mesa/src/amd/compiler/aco_lower_to_hw_instr.cpp

766 lines
32 KiB
C++
Raw Normal View History

/*
* Copyright © 2018 Valve Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Daniel Schürmann (daniel.schuermann@campus.tu-berlin.de)
*
*/
#include <map>
#include "aco_ir.h"
#include "aco_builder.h"
#include "util/u_math.h"
#include "sid.h"
namespace aco {
struct lower_context {
Program *program;
std::vector<aco_ptr<Instruction>> instructions;
};
void emit_dpp_op(lower_context *ctx, PhysReg dst, PhysReg src0, PhysReg src1, PhysReg vtmp, PhysReg wrtmp,
aco_opcode op, Format format, bool clobber_vcc, unsigned dpp_ctrl,
unsigned row_mask, unsigned bank_mask, bool bound_ctrl_zero, unsigned size,
Operand *identity=NULL) /* for VOP3 with sparse writes */
{
RegClass rc = RegClass(RegType::vgpr, size);
if (format == Format::VOP3) {
Builder bld(ctx->program, &ctx->instructions);
if (identity)
bld.vop1(aco_opcode::v_mov_b32, Definition(vtmp, v1), identity[0]);
if (identity && size >= 2)
bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{vtmp+1}, v1), identity[1]);
for (unsigned i = 0; i < size; i++)
bld.vop1_dpp(aco_opcode::v_mov_b32, Definition(PhysReg{vtmp+i}, v1), Operand(PhysReg{src0+i}, v1),
dpp_ctrl, row_mask, bank_mask, bound_ctrl_zero);
if (clobber_vcc)
bld.vop3(op, Definition(dst, rc), Definition(vcc, s2), Operand(vtmp, rc), Operand(src1, rc));
else
bld.vop3(op, Definition(dst, rc), Operand(vtmp, rc), Operand(src1, rc));
} else {
assert(format == Format::VOP2 || format == Format::VOP1);
assert(size == 1 || (op == aco_opcode::v_mov_b32));
for (unsigned i = 0; i < size; i++) {
aco_ptr<DPP_instruction> dpp{create_instruction<DPP_instruction>(
op, (Format) ((uint32_t) format | (uint32_t) Format::DPP),
format == Format::VOP2 ? 2 : 1, clobber_vcc ? 2 : 1)};
dpp->operands[0] = Operand(PhysReg{src0+i}, rc);
if (format == Format::VOP2)
dpp->operands[1] = Operand(PhysReg{src1+i}, rc);
dpp->definitions[0] = Definition(PhysReg{dst+i}, rc);
if (clobber_vcc)
dpp->definitions[1] = Definition(vcc, s2);
dpp->dpp_ctrl = dpp_ctrl;
dpp->row_mask = row_mask;
dpp->bank_mask = bank_mask;
dpp->bound_ctrl = bound_ctrl_zero;
ctx->instructions.emplace_back(std::move(dpp));
}
}
}
uint32_t get_reduction_identity(ReduceOp op, unsigned idx)
{
switch (op) {
case iadd32:
case iadd64:
case fadd32:
case fadd64:
case ior32:
case ior64:
case ixor32:
case ixor64:
case umax32:
case umax64:
return 0;
case imul32:
case imul64:
return idx ? 0 : 1;
case fmul32:
return 0x3f800000u; /* 1.0 */
case fmul64:
return idx ? 0x3ff00000u : 0u; /* 1.0 */
case imin32:
return INT32_MAX;
case imin64:
return idx ? 0x7fffffffu : 0xffffffffu;
case imax32:
return INT32_MIN;
case imax64:
return idx ? 0x80000000u : 0;
case umin32:
case umin64:
case iand32:
case iand64:
return 0xffffffffu;
case fmin32:
return 0x7f800000u; /* infinity */
case fmin64:
return idx ? 0x7ff00000u : 0u; /* infinity */
case fmax32:
return 0xff800000u; /* negative infinity */
case fmax64:
return idx ? 0xfff00000u : 0u; /* negative infinity */
}
unreachable("Invalid reduction operation");
}
aco_opcode get_reduction_opcode(lower_context *ctx, ReduceOp op, bool *clobber_vcc, Format *format)
{
*clobber_vcc = false;
*format = Format::VOP2;
switch (op) {
case iadd32:
*clobber_vcc = ctx->program->chip_class < GFX9;
return ctx->program->chip_class < GFX9 ? aco_opcode::v_add_co_u32 : aco_opcode::v_add_u32;
case imul32:
*format = Format::VOP3;
return aco_opcode::v_mul_lo_u32;
case fadd32:
return aco_opcode::v_add_f32;
case fmul32:
return aco_opcode::v_mul_f32;
case imax32:
return aco_opcode::v_max_i32;
case imin32:
return aco_opcode::v_min_i32;
case umin32:
return aco_opcode::v_min_u32;
case umax32:
return aco_opcode::v_max_u32;
case fmin32:
return aco_opcode::v_min_f32;
case fmax32:
return aco_opcode::v_max_f32;
case iand32:
return aco_opcode::v_and_b32;
case ixor32:
return aco_opcode::v_xor_b32;
case ior32:
return aco_opcode::v_or_b32;
case iadd64:
case imul64:
assert(false);
break;
case fadd64:
*format = Format::VOP3;
return aco_opcode::v_add_f64;
case fmul64:
*format = Format::VOP3;
return aco_opcode::v_mul_f64;
case imin64:
case imax64:
case umin64:
case umax64:
assert(false);
break;
case fmin64:
*format = Format::VOP3;
return aco_opcode::v_min_f64;
case fmax64:
*format = Format::VOP3;
return aco_opcode::v_max_f64;
case iand64:
case ior64:
case ixor64:
assert(false);
break;
}
unreachable("Invalid reduction operation");
return aco_opcode::v_min_u32;
}
void emit_vopn(lower_context *ctx, PhysReg dst, PhysReg src0, PhysReg src1,
RegClass rc, aco_opcode op, Format format, bool clobber_vcc)
{
aco_ptr<Instruction> instr;
switch (format) {
case Format::VOP2:
instr.reset(create_instruction<VOP2_instruction>(op, format, 2, clobber_vcc ? 2 : 1));
break;
case Format::VOP3:
instr.reset(create_instruction<VOP3A_instruction>(op, format, 2, clobber_vcc ? 2 : 1));
break;
default:
assert(false);
}
instr->operands[0] = Operand(src0, rc);
instr->operands[1] = Operand(src1, rc);
instr->definitions[0] = Definition(dst, rc);
if (clobber_vcc)
instr->definitions[1] = Definition(vcc, s2);
ctx->instructions.emplace_back(std::move(instr));
}
void emit_reduction(lower_context *ctx, aco_opcode op, ReduceOp reduce_op, unsigned cluster_size, PhysReg tmp,
PhysReg stmp, PhysReg vtmp, PhysReg sitmp, Operand src, Definition dst)
{
assert(cluster_size == 64 || op == aco_opcode::p_reduce);
Builder bld(ctx->program, &ctx->instructions);
PhysReg wrtmp{0}; /* should never be needed */
Format format;
bool should_clobber_vcc;
aco_opcode reduce_opcode = get_reduction_opcode(ctx, reduce_op, &should_clobber_vcc, &format);
Operand identity[2];
identity[0] = Operand(get_reduction_identity(reduce_op, 0));
identity[1] = Operand(get_reduction_identity(reduce_op, 1));
Operand vcndmask_identity[2] = {identity[0], identity[1]};
/* First, copy the source to tmp and set inactive lanes to the identity */
// note: this clobbers SCC!
bld.sop1(aco_opcode::s_or_saveexec_b64, Definition(stmp, s2), Definition(scc, s1), Definition(exec, s2), Operand(UINT64_MAX), Operand(exec, s2));
for (unsigned i = 0; i < src.size(); i++) {
/* p_exclusive_scan needs it to be a sgpr or inline constant for the v_writelane_b32 */
if (identity[i].isLiteral() && op == aco_opcode::p_exclusive_scan) {
bld.sop1(aco_opcode::s_mov_b32, Definition(PhysReg{sitmp+i}, s1), identity[i]);
identity[i] = Operand(PhysReg{sitmp+i}, s1);
bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{tmp+i}, v1), identity[i]);
vcndmask_identity[i] = Operand(PhysReg{tmp+i}, v1);
} else if (identity[i].isLiteral()) {
bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{tmp+i}, v1), identity[i]);
vcndmask_identity[i] = Operand(PhysReg{tmp+i}, v1);
}
}
for (unsigned i = 0; i < src.size(); i++) {
bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(PhysReg{tmp + i}, v1),
vcndmask_identity[i], Operand(PhysReg{src.physReg() + i}, v1),
Operand(stmp, s2));
}
bool exec_restored = false;
bool dst_written = false;
switch (op) {
case aco_opcode::p_reduce:
if (cluster_size == 1) break;
emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, wrtmp, reduce_opcode, format, should_clobber_vcc,
dpp_quad_perm(1, 0, 3, 2), 0xf, 0xf, false, src.size());
if (cluster_size == 2) break;
emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, wrtmp, reduce_opcode, format, should_clobber_vcc,
dpp_quad_perm(2, 3, 0, 1), 0xf, 0xf, false, src.size());
if (cluster_size == 4) break;
emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, wrtmp, reduce_opcode, format, should_clobber_vcc,
dpp_row_half_mirror, 0xf, 0xf, false, src.size());
if (cluster_size == 8) break;
emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, wrtmp, reduce_opcode, format, should_clobber_vcc,
dpp_row_mirror, 0xf, 0xf, false, src.size());
if (cluster_size == 16) break;
if (cluster_size == 32) {
for (unsigned i = 0; i < src.size(); i++)
bld.ds(aco_opcode::ds_swizzle_b32, Definition(PhysReg{vtmp+i}, v1), Operand(PhysReg{tmp+i}, s1), ds_pattern_bitmode(0x1f, 0, 0x10));
bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(stmp, s2));
exec_restored = true;
emit_vopn(ctx, dst.physReg(), vtmp, tmp, src.regClass(), reduce_opcode, format, should_clobber_vcc);
dst_written = true;
} else {
assert(cluster_size == 64);
emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, wrtmp, reduce_opcode, format, should_clobber_vcc,
dpp_row_bcast15, 0xa, 0xf, false, src.size());
emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, wrtmp, reduce_opcode, format, should_clobber_vcc,
dpp_row_bcast31, 0xc, 0xf, false, src.size());
}
break;
case aco_opcode::p_exclusive_scan:
emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, wrtmp, aco_opcode::v_mov_b32, Format::VOP1, false,
dpp_wf_sr1, 0xf, 0xf, true, src.size());
for (unsigned i = 0; i < src.size(); i++) {
if (!identity[i].isConstant() || identity[i].constantValue()) { /* bound_ctrl should take case of this overwise */
assert((identity[i].isConstant() && !identity[i].isLiteral()) || identity[i].physReg() == PhysReg{sitmp+i});
bld.vop3(aco_opcode::v_writelane_b32, Definition(PhysReg{tmp+i}, v1),
identity[i], Operand(0u));
}
}
/* fall through */
case aco_opcode::p_inclusive_scan:
assert(cluster_size == 64);
emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, wrtmp, reduce_opcode, format, should_clobber_vcc,
dpp_row_sr(1), 0xf, 0xf, false, src.size(), identity);
emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, wrtmp, reduce_opcode, format, should_clobber_vcc,
dpp_row_sr(2), 0xf, 0xf, false, src.size(), identity);
emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, wrtmp, reduce_opcode, format, should_clobber_vcc,
dpp_row_sr(4), 0xf, 0xf, false, src.size(), identity);
emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, wrtmp, reduce_opcode, format, should_clobber_vcc,
dpp_row_sr(8), 0xf, 0xf, false, src.size(), identity);
emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, wrtmp, reduce_opcode, format, should_clobber_vcc,
dpp_row_bcast15, 0xa, 0xf, false, src.size(), identity);
emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, wrtmp, reduce_opcode, format, should_clobber_vcc,
dpp_row_bcast31, 0xc, 0xf, false, src.size(), identity);
break;
default:
unreachable("Invalid reduction mode");
}
if (!exec_restored)
bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(stmp, s2));
if (op == aco_opcode::p_reduce && cluster_size == 64) {
for (unsigned k = 0; k < src.size(); k++) {
bld.vop3(aco_opcode::v_readlane_b32, Definition(PhysReg{dst.physReg() + k}, s1),
Operand(PhysReg{tmp + k}, v1), Operand(63u));
}
} else if (!(dst.physReg() == tmp) && !dst_written) {
for (unsigned k = 0; k < src.size(); k++) {
bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{dst.physReg() + k}, s1),
Operand(PhysReg{tmp + k}, v1));
}
}
}
struct copy_operation {
Operand op;
Definition def;
unsigned uses;
unsigned size;
};
void handle_operands(std::map<PhysReg, copy_operation>& copy_map, lower_context* ctx, chip_class chip_class, Pseudo_instruction *pi)
{
Builder bld(ctx->program, &ctx->instructions);
aco_ptr<Instruction> mov;
std::map<PhysReg, copy_operation>::iterator it = copy_map.begin();
std::map<PhysReg, copy_operation>::iterator target;
bool writes_scc = false;
/* count the number of uses for each dst reg */
while (it != copy_map.end()) {
if (it->second.op.isConstant()) {
++it;
continue;
}
if (it->second.def.physReg() == scc)
writes_scc = true;
assert(!pi->tmp_in_scc || !(it->second.def.physReg() == pi->scratch_sgpr));
/* if src and dst reg are the same, remove operation */
if (it->first == it->second.op.physReg()) {
it = copy_map.erase(it);
continue;
}
/* check if the operand reg may be overwritten by another copy operation */
target = copy_map.find(it->second.op.physReg());
if (target != copy_map.end()) {
target->second.uses++;
}
++it;
}
/* first, handle paths in the location transfer graph */
bool preserve_scc = pi->tmp_in_scc && !writes_scc;
it = copy_map.begin();
while (it != copy_map.end()) {
/* the target reg is not used as operand for any other copy */
if (it->second.uses == 0) {
/* try to coalesce 32-bit sgpr copies to 64-bit copies */
if (it->second.def.getTemp().type() == RegType::sgpr && it->second.size == 1 &&
!it->second.op.isConstant() && it->first % 2 == it->second.op.physReg() % 2) {
PhysReg other_def_reg = PhysReg{it->first % 2 ? it->first - 1 : it->first + 1};
PhysReg other_op_reg = PhysReg{it->first % 2 ? it->second.op.physReg() - 1 : it->second.op.physReg() + 1};
std::map<PhysReg, copy_operation>::iterator other = copy_map.find(other_def_reg);
if (other != copy_map.end() && !other->second.uses && other->second.size == 1 &&
other->second.op.physReg() == other_op_reg && !other->second.op.isConstant()) {
std::map<PhysReg, copy_operation>::iterator to_erase = it->first % 2 ? it : other;
it = it->first % 2 ? other : it;
copy_map.erase(to_erase);
it->second.size = 2;
}
}
if (it->second.def.physReg() == scc) {
bld.sopc(aco_opcode::s_cmp_lg_i32, it->second.def, it->second.op, Operand(0u));
preserve_scc = true;
} else if (it->second.size == 2 && it->second.def.getTemp().type() == RegType::sgpr) {
bld.sop1(aco_opcode::s_mov_b64, it->second.def, Operand(it->second.op.physReg(), s2));
} else {
bld.copy(it->second.def, it->second.op);
}
/* reduce the number of uses of the operand reg by one */
if (!it->second.op.isConstant()) {
for (unsigned i = 0; i < it->second.size; i++) {
target = copy_map.find(PhysReg{it->second.op.physReg() + i});
if (target != copy_map.end())
target->second.uses--;
}
}
copy_map.erase(it);
it = copy_map.begin();
continue;
} else {
/* the target reg is used as operand, check the next entry */
++it;
}
}
if (copy_map.empty())
return;
/* all target regs are needed as operand somewhere which means, all entries are part of a cycle */
bool constants = false;
for (it = copy_map.begin(); it != copy_map.end(); ++it) {
assert(it->second.op.isFixed());
if (it->first == it->second.op.physReg())
continue;
/* do constants later */
if (it->second.op.isConstant()) {
constants = true;
continue;
}
if (preserve_scc && it->second.def.getTemp().type() == RegType::sgpr)
assert(!(it->second.def.physReg() == pi->scratch_sgpr));
/* to resolve the cycle, we have to swap the src reg with the dst reg */
copy_operation swap = it->second;
assert(swap.op.regClass() == swap.def.regClass());
Operand def_as_op = Operand(swap.def.physReg(), swap.def.regClass());
Definition op_as_def = Definition(swap.op.physReg(), swap.op.regClass());
if (chip_class >= GFX9 && swap.def.getTemp().type() == RegType::vgpr) {
bld.vop1(aco_opcode::v_swap_b32, swap.def, op_as_def, swap.op, def_as_op);
} else if (swap.op.physReg() == scc || swap.def.physReg() == scc) {
/* we need to swap scc and another sgpr */
assert(!preserve_scc);
PhysReg other = swap.op.physReg() == scc ? swap.def.physReg() : swap.op.physReg();
bld.sop1(aco_opcode::s_mov_b32, Definition(pi->scratch_sgpr, s1), Operand(scc, s1));
bld.sopc(aco_opcode::s_cmp_lg_i32, Definition(scc, s1), Operand(other, s1), Operand(0u));
bld.sop1(aco_opcode::s_mov_b32, Definition(other, s1), Operand(pi->scratch_sgpr, s1));
} else if (swap.def.getTemp().type() == RegType::sgpr) {
if (preserve_scc) {
bld.sop1(aco_opcode::s_mov_b32, Definition(pi->scratch_sgpr, s1), swap.op);
bld.sop1(aco_opcode::s_mov_b32, op_as_def, def_as_op);
bld.sop1(aco_opcode::s_mov_b32, swap.def, Operand(pi->scratch_sgpr, s1));
} else {
bld.sop2(aco_opcode::s_xor_b32, op_as_def, Definition(scc, s1), swap.op, def_as_op);
bld.sop2(aco_opcode::s_xor_b32, swap.def, Definition(scc, s1), swap.op, def_as_op);
bld.sop2(aco_opcode::s_xor_b32, op_as_def, Definition(scc, s1), swap.op, def_as_op);
}
} else {
bld.vop2(aco_opcode::v_xor_b32, op_as_def, swap.op, def_as_op);
bld.vop2(aco_opcode::v_xor_b32, swap.def, swap.op, def_as_op);
bld.vop2(aco_opcode::v_xor_b32, op_as_def, swap.op, def_as_op);
}
/* change the operand reg of the target's use */
assert(swap.uses == 1);
target = it;
for (++target; target != copy_map.end(); ++target) {
if (target->second.op.physReg() == it->first) {
target->second.op.setFixed(swap.op.physReg());
break;
}
}
}
/* copy constants into a registers which were operands */
if (constants) {
for (it = copy_map.begin(); it != copy_map.end(); ++it) {
if (!it->second.op.isConstant())
continue;
if (it->second.def.physReg() == scc) {
bld.sopc(aco_opcode::s_cmp_lg_i32, Definition(scc, s1), Operand(0u), Operand(it->second.op.constantValue() ? 1u : 0u));
} else {
bld.copy(it->second.def, it->second.op);
}
}
}
}
void lower_to_hw_instr(Program* program)
{
Block *discard_block = NULL;
for (size_t i = 0; i < program->blocks.size(); i++)
{
Block *block = &program->blocks[i];
lower_context ctx;
ctx.program = program;
Builder bld(program, &ctx.instructions);
for (size_t j = 0; j < block->instructions.size(); j++) {
aco_ptr<Instruction>& instr = block->instructions[j];
aco_ptr<Instruction> mov;
if (instr->format == Format::PSEUDO) {
Pseudo_instruction *pi = (Pseudo_instruction*)instr.get();
switch (instr->opcode)
{
case aco_opcode::p_extract_vector:
{
unsigned reg = instr->operands[0].physReg() + instr->operands[1].constantValue() * instr->definitions[0].size();
RegClass rc = RegClass(instr->operands[0].getTemp().type(), 1);
RegClass rc_def = RegClass(instr->definitions[0].getTemp().type(), 1);
if (reg == instr->definitions[0].physReg())
break;
std::map<PhysReg, copy_operation> copy_operations;
for (unsigned i = 0; i < instr->definitions[0].size(); i++) {
Definition def = Definition(PhysReg{instr->definitions[0].physReg() + i}, rc_def);
copy_operations[def.physReg()] = {Operand(PhysReg{reg + i}, rc), def, 0, 1};
}
handle_operands(copy_operations, &ctx, program->chip_class, pi);
break;
}
case aco_opcode::p_create_vector:
{
std::map<PhysReg, copy_operation> copy_operations;
RegClass rc_def = RegClass(instr->definitions[0].getTemp().type(), 1);
unsigned reg_idx = 0;
for (const Operand& op : instr->operands) {
if (op.isConstant()) {
const PhysReg reg = PhysReg{instr->definitions[0].physReg() + reg_idx};
const Definition def = Definition(reg, rc_def);
copy_operations[reg] = {op, def, 0, 1};
reg_idx++;
continue;
}
RegClass rc_op = RegClass(op.getTemp().type(), 1);
for (unsigned j = 0; j < op.size(); j++)
{
const Operand copy_op = Operand(PhysReg{op.physReg() + j}, rc_op);
const Definition def = Definition(PhysReg{instr->definitions[0].physReg() + reg_idx}, rc_def);
copy_operations[def.physReg()] = {copy_op, def, 0, 1};
reg_idx++;
}
}
handle_operands(copy_operations, &ctx, program->chip_class, pi);
break;
}
case aco_opcode::p_split_vector:
{
std::map<PhysReg, copy_operation> copy_operations;
RegClass rc_op = instr->operands[0].isConstant() ? s1 : RegClass(instr->operands[0].regClass().type(), 1);
for (unsigned i = 0; i < instr->definitions.size(); i++) {
unsigned k = instr->definitions[i].size();
RegClass rc_def = RegClass(instr->definitions[i].getTemp().type(), 1);
for (unsigned j = 0; j < k; j++) {
Operand op = Operand(PhysReg{instr->operands[0].physReg() + (i*k+j)}, rc_op);
Definition def = Definition(PhysReg{instr->definitions[i].physReg() + j}, rc_def);
copy_operations[def.physReg()] = {op, def, 0, 1};
}
}
handle_operands(copy_operations, &ctx, program->chip_class, pi);
break;
}
case aco_opcode::p_parallelcopy:
case aco_opcode::p_wqm:
{
std::map<PhysReg, copy_operation> copy_operations;
for (unsigned i = 0; i < instr->operands.size(); i++)
{
Operand operand = instr->operands[i];
if (operand.isConstant() || operand.size() == 1) {
assert(instr->definitions[i].size() == 1);
copy_operations[instr->definitions[i].physReg()] = {operand, instr->definitions[i], 0, 1};
} else {
RegClass def_rc = RegClass(instr->definitions[i].regClass().type(), 1);
RegClass op_rc = RegClass(operand.getTemp().type(), 1);
for (unsigned j = 0; j < operand.size(); j++)
{
Operand op = Operand(PhysReg{instr->operands[i].physReg() + j}, op_rc);
Definition def = Definition(PhysReg{instr->definitions[i].physReg() + j}, def_rc);
copy_operations[def.physReg()] = {op, def, 0, 1};
}
}
}
handle_operands(copy_operations, &ctx, program->chip_class, pi);
break;
}
case aco_opcode::p_discard_if:
{
bool early_exit = false;
if (block->instructions[j + 1]->opcode != aco_opcode::p_logical_end ||
block->instructions[j + 2]->opcode != aco_opcode::s_endpgm) {
early_exit = true;
}
if (early_exit && !discard_block) {
discard_block = program->create_and_insert_block();
block = &program->blocks[i];
bld.reset(discard_block);
bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
0, V_008DFC_SQ_EXP_NULL, false, true, true);
if (program->wb_smem_l1_on_end)
bld.smem(aco_opcode::s_dcache_wb);
bld.sopp(aco_opcode::s_endpgm);
bld.reset(&ctx.instructions);
}
// TODO: optimize uniform conditions
Definition branch_cond = instr->definitions.back();
Operand discard_cond = instr->operands.back();
aco_ptr<Instruction> sop2;
/* backwards, to finally branch on the global exec mask */
for (int i = instr->operands.size() - 2; i >= 0; i--) {
bld.sop2(aco_opcode::s_andn2_b64,
instr->definitions[i], /* new mask */
branch_cond, /* scc */
instr->operands[i], /* old mask */
discard_cond);
}
if (early_exit) {
bld.sopp(aco_opcode::s_cbranch_scc0, bld.scc(branch_cond.getTemp()), discard_block->index);
discard_block->linear_preds.push_back(block->index);
block->linear_succs.push_back(discard_block->index);
}
break;
}
case aco_opcode::p_spill:
{
assert(instr->operands[0].regClass() == v1.as_linear());
for (unsigned i = 0; i < instr->operands[2].size(); i++) {
bld.vop3(aco_opcode::v_writelane_b32, bld.def(v1, instr->operands[0].physReg()),
Operand(PhysReg{instr->operands[2].physReg() + i}, s1),
Operand(instr->operands[1].constantValue() + i));
}
break;
}
case aco_opcode::p_reload:
{
assert(instr->operands[0].regClass() == v1.as_linear());
for (unsigned i = 0; i < instr->definitions[0].size(); i++) {
bld.vop3(aco_opcode::v_readlane_b32,
bld.def(s1, PhysReg{instr->definitions[0].physReg() + i}),
instr->operands[0], Operand(instr->operands[1].constantValue() + i));
}
break;
}
case aco_opcode::p_as_uniform:
{
if (instr->operands[0].isConstant() || instr->operands[0].regClass().type() == RegType::sgpr) {
std::map<PhysReg, copy_operation> copy_operations;
Operand operand = instr->operands[0];
if (operand.isConstant() || operand.size() == 1) {
assert(instr->definitions[0].size() == 1);
copy_operations[instr->definitions[0].physReg()] = {operand, instr->definitions[0], 0, 1};
} else {
for (unsigned i = 0; i < operand.size(); i++)
{
Operand op = Operand(PhysReg{operand.physReg() + i}, s1);
Definition def = Definition(PhysReg{instr->definitions[0].physReg() + i}, s1);
copy_operations[def.physReg()] = {op, def, 0, 1};
}
}
handle_operands(copy_operations, &ctx, program->chip_class, pi);
} else {
assert(instr->operands[0].regClass().type() == RegType::vgpr);
assert(instr->definitions[0].regClass().type() == RegType::sgpr);
assert(instr->operands[0].size() == instr->definitions[0].size());
for (unsigned i = 0; i < instr->definitions[0].size(); i++) {
bld.vop1(aco_opcode::v_readfirstlane_b32,
bld.def(s1, PhysReg{instr->definitions[0].physReg() + i}),
Operand(PhysReg{instr->operands[0].physReg() + i}, v1));
}
}
break;
}
default:
break;
}
} else if (instr->format == Format::PSEUDO_BRANCH) {
Pseudo_branch_instruction* branch = static_cast<Pseudo_branch_instruction*>(instr.get());
/* check if all blocks from current to target are empty */
bool can_remove = block->index < branch->target[0];
for (unsigned i = block->index + 1; can_remove && i < branch->target[0]; i++) {
if (program->blocks[i].instructions.size())
can_remove = false;
}
if (can_remove)
continue;
switch (instr->opcode) {
case aco_opcode::p_branch:
assert(block->linear_succs[0] == branch->target[0]);
bld.sopp(aco_opcode::s_branch, branch->target[0]);
break;
case aco_opcode::p_cbranch_nz:
assert(block->linear_succs[1] == branch->target[0]);
if (branch->operands[0].physReg() == exec)
bld.sopp(aco_opcode::s_cbranch_execnz, branch->target[0]);
else if (branch->operands[0].physReg() == vcc)
bld.sopp(aco_opcode::s_cbranch_vccnz, branch->target[0]);
else {
assert(branch->operands[0].physReg() == scc);
bld.sopp(aco_opcode::s_cbranch_scc1, branch->target[0]);
}
break;
case aco_opcode::p_cbranch_z:
assert(block->linear_succs[1] == branch->target[0]);
if (branch->operands[0].physReg() == exec)
bld.sopp(aco_opcode::s_cbranch_execz, branch->target[0]);
else if (branch->operands[0].physReg() == vcc)
bld.sopp(aco_opcode::s_cbranch_vccz, branch->target[0]);
else {
assert(branch->operands[0].physReg() == scc);
bld.sopp(aco_opcode::s_cbranch_scc0, branch->target[0]);
}
break;
default:
unreachable("Unknown Pseudo branch instruction!");
}
} else if (instr->format == Format::PSEUDO_REDUCTION) {
Pseudo_reduction_instruction* reduce = static_cast<Pseudo_reduction_instruction*>(instr.get());
emit_reduction(&ctx, reduce->opcode, reduce->reduce_op, reduce->cluster_size,
reduce->operands[1].physReg(), // tmp
reduce->definitions[1].physReg(), // stmp
reduce->operands[2].physReg(), // vtmp
reduce->definitions[2].physReg(), // sitmp
reduce->operands[0], reduce->definitions[0]);
} else {
ctx.instructions.emplace_back(std::move(instr));
}
}
block->instructions.swap(ctx.instructions);
}
}
}