* See if we have any periodic reports to accumulate too... */
/* N.B. The oa.samples_head was set when the query began and
@ -733,6 +798,7 @@ accumulate_oa_reports(struct brw_context *brw,
switch (header->type) {
case DRM_I915_PERF_RECORD_SAMPLE: {
uint32_t *report = (uint32_t *)(header + 1);
bool add = true;
/* Ignore reports that come before the start marker.
* (Note: takes care to allow overflow of 32bit timestamps)
@ -746,7 +812,35 @@ accumulate_oa_reports(struct brw_context *brw,
if (timebase_scale(brw, report[1] - end[1]) <= 5000000000)
goto end;
add_deltas(brw, obj, last, report);
/* For Gen8+ since the counters continue while other
* contexts are running we need to discount any unrelated
* deltas. The hardware automatically generates a report
* on context switch which gives us a new reference point
* to continuing adding deltas from.
*
* For Haswell we can rely on the HW to stop the progress
* of OA counters while any other context is acctive.
*/
if (brw->gen >= 8) {
if (in_ctx && report[2] != ctx_id) {
DBG("i915 perf: Switch AWAY (observed by ID change)\n");
in_ctx = false;
} else if (in_ctx == false && report[2] == ctx_id) {
DBG("i915 perf: Switch TO\n");
in_ctx = true;
add = false;
} else if (in_ctx) {
assert(report[2] == ctx_id);
DBG("i915 perf: Continuation IN\n");
} else {
assert(report[2] != ctx_id);
DBG("i915 perf: Continuation OUT\n");
add = false;
}
}
if (add)
add_deltas(brw, obj, last, report);
last = report;
@ -924,21 +1018,60 @@ brw_begin_perf_query(struct gl_context *ctx,
/* If the OA counters aren't already on, enable them. */
if (brw->perfquery.oa_stream_fd == -1) {
__DRIscreen *screen = brw->screen->driScrnPriv;
int period_exponent;
const struct gen_device_info *devinfo = &brw->screen->devinfo;
/* The timestamp for HSW+ increments every 80ns
/* The period_exponent gives a sampling period as follows:
* sample_period = timestamp_period * 2^(period_exponent + 1)
*
* The period_exponent gives a sampling period as follows:
* sample_period = 80ns * 2^(period_exponent + 1)
* The timestamps increments every 80ns (HSW), ~52ns (GEN9LP) or
* ~83ns (GEN8/9).
*
* The overflow period for Haswell can be calculated as:
* The counter overflow period is derived from the EuActive counter
* which reads a counter that increments by the number of clock
* cycles multiplied by the number of EUs. It can be calculated as:
*
* 2^(number of bits in A counter) / (n_eus * max_gen_freq * 2)
*
* 2^32 / (n_eus * max_gen_freq * 2)
* (E.g. 40 EUs @ 1GHz = ~53ms)
*
* We currently sample every 42 milliseconds...
* We select a sampling period inferior to that overflow period to
* ensure we cannot see more than 1 counter overflow, otherwise we
* could loose information.
*/
period_exponent = 18;
int a_counter_in_bits = 32;
if (devinfo->gen >= 8)
a_counter_in_bits = 40;
uint64_t overflow_period = pow(2, a_counter_in_bits) /
(brw->perfquery.sys_vars.n_eus *
/* drop 1GHz freq to have units in nanoseconds */
2);
DBG("A counter overflow period: %"PRIu64"ns, %"PRIu64"ms (n_eus=%"PRIu64")\n",
overflow_period, overflow_period / 1000000ul, brw->perfquery.sys_vars.n_eus);
int period_exponent = 0;
uint64_t prev_sample_period, next_sample_period;
for (int e = 0; e < 30; e++) {
prev_sample_period = 1000000000ull * pow(2, e + 1) / devinfo->timestamp_frequency;
next_sample_period = 1000000000ull * pow(2, e + 2) / devinfo->timestamp_frequency;
/* Take the previous sampling period, lower than the overflow
* period.
*/
if (prev_sample_period < overflow_period &&
next_sample_period > overflow_period)
period_exponent = e + 1;
}
if (period_exponent == 0) {
DBG("WARNING: enable to find a sampling exponent\n");
return false;
}
DBG("OA sampling exponent: %i ~= %"PRIu64"ms\n", period_exponent,
prev_sample_period / 1000000ul);
if (!open_i915_perf_oa_stream(brw,
query->oa_metrics_set_id,
@ -1565,6 +1698,7 @@ read_sysfs_drm_device_file_uint64(struct brw_context *brw,
static bool
init_oa_sys_vars(struct brw_context *brw, const char *sysfs_dev_dir)
{
const struct gen_device_info *devinfo = &brw->screen->devinfo;
uint64_t min_freq_mhz = 0, max_freq_mhz = 0;
if (!read_sysfs_drm_device_file_uint64(brw, sysfs_dev_dir,
@ -1579,30 +1713,104 @@ init_oa_sys_vars(struct brw_context *brw, const char *sysfs_dev_dir)
brw->perfquery.sys_vars.gt_min_freq = min_freq_mhz * 1000000;
brw->perfquery.sys_vars.gt_max_freq = max_freq_mhz * 1000000;
brw->perfquery.sys_vars.timestamp_frequency = devinfo->timestamp_frequency;
if (brw->is_haswell) {
const struct gen_device_info *info = &brw->screen->devinfo;
brw->perfquery.sys_vars.timestamp_frequency = 12500000;
if (info->gt == 1) {
if (devinfo->is_haswell) {
if (devinfo->gt == 1) {
brw->perfquery.sys_vars.n_eus = 10;
brw->perfquery.sys_vars.n_eu_slices = 1;
brw->perfquery.sys_vars.n_eu_sub_slices = 1;
brw->perfquery.sys_vars.slice_mask = 0x1;
brw->perfquery.sys_vars.subslice_mask = 0x1;
} else if (info->gt == 2) {
} else if (devinfo->gt == 2) {
brw->perfquery.sys_vars.n_eus = 20;
brw->perfquery.sys_vars.n_eu_slices = 1;
brw->perfquery.sys_vars.n_eu_sub_slices = 2;
brw->perfquery.sys_vars.slice_mask = 0x1;
brw->perfquery.sys_vars.subslice_mask = 0x3;
} else if (info->gt == 3) {
} else if (devinfo->gt == 3) {
brw->perfquery.sys_vars.n_eus = 40;
brw->perfquery.sys_vars.n_eu_slices = 2;
brw->perfquery.sys_vars.n_eu_sub_slices = 2;
brw->perfquery.sys_vars.slice_mask = 0x3;
brw->perfquery.sys_vars.subslice_mask = 0xf;
} else
unreachable("not reached");
} else {
__DRIscreen *screen = brw->screen->driScrnPriv;
drm_i915_getparam_t gp;
int ret;
int n_eus = 0;
int slice_mask = 0;
int ss_mask = 0;
int s_max = devinfo->num_slices; /* maximum number of slices */
int ss_max = 0; /* maximum number of subslices per slice */
uint64_t subslice_mask = 0;
int s;
return true;
} else
return false;
if (devinfo->gen == 8) {
if (devinfo->gt == 1) {
ss_max = 2;
} else {
ss_max = 3;
}
} else if (devinfo->gen == 9) {
/* XXX: beware that the kernel (as of writing) actually works as if
* ss_max == 4 since the HW register that reports the global subslice
* mask has 4 bits while in practice the limit is 3. It's also
* important that we initialize $SubsliceMask with 3 bits per slice
* since that's what the counter availability expressions in XML
* expect.
*/
ss_max = 3;
} else
return false;
gp.param = I915_PARAM_EU_TOTAL;
gp.value = &n_eus;
ret = drmIoctl(screen->fd, DRM_IOCTL_I915_GETPARAM, &gp);
if (ret)
return false;
gp.param = I915_PARAM_SLICE_MASK;
gp.value = &slice_mask;
ret = drmIoctl(screen->fd, DRM_IOCTL_I915_GETPARAM, &gp);
if (ret)
return false;
gp.param = I915_PARAM_SUBSLICE_MASK;
gp.value = &ss_mask;
ret = drmIoctl(screen->fd, DRM_IOCTL_I915_GETPARAM, &gp);
if (ret)
return false;
brw->perfquery.sys_vars.n_eus = n_eus;
brw->perfquery.sys_vars.n_eu_slices = __builtin_popcount(slice_mask);
brw->perfquery.sys_vars.slice_mask = slice_mask;
/* Note: the _SUBSLICE_MASK param only reports a global subslice mask
* which applies to all slices.
*
* Note: some of the metrics we have (as described in XML) are
* conditional on a $SubsliceMask variable which is expected to also
* reflect the slice mask by packing together subslice masks for each
* slice in one value..
*/
for (s = 0; s < s_max; s++) {
if (slice_mask & (1<<s)) {
subslice_mask |= ss_mask << (ss_max * s);
}
}
brw->perfquery.sys_vars.subslice_mask = subslice_mask;
brw->perfquery.sys_vars.n_eu_sub_slices =
__builtin_popcount(subslice_mask);
}
brw->perfquery.sys_vars.eu_threads_count =
brw->perfquery.sys_vars.n_eus * devinfo->num_thread_per_eu;
return true;
}
static bool
@ -1671,23 +1879,69 @@ get_sysfs_dev_dir(struct brw_context *brw,
return false;
}
typedef void (*perf_register_oa_queries_t)(struct brw_context *);
static perf_register_oa_queries_t
get_register_queries_function(const struct gen_device_info *devinfo)
{
if (devinfo->is_haswell)
return brw_oa_register_queries_hsw;
if (devinfo->is_cherryview)
return brw_oa_register_queries_chv;
if (devinfo->is_broadwell)
return brw_oa_register_queries_bdw;
if (devinfo->is_broxton)
return brw_oa_register_queries_bxt;
if (devinfo->is_skylake) {
if (devinfo->gt == 2)
return brw_oa_register_queries_sklgt2;
if (devinfo->gt == 3)
return brw_oa_register_queries_sklgt3;
if (devinfo->gt == 4)
return brw_oa_register_queries_sklgt4;
}
return NULL;
}
static unsigned
brw_init_perf_query_info(struct gl_context *ctx)
{
struct brw_context *brw = brw_context(ctx);
const struct gen_device_info *devinfo = &brw->screen->devinfo;
bool i915_perf_oa_available = false;
struct stat sb;
char sysfs_dev_dir[128];
perf_register_oa_queries_t oa_register;
if (brw->perfquery.n_queries)
return brw->perfquery.n_queries;
init_pipeline_statistic_query_registers(brw);
oa_register = get_register_queries_function(devinfo);
/* The existence of this sysctl parameter implies the kernel supports
* the i915 perf interface.
*/
if (brw->is_haswell &&
stat("/proc/sys/dev/i915/perf_stream_paranoid", &sb) == 0 &&
if (stat("/proc/sys/dev/i915/perf_stream_paranoid", &sb) == 0) {
/* If _paranoid == 1 then on Gen8+ we won't be able to access OA
* metrics unless running as root.
*/
if (devinfo->is_haswell)
i915_perf_oa_available = true;
else {
uint64_t paranoid = 1;
read_file_uint64("/proc/sys/dev/i915/perf_stream_paranoid", &paranoid);
if (paranoid == 0 || geteuid() == 0)
i915_perf_oa_available = true;
}
}
if (i915_perf_oa_available &&
oa_register &&
get_sysfs_dev_dir(brw, sysfs_dev_dir, sizeof(sysfs_dev_dir)) &&
init_oa_sys_vars(brw, sysfs_dev_dir))
{
@ -1695,10 +1949,10 @@ brw_init_perf_query_info(struct gl_context *ctx)
_mesa_hash_table_create(NULL, _mesa_key_hash_string,
_mesa_key_string_equal);
/* Index all the metric sets mesa knows about before looking to
* see what the kernel is advertising.
/* Index all the metric sets mesa knows about before looking to see what
* the kernel is advertising.
*/
brw_oa_register_queries_hsw(brw);
oa_register(brw);
enumerate_sysfs_metrics(brw, sysfs_dev_dir);
}