nir/constant_folding: use the new constant folding infrastructure

Signed-off-by: Connor Abbott <cwabbott0@gmail.com>
Reviewed-by: Jason Ekstrand <jason.ekstrand@intel.com>
This commit is contained in:
Connor Abbott 2015-01-22 23:32:16 -05:00 committed by Jason Ekstrand
parent 89285e4d47
commit 0aa31bf9c3
1 changed files with 20 additions and 157 deletions

View File

@ -25,7 +25,7 @@
*
*/
#include "nir.h"
#include "nir_constant_expressions.h"
#include <math.h>
/*
@ -38,20 +38,10 @@ struct constant_fold_state {
bool progress;
};
#define SRC_COMP(T, IDX, CMP) src[IDX]->value.T[instr->src[IDX].swizzle[CMP]]
#define SRC(T, IDX) SRC_COMP(T, IDX, i)
#define DEST_COMP(T, CMP) dest->value.T[CMP]
#define DEST(T) DEST_COMP(T, i)
#define FOLD_PER_COMP(EXPR) \
for (unsigned i = 0; i < instr->dest.dest.ssa.num_components; i++) { \
EXPR; \
} \
static bool
constant_fold_alu_instr(nir_alu_instr *instr, void *mem_ctx)
{
nir_load_const_instr *src[4], *dest;
nir_const_value src[4];
if (!instr->dest.dest.is_ssa)
return false;
@ -60,163 +50,36 @@ constant_fold_alu_instr(nir_alu_instr *instr, void *mem_ctx)
if (!instr->src[i].src.is_ssa)
return false;
if (instr->src[i].src.ssa->parent_instr->type != nir_instr_type_load_const)
nir_instr *src_instr = instr->src[i].src.ssa->parent_instr;
if (src_instr->type != nir_instr_type_load_const)
return false;
nir_load_const_instr* load_const = nir_instr_as_load_const(src_instr);
for (unsigned j = 0; j < instr->dest.dest.ssa.num_components; j++) {
src[i].u[j] = load_const->value.u[instr->src[i].swizzle[j]];
}
/* We shouldn't have any source modifiers in the optimization loop. */
assert(!instr->src[i].abs && !instr->src[i].negate);
src[i] = nir_instr_as_load_const(instr->src[i].src.ssa->parent_instr);
}
/* We shouldn't have any saturate modifiers in the optimization loop. */
assert(!instr->dest.saturate);
dest = nir_load_const_instr_create(mem_ctx,
instr->dest.dest.ssa.num_components);
nir_const_value dest =
nir_eval_const_opcode(instr->op, instr->dest.dest.ssa.num_components,
src);
switch (instr->op) {
case nir_op_ineg:
FOLD_PER_COMP(DEST(i) = -SRC(i, 0));
break;
case nir_op_fneg:
FOLD_PER_COMP(DEST(f) = -SRC(f, 0));
break;
case nir_op_inot:
FOLD_PER_COMP(DEST(i) = ~SRC(i, 0));
break;
case nir_op_fnot:
FOLD_PER_COMP(DEST(f) = (SRC(f, 0) == 0.0f) ? 1.0f : 0.0f);
break;
case nir_op_frcp:
FOLD_PER_COMP(DEST(f) = 1.0f / SRC(f, 0));
break;
case nir_op_frsq:
FOLD_PER_COMP(DEST(f) = 1.0f / sqrt(SRC(f, 0)));
break;
case nir_op_fsqrt:
FOLD_PER_COMP(DEST(f) = sqrtf(SRC(f, 0)));
break;
case nir_op_fexp:
FOLD_PER_COMP(DEST(f) = expf(SRC(f, 0)));
break;
case nir_op_flog:
FOLD_PER_COMP(DEST(f) = logf(SRC(f, 0)));
break;
case nir_op_fexp2:
FOLD_PER_COMP(DEST(f) = exp2f(SRC(f, 0)));
break;
case nir_op_flog2:
FOLD_PER_COMP(DEST(f) = log2f(SRC(f, 0)));
break;
case nir_op_f2i:
FOLD_PER_COMP(DEST(i) = SRC(f, 0));
break;
case nir_op_f2u:
FOLD_PER_COMP(DEST(u) = SRC(f, 0));
break;
case nir_op_i2f:
FOLD_PER_COMP(DEST(f) = SRC(i, 0));
break;
case nir_op_f2b:
FOLD_PER_COMP(DEST(u) = (SRC(i, 0) == 0.0f) ? NIR_FALSE : NIR_TRUE);
break;
case nir_op_b2f:
FOLD_PER_COMP(DEST(f) = SRC(u, 0) ? 1.0f : 0.0f);
break;
case nir_op_i2b:
FOLD_PER_COMP(DEST(u) = SRC(i, 0) ? NIR_TRUE : NIR_FALSE);
break;
case nir_op_u2f:
FOLD_PER_COMP(DEST(f) = SRC(u, 0));
break;
case nir_op_bany2:
DEST_COMP(u, 0) = (SRC_COMP(u, 0, 0) || SRC_COMP(u, 0, 1)) ?
NIR_TRUE : NIR_FALSE;
break;
case nir_op_fadd:
FOLD_PER_COMP(DEST(f) = SRC(f, 0) + SRC(f, 1));
break;
case nir_op_iadd:
FOLD_PER_COMP(DEST(i) = SRC(i, 0) + SRC(i, 1));
break;
case nir_op_fsub:
FOLD_PER_COMP(DEST(f) = SRC(f, 0) - SRC(f, 1));
break;
case nir_op_isub:
FOLD_PER_COMP(DEST(i) = SRC(i, 0) - SRC(i, 1));
break;
case nir_op_fmul:
FOLD_PER_COMP(DEST(f) = SRC(f, 0) * SRC(f, 1));
break;
case nir_op_imul:
FOLD_PER_COMP(DEST(i) = SRC(i, 0) * SRC(i, 1));
break;
case nir_op_fdiv:
FOLD_PER_COMP(DEST(f) = SRC(f, 0) / SRC(f, 1));
break;
case nir_op_idiv:
FOLD_PER_COMP(DEST(i) = SRC(i, 0) / SRC(i, 1));
break;
case nir_op_udiv:
FOLD_PER_COMP(DEST(u) = SRC(u, 0) / SRC(u, 1));
break;
case nir_op_flt:
FOLD_PER_COMP(DEST(u) = (SRC(f, 0) < SRC(f, 1)) ? NIR_TRUE : NIR_FALSE);
break;
case nir_op_fge:
FOLD_PER_COMP(DEST(u) = (SRC(f, 0) >= SRC(f, 1)) ? NIR_TRUE : NIR_FALSE);
break;
case nir_op_feq:
FOLD_PER_COMP(DEST(u) = (SRC(f, 0) == SRC(f, 1)) ? NIR_TRUE : NIR_FALSE);
break;
case nir_op_fne:
FOLD_PER_COMP(DEST(u) = (SRC(f, 0) != SRC(f, 1)) ? NIR_TRUE : NIR_FALSE);
break;
case nir_op_ilt:
FOLD_PER_COMP(DEST(u) = (SRC(i, 0) < SRC(i, 1)) ? NIR_TRUE : NIR_FALSE);
break;
case nir_op_ige:
FOLD_PER_COMP(DEST(u) = (SRC(i, 0) >= SRC(i, 1)) ? NIR_TRUE : NIR_FALSE);
break;
case nir_op_ieq:
FOLD_PER_COMP(DEST(u) = (SRC(i, 0) == SRC(i, 1)) ? NIR_TRUE : NIR_FALSE);
break;
case nir_op_ine:
FOLD_PER_COMP(DEST(u) = (SRC(i, 0) != SRC(i, 1)) ? NIR_TRUE : NIR_FALSE);
break;
case nir_op_ult:
FOLD_PER_COMP(DEST(u) = (SRC(u, 0) < SRC(u, 1)) ? NIR_TRUE : NIR_FALSE);
break;
case nir_op_uge:
FOLD_PER_COMP(DEST(u) = (SRC(u, 0) >= SRC(u, 1)) ? NIR_TRUE : NIR_FALSE);
break;
case nir_op_ishl:
FOLD_PER_COMP(DEST(i) = SRC(i, 0) << SRC(i, 1));
break;
case nir_op_ishr:
FOLD_PER_COMP(DEST(i) = SRC(i, 0) >> SRC(i, 1));
break;
case nir_op_ushr:
FOLD_PER_COMP(DEST(u) = SRC(u, 0) >> SRC(u, 1));
break;
case nir_op_iand:
FOLD_PER_COMP(DEST(i) = SRC(i, 0) & SRC(i, 1));
break;
case nir_op_ior:
FOLD_PER_COMP(DEST(i) = SRC(i, 0) | SRC(i, 1));
break;
case nir_op_ixor:
FOLD_PER_COMP(DEST(i) = SRC(i, 0) ^ SRC(i, 1));
break;
default:
ralloc_free(dest);
return false;
}
nir_load_const_instr *new_instr =
nir_load_const_instr_create(mem_ctx,
instr->dest.dest.ssa.num_components);
nir_instr_insert_before(&instr->instr, &dest->instr);
new_instr->value = dest;
nir_ssa_def_rewrite_uses(&instr->dest.dest.ssa, nir_src_for_ssa(&dest->def),
nir_instr_insert_before(&instr->instr, &new_instr->instr);
nir_ssa_def_rewrite_uses(&instr->dest.dest.ssa, nir_src_for_ssa(&new_instr->def),
mem_ctx);
nir_instr_remove(&instr->instr);