nir: Split ALU instructions in loops that read phis

A single shader in Unigine Superposition is affected by this change.
A single iadd is moved to the end of a loop.  This iadd is involved in
a complex set of logic to terminate the loop, and an extra mov
instruction is inserted.  This shader really needs the optimization
suggested by bugzilla #94747, and I expect that to make this tiny
regression go away.

All Gen7+ platforms had similar results. (Skylake shown)
total instructions in shared programs: 15047543 -> 15047545 (<.01%)
instructions in affected programs: 565 -> 567 (0.35%)
helped: 0
HURT: 2

total cycles in shared programs: 369977253 -> 369978253 (<.01%)
cycles in affected programs: 127910 -> 128910 (0.78%)
helped: 0
HURT: 2

v2: Skip nir_op_vec{2,3,4} and nir_op_[fi]mov instructions to avoid
infinite optimization loops.  Remove the original ALU instruciton after
all of its readers are modified to read the new ALU instruction.

v3: Extend to the more general case.  The if the prev-block value from
the phi is not undef, this means the ALU instruction has to be
duplicated in both the prev-block and the continue-block.

Fixes: 8fb8ebfbb0 ("intel/compiler: More peephole select")
Reviewed-by: Timothy Arceri <tarceri@itsqueeze.com>
This commit is contained in:
Ian Romanick 2019-01-17 17:34:47 -08:00
parent 0c0c69729b
commit 0881e90c09
1 changed files with 294 additions and 0 deletions

View File

@ -27,6 +27,10 @@
#include "nir_control_flow.h"
#include "nir_loop_analyze.h"
static nir_ssa_def *clone_alu_and_replace_src_defs(nir_builder *b,
const nir_alu_instr *alu,
nir_ssa_def **src_defs);
/**
* Gets the single block that jumps back to the loop header. Already assumes
* there is exactly one such block.
@ -249,6 +253,295 @@ opt_peel_loop_initial_if(nir_loop *loop)
return true;
}
static bool
alu_instr_is_comparison(const nir_alu_instr *alu)
{
switch (alu->op) {
case nir_op_flt32:
case nir_op_fge32:
case nir_op_feq32:
case nir_op_fne32:
case nir_op_ilt32:
case nir_op_ult32:
case nir_op_ige32:
case nir_op_uge32:
case nir_op_ieq32:
case nir_op_ine32:
return true;
default:
return nir_alu_instr_is_comparison(alu);
}
}
static bool
alu_instr_is_type_conversion(const nir_alu_instr *alu)
{
return nir_op_infos[alu->op].num_inputs == 1 &&
nir_alu_type_get_base_type(nir_op_infos[alu->op].output_type) !=
nir_alu_type_get_base_type(nir_op_infos[alu->op].input_types[0]);
}
/**
* Splits ALU instructions that have a source that is a phi node
*
* ALU instructions in the header block of a loop that meet the following
* criteria can be split.
*
* - The loop has no continue instructions other than the "natural" continue
* at the bottom of the loop.
*
* - At least one source of the instruction is a phi node from the header block.
*
* and either this rule
*
* - The phi node selects undef from the block before the loop and a value
* from the continue block of the loop.
*
* or these two rules
*
* - The phi node selects a constant from the block before the loop.
*
* - The non-phi source of the ALU instruction comes from a block that
* dominates the block before the loop. The most common failure mode for
* this check is sources that are generated in the loop header block.
*
* The split process moves the original ALU instruction to the bottom of the
* loop. The phi node source is replaced with the value from the phi node
* selected from the continue block (i.e., the non-undef value). A new phi
* node is added to the header block that selects either undef from the block
* before the loop or the result of the (moved) ALU instruction.
*
* The splitting transforms a loop like:
*
* vec1 32 ssa_7 = undefined
* vec1 32 ssa_8 = load_const (0x00000001)
* vec1 32 ssa_10 = load_const (0x00000000)
* // succs: block_1
* loop {
* block block_1:
* // preds: block_0 block_4
* vec1 32 ssa_11 = phi block_0: ssa_7, block_4: ssa_15
* vec1 32 ssa_12 = phi block_0: ssa_1, block_4: ssa_15
* vec1 32 ssa_13 = phi block_0: ssa_10, block_4: ssa_16
* vec1 32 ssa_14 = iadd ssa_11, ssa_8
* vec1 32 ssa_15 = b32csel ssa_13, ssa_14, ssa_12
* ...
* // succs: block_1
* }
*
* into:
*
* vec1 32 ssa_7 = undefined
* vec1 32 ssa_8 = load_const (0x00000001)
* vec1 32 ssa_10 = load_const (0x00000000)
* // succs: block_1
* loop {
* block block_1:
* // preds: block_0 block_4
* vec1 32 ssa_11 = phi block_0: ssa_7, block_4: ssa_15
* vec1 32 ssa_12 = phi block_0: ssa_1, block_4: ssa_15
* vec1 32 ssa_13 = phi block_0: ssa_10, block_4: ssa_16
* vec1 32 ssa_21 = phi block_0: sss_7, block_4: ssa_20
* vec1 32 ssa_15 = b32csel ssa_13, ssa_21, ssa_12
* ...
* vec1 32 ssa_20 = iadd ssa_15, ssa_8
* // succs: block_1
* }
*
* If the phi does not select an undef, the instruction is duplicated in the
* loop continue block (as in the undef case) and in the previous block. When
* the ALU instruction is duplicated in the previous block, the correct source
* must be selected from the phi node.
*/
static bool
opt_split_alu_of_phi(nir_builder *b, nir_loop *loop)
{
bool progress = false;
nir_block *header_block = nir_loop_first_block(loop);
nir_block *const prev_block =
nir_cf_node_as_block(nir_cf_node_prev(&loop->cf_node));
/* It would be insane if this were not true */
assert(_mesa_set_search(header_block->predecessors, prev_block));
/* The loop must have exactly one continue block which could be a block
* ending in a continue instruction or the "natural" continue from the
* last block in the loop back to the top.
*/
if (header_block->predecessors->entries != 2)
return false;
nir_foreach_instr_safe(instr, header_block) {
if (instr->type != nir_instr_type_alu)
continue;
nir_alu_instr *const alu = nir_instr_as_alu(instr);
/* Most ALU ops produce an undefined result if any source is undef.
* However, operations like bcsel only produce undefined results of the
* first operand is undef. Even in the undefined case, the result
* should be one of the other two operands, so the result of the bcsel
* should never be replaced with undef.
*
* nir_op_vec{2,3,4}, nir_op_imov, and nir_op_fmov are excluded because
* they can easily lead to infinite optimization loops.
*/
if (alu->op == nir_op_bcsel ||
alu->op == nir_op_b32csel ||
alu->op == nir_op_fcsel ||
alu->op == nir_op_vec2 ||
alu->op == nir_op_vec3 ||
alu->op == nir_op_vec4 ||
alu->op == nir_op_imov ||
alu->op == nir_op_fmov ||
alu_instr_is_comparison(alu) ||
alu_instr_is_type_conversion(alu))
continue;
bool has_phi_src_from_prev_block = false;
bool all_non_phi_exist_in_prev_block = true;
bool is_prev_result_undef = true;
bool is_prev_result_const = true;
nir_ssa_def *prev_srcs[8]; // FINISHME: Array size?
nir_ssa_def *continue_srcs[8]; // FINISHME: Array size?
for (unsigned i = 0; i < nir_op_infos[alu->op].num_inputs; i++) {
nir_instr *const src_instr = alu->src[i].src.ssa->parent_instr;
/* If the source is a phi in the loop header block, then the
* prev_srcs and continue_srcs will come from the different sources
* of the phi.
*/
if (src_instr->type == nir_instr_type_phi &&
src_instr->block == header_block) {
nir_phi_instr *const phi = nir_instr_as_phi(src_instr);
/* Only strictly need to NULL out the pointers when the assertions
* (below) are compiled in. Debugging a NULL pointer deref in the
* wild is easier than debugging a random pointer deref, so set
* NULL unconditionally just to be safe.
*/
prev_srcs[i] = NULL;
continue_srcs[i] = NULL;
nir_foreach_phi_src(src_of_phi, phi) {
if (src_of_phi->pred == prev_block) {
if (src_of_phi->src.ssa->parent_instr->type !=
nir_instr_type_ssa_undef) {
is_prev_result_undef = false;
}
if (src_of_phi->src.ssa->parent_instr->type !=
nir_instr_type_load_const) {
is_prev_result_const = false;
}
prev_srcs[i] = src_of_phi->src.ssa;
has_phi_src_from_prev_block = true;
} else
continue_srcs[i] = src_of_phi->src.ssa;
}
assert(prev_srcs[i] != NULL);
assert(continue_srcs[i] != NULL);
} else {
/* If the source is not a phi (or a phi in a block other than the
* loop header), then the value must exist in prev_block.
*/
if (!nir_block_dominates(src_instr->block, prev_block)) {
all_non_phi_exist_in_prev_block = false;
break;
}
prev_srcs[i] = alu->src[i].src.ssa;
continue_srcs[i] = alu->src[i].src.ssa;
}
}
if (has_phi_src_from_prev_block && all_non_phi_exist_in_prev_block &&
(is_prev_result_undef || is_prev_result_const)) {
nir_block *const continue_block = find_continue_block(loop);
nir_ssa_def *prev_value;
if (!is_prev_result_undef) {
b->cursor = nir_after_block(prev_block);
prev_value = clone_alu_and_replace_src_defs(b, alu, prev_srcs);
} else {
/* Since the undef used as the source of the original ALU
* instruction may have different number of components or
* bit size than the result of that instruction, a new
* undef must be created.
*/
nir_ssa_undef_instr *undef =
nir_ssa_undef_instr_create(b->shader,
alu->dest.dest.ssa.num_components,
alu->dest.dest.ssa.bit_size);
nir_instr_insert_after_block(prev_block, &undef->instr);
prev_value = &undef->def;
}
/* Make a copy of the original ALU instruction. Replace the sources
* of the new instruction that read a phi with an undef source from
* prev_block with the non-undef source of that phi.
*
* Insert the new instruction at the end of the continue block.
*/
b->cursor = nir_after_block(continue_block);
nir_ssa_def *const alu_copy =
clone_alu_and_replace_src_defs(b, alu, continue_srcs);
/* Make a new phi node that selects a value from prev_block and the
* result of the new instruction from continue_block.
*/
nir_phi_instr *const phi = nir_phi_instr_create(b->shader);
nir_phi_src *phi_src;
phi_src = ralloc(phi, nir_phi_src);
phi_src->pred = prev_block;
phi_src->src = nir_src_for_ssa(prev_value);
exec_list_push_tail(&phi->srcs, &phi_src->node);
phi_src = ralloc(phi, nir_phi_src);
phi_src->pred = continue_block;
phi_src->src = nir_src_for_ssa(alu_copy);
exec_list_push_tail(&phi->srcs, &phi_src->node);
nir_ssa_dest_init(&phi->instr, &phi->dest,
alu_copy->num_components, alu_copy->bit_size, NULL);
b->cursor = nir_after_phis(header_block);
nir_builder_instr_insert(b, &phi->instr);
/* Modify all readers of the original ALU instruction to read the
* result of the phi.
*/
nir_foreach_use_safe(use_src, &alu->dest.dest.ssa) {
nir_instr_rewrite_src(use_src->parent_instr,
use_src,
nir_src_for_ssa(&phi->dest.ssa));
}
nir_foreach_if_use_safe(use_src, &alu->dest.dest.ssa) {
nir_if_rewrite_condition(use_src->parent_if,
nir_src_for_ssa(&phi->dest.ssa));
}
/* Since the original ALU instruction no longer has any readers, just
* remove it.
*/
nir_instr_remove_v(&alu->instr);
ralloc_free(alu);
progress = true;
}
}
return progress;
}
static bool
is_block_empty(nir_block *block)
{
@ -853,6 +1146,7 @@ opt_if_safe_cf_list(nir_builder *b, struct exec_list *cf_list)
case nir_cf_node_loop: {
nir_loop *loop = nir_cf_node_as_loop(cf_node);
progress |= opt_if_safe_cf_list(b, &loop->body);
progress |= opt_split_alu_of_phi(b, loop);
break;
}