mesa/src/freedreno/vulkan/tu_device.c

1972 lines
62 KiB
C
Raw Normal View History

/*
* Copyright © 2016 Red Hat.
* Copyright © 2016 Bas Nieuwenhuizen
*
* based in part on anv driver which is:
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "tu_private.h"
#include "util/debug.h"
#include "util/disk_cache.h"
#include "util/strtod.h"
#include "vk_format.h"
#include "vk_util.h"
#include <fcntl.h>
#include <stdbool.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/sysinfo.h>
#include <unistd.h>
#include <xf86drm.h>
#include <msm_drm.h>
static int
tu_device_get_cache_uuid(uint16_t family, void *uuid)
{
uint32_t mesa_timestamp;
uint16_t f = family;
memset(uuid, 0, VK_UUID_SIZE);
if (!disk_cache_get_function_timestamp(tu_device_get_cache_uuid,
&mesa_timestamp))
return -1;
memcpy(uuid, &mesa_timestamp, 4);
memcpy((char *)uuid + 4, &f, 2);
snprintf((char *)uuid + 6, VK_UUID_SIZE - 10, "tu");
return 0;
}
static void
tu_get_driver_uuid(void *uuid)
{
memset(uuid, 0, VK_UUID_SIZE);
}
static void
tu_get_device_uuid(void *uuid)
{
tu_use_args(uuid);
tu_stub();
}
VkResult
tu_bo_init_new(struct tu_device *dev, struct tu_bo *bo, uint64_t size)
{
/* TODO: Choose better flags. As of 2018-11-12, freedreno/drm/msm_bo.c
* always sets `flags = MSM_BO_WC`, and we copy that behavior here.
*/
uint32_t gem_handle = tu_gem_new(dev, size, MSM_BO_WC);
if (!gem_handle)
goto fail_new;
/* Calling DRM_MSM_GEM_INFO forces the kernel to allocate backing pages. We
* want immediate backing pages because vkAllocateMemory and friends must
* not lazily fail.
*
* TODO(chadv): Must we really call DRM_MSM_GEM_INFO to acquire backing
* pages? I infer so from reading comments in msm_bo.c:bo_allocate(), but
* maybe I misunderstand.
*/
/* TODO: Do we need 'offset' if we have 'iova'? */
uint64_t offset = tu_gem_info_offset(dev, bo->gem_handle);
if (!offset)
goto fail_info;
uint64_t iova = tu_gem_info_iova(dev, bo->gem_handle);
if (!iova)
goto fail_info;
*bo = (struct tu_bo) {
.gem_handle = gem_handle,
.size = size,
.offset = offset,
.iova = iova,
};
return VK_SUCCESS;
fail_info:
tu_gem_close(dev, bo->gem_handle);
fail_new:
return vk_error(dev->instance, VK_ERROR_OUT_OF_DEVICE_MEMORY);
}
VkResult
tu_bo_map(struct tu_device *dev, struct tu_bo *bo)
{
if (bo->map)
return VK_SUCCESS;
/* TODO: Should we use the wrapper os_mmap() like Freedreno does? */
void *map = mmap(0, bo->size, PROT_READ | PROT_WRITE, MAP_SHARED,
dev->physical_device->local_fd, bo->offset);
if (map == MAP_FAILED)
return vk_error(dev->instance, VK_ERROR_MEMORY_MAP_FAILED);
return VK_SUCCESS;
}
void
tu_bo_finish(struct tu_device *dev, struct tu_bo *bo)
{
assert(bo->gem_handle);
if (bo->map)
munmap(bo->map, bo->size);
tu_gem_close(dev, bo->gem_handle);
}
static VkResult
tu_physical_device_init(struct tu_physical_device *device,
struct tu_instance *instance,
drmDevicePtr drm_device)
{
const char *path = drm_device->nodes[DRM_NODE_RENDER];
VkResult result = VK_SUCCESS;
drmVersionPtr version;
int fd;
int master_fd = -1;
2018-08-09 10:09:01 +01:00
struct fd_pipe *tmp_pipe = NULL;
uint64_t val;
fd = open(path, O_RDWR | O_CLOEXEC);
if (fd < 0) {
return vk_errorf(instance, VK_ERROR_INCOMPATIBLE_DRIVER,
"failed to open device %s", path);
}
/* Version 1.3 added MSM_INFO_IOVA. */
const int min_version_major = 1;
const int min_version_minor = 3;
version = drmGetVersion(fd);
if (!version) {
close(fd);
return vk_errorf(instance, VK_ERROR_INCOMPATIBLE_DRIVER,
"failed to query kernel driver version for device %s",
path);
}
2018-08-09 09:36:06 +01:00
if (strcmp(version->name, "msm")) {
drmFreeVersion(version);
if (master_fd != -1)
close(master_fd);
close(fd);
return vk_errorf(instance, VK_ERROR_INCOMPATIBLE_DRIVER,
"device %s does not use the msm kernel driver", path);
}
if (version->version_major != 1 || version->version_minor < 3) {
result = vk_errorf(instance, VK_ERROR_INCOMPATIBLE_DRIVER,
"kernel driver for device %s has version %d.%d, "
"but Vulkan requires version >= %d.%d",
path,
version->version_major, version->version_minor,
min_version_major, min_version_minor);
drmFreeVersion(version);
close(fd);
return result;
}
drmFreeVersion(version);
if (instance->debug_flags & TU_DEBUG_STARTUP)
tu_logi("Found compatible device '%s'.", path);
device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
device->instance = instance;
assert(strlen(path) < ARRAY_SIZE(device->path));
strncpy(device->path, path, ARRAY_SIZE(device->path));
if (instance->enabled_extensions.KHR_display) {
master_fd = open(drm_device->nodes[DRM_NODE_PRIMARY], O_RDWR | O_CLOEXEC);
if (master_fd >= 0) {
/* TODO: free master_fd is accel is not working? */
}
}
device->master_fd = master_fd;
device->local_fd = fd;
2018-08-09 10:09:01 +01:00
device->drm_device = fd_device_new_dup(fd);
if (!device->drm_device) {
result = vk_errorf(
instance, VK_ERROR_INITIALIZATION_FAILED, "could not create the libdrm device");
goto fail;
}
tmp_pipe = fd_pipe_new(device->drm_device, FD_PIPE_3D);
if (!tmp_pipe) {
result = vk_errorf(
instance, VK_ERROR_INITIALIZATION_FAILED, "could not open the 3D pipe");
goto fail;
}
if (fd_pipe_get_param(tmp_pipe, FD_GPU_ID, &val)) {
result = vk_errorf(
instance, VK_ERROR_INITIALIZATION_FAILED, "could not get GPU ID");
goto fail;
}
device->gpu_id = val;
if (fd_pipe_get_param(tmp_pipe, FD_GMEM_SIZE, &val)) {
result = vk_errorf(
instance, VK_ERROR_INITIALIZATION_FAILED, "could not get GMEM size");
goto fail;
}
device->gmem_size = val;
fd_pipe_del(tmp_pipe);
tmp_pipe = NULL;
memset(device->name, 0, sizeof(device->name));
sprintf(device->name, "FD%d", device->gpu_id);
switch(device->gpu_id) {
case 530:
2018-12-20 17:08:49 +00:00
case 630:
2018-08-09 10:09:01 +01:00
break;
default:
result = vk_errorf(instance, VK_ERROR_INITIALIZATION_FAILED,
"device %s is unsupported", device->name);
2018-08-09 10:09:01 +01:00
goto fail;
}
if (tu_device_get_cache_uuid(device->gpu_id, device->cache_uuid)) {
result = vk_errorf(
instance, VK_ERROR_INITIALIZATION_FAILED, "cannot generate UUID");
goto fail;
}
/* The gpu id is already embedded in the uuid so we just pass "tu"
* when creating the cache.
*/
char buf[VK_UUID_SIZE * 2 + 1];
disk_cache_format_hex_id(buf, device->cache_uuid, VK_UUID_SIZE * 2);
device->disk_cache = disk_cache_create(device->name, buf, 0);
fprintf(stderr,
"WARNING: tu is not a conformant vulkan implementation, "
"testing use only.\n");
tu_get_driver_uuid(&device->device_uuid);
tu_get_device_uuid(&device->device_uuid);
tu_fill_device_extension_table(device, &device->supported_extensions);
if (result != VK_SUCCESS) {
vk_error(instance, result);
goto fail;
}
return VK_SUCCESS;
fail:
2018-08-09 10:09:01 +01:00
if (tmp_pipe)
fd_pipe_del(tmp_pipe);
if (device->drm_device)
fd_device_del(device->drm_device);
close(fd);
if (master_fd != -1)
close(master_fd);
return result;
}
static void
tu_physical_device_finish(struct tu_physical_device *device)
{
disk_cache_destroy(device->disk_cache);
close(device->local_fd);
if (device->master_fd != -1)
close(device->master_fd);
}
static void *
default_alloc_func(void *pUserData,
size_t size,
size_t align,
VkSystemAllocationScope allocationScope)
{
return malloc(size);
}
static void *
default_realloc_func(void *pUserData,
void *pOriginal,
size_t size,
size_t align,
VkSystemAllocationScope allocationScope)
{
return realloc(pOriginal, size);
}
static void
default_free_func(void *pUserData, void *pMemory)
{
free(pMemory);
}
static const VkAllocationCallbacks default_alloc = {
.pUserData = NULL,
.pfnAllocation = default_alloc_func,
.pfnReallocation = default_realloc_func,
.pfnFree = default_free_func,
};
static const struct debug_control tu_debug_options[] = { { "startup",
TU_DEBUG_STARTUP },
{ NULL, 0 } };
const char *
tu_get_debug_option_name(int id)
{
assert(id < ARRAY_SIZE(tu_debug_options) - 1);
return tu_debug_options[id].string;
}
static int
tu_get_instance_extension_index(const char *name)
{
for (unsigned i = 0; i < TU_INSTANCE_EXTENSION_COUNT; ++i) {
if (strcmp(name, tu_instance_extensions[i].extensionName) == 0)
return i;
}
return -1;
}
VkResult
tu_CreateInstance(const VkInstanceCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkInstance *pInstance)
{
struct tu_instance *instance;
VkResult result;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
uint32_t client_version;
if (pCreateInfo->pApplicationInfo &&
pCreateInfo->pApplicationInfo->apiVersion != 0) {
client_version = pCreateInfo->pApplicationInfo->apiVersion;
} else {
tu_EnumerateInstanceVersion(&client_version);
}
instance = vk_zalloc2(&default_alloc,
pAllocator,
sizeof(*instance),
8,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (!instance)
return vk_error(NULL, VK_ERROR_OUT_OF_HOST_MEMORY);
instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
if (pAllocator)
instance->alloc = *pAllocator;
else
instance->alloc = default_alloc;
instance->api_version = client_version;
instance->physical_device_count = -1;
instance->debug_flags =
parse_debug_string(getenv("TU_DEBUG"), tu_debug_options);
if (instance->debug_flags & TU_DEBUG_STARTUP)
tu_logi("Created an instance");
for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
const char *ext_name = pCreateInfo->ppEnabledExtensionNames[i];
int index = tu_get_instance_extension_index(ext_name);
if (index < 0 || !tu_supported_instance_extensions.extensions[index]) {
vk_free2(&default_alloc, pAllocator, instance);
return vk_error(instance, VK_ERROR_EXTENSION_NOT_PRESENT);
}
instance->enabled_extensions.extensions[index] = true;
}
result = vk_debug_report_instance_init(&instance->debug_report_callbacks);
if (result != VK_SUCCESS) {
vk_free2(&default_alloc, pAllocator, instance);
return vk_error(instance, result);
}
_mesa_locale_init();
VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
*pInstance = tu_instance_to_handle(instance);
return VK_SUCCESS;
}
void
tu_DestroyInstance(VkInstance _instance,
const VkAllocationCallbacks *pAllocator)
{
TU_FROM_HANDLE(tu_instance, instance, _instance);
if (!instance)
return;
for (int i = 0; i < instance->physical_device_count; ++i) {
tu_physical_device_finish(instance->physical_devices + i);
}
VG(VALGRIND_DESTROY_MEMPOOL(instance));
_mesa_locale_fini();
vk_debug_report_instance_destroy(&instance->debug_report_callbacks);
vk_free(&instance->alloc, instance);
}
static VkResult
tu_enumerate_devices(struct tu_instance *instance)
{
/* TODO: Check for more devices ? */
drmDevicePtr devices[8];
VkResult result = VK_ERROR_INCOMPATIBLE_DRIVER;
int max_devices;
instance->physical_device_count = 0;
max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
if (instance->debug_flags & TU_DEBUG_STARTUP)
tu_logi("Found %d drm nodes", max_devices);
if (max_devices < 1)
return vk_error(instance, VK_ERROR_INCOMPATIBLE_DRIVER);
for (unsigned i = 0; i < (unsigned)max_devices; i++) {
if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
2018-08-09 09:36:06 +01:00
devices[i]->bustype == DRM_BUS_PLATFORM) {
result = tu_physical_device_init(instance->physical_devices +
instance->physical_device_count,
2018-11-07 05:14:04 +00:00
instance,
devices[i]);
if (result == VK_SUCCESS)
++instance->physical_device_count;
else if (result != VK_ERROR_INCOMPATIBLE_DRIVER)
break;
}
}
drmFreeDevices(devices, max_devices);
return result;
}
VkResult
tu_EnumeratePhysicalDevices(VkInstance _instance,
uint32_t *pPhysicalDeviceCount,
VkPhysicalDevice *pPhysicalDevices)
{
TU_FROM_HANDLE(tu_instance, instance, _instance);
VK_OUTARRAY_MAKE(out, pPhysicalDevices, pPhysicalDeviceCount);
VkResult result;
if (instance->physical_device_count < 0) {
result = tu_enumerate_devices(instance);
if (result != VK_SUCCESS && result != VK_ERROR_INCOMPATIBLE_DRIVER)
return result;
}
for (uint32_t i = 0; i < instance->physical_device_count; ++i) {
vk_outarray_append(&out, p) {
*p = tu_physical_device_to_handle(instance->physical_devices + i);
}
}
return vk_outarray_status(&out);
}
VkResult
tu_EnumeratePhysicalDeviceGroups(
VkInstance _instance,
uint32_t *pPhysicalDeviceGroupCount,
VkPhysicalDeviceGroupProperties *pPhysicalDeviceGroupProperties)
{
TU_FROM_HANDLE(tu_instance, instance, _instance);
VK_OUTARRAY_MAKE(out, pPhysicalDeviceGroupProperties, pPhysicalDeviceGroupCount);
VkResult result;
if (instance->physical_device_count < 0) {
result = tu_enumerate_devices(instance);
if (result != VK_SUCCESS && result != VK_ERROR_INCOMPATIBLE_DRIVER)
return result;
}
for (uint32_t i = 0; i < instance->physical_device_count; ++i) {
vk_outarray_append(&out, p) {
p->physicalDeviceCount = 1;
p->physicalDevices[0] =
tu_physical_device_to_handle(instance->physical_devices + i);
p->subsetAllocation = false;
}
}
return vk_outarray_status(&out);
}
void
tu_GetPhysicalDeviceFeatures(VkPhysicalDevice physicalDevice,
VkPhysicalDeviceFeatures *pFeatures)
{
memset(pFeatures, 0, sizeof(*pFeatures));
*pFeatures = (VkPhysicalDeviceFeatures){
.robustBufferAccess = false,
.fullDrawIndexUint32 = false,
.imageCubeArray = false,
.independentBlend = false,
.geometryShader = false,
.tessellationShader = false,
.sampleRateShading = false,
.dualSrcBlend = false,
.logicOp = false,
.multiDrawIndirect = false,
.drawIndirectFirstInstance = false,
.depthClamp = false,
.depthBiasClamp = false,
.fillModeNonSolid = false,
.depthBounds = false,
.wideLines = false,
.largePoints = false,
.alphaToOne = false,
.multiViewport = false,
.samplerAnisotropy = false,
.textureCompressionETC2 = false,
.textureCompressionASTC_LDR = false,
.textureCompressionBC = false,
.occlusionQueryPrecise = false,
.pipelineStatisticsQuery = false,
.vertexPipelineStoresAndAtomics = false,
.fragmentStoresAndAtomics = false,
.shaderTessellationAndGeometryPointSize = false,
.shaderImageGatherExtended = false,
.shaderStorageImageExtendedFormats = false,
.shaderStorageImageMultisample = false,
.shaderUniformBufferArrayDynamicIndexing = false,
.shaderSampledImageArrayDynamicIndexing = false,
.shaderStorageBufferArrayDynamicIndexing = false,
.shaderStorageImageArrayDynamicIndexing = false,
.shaderStorageImageReadWithoutFormat = false,
.shaderStorageImageWriteWithoutFormat = false,
.shaderClipDistance = false,
.shaderCullDistance = false,
.shaderFloat64 = false,
.shaderInt64 = false,
.shaderInt16 = false,
.sparseBinding = false,
.variableMultisampleRate = false,
.inheritedQueries = false,
};
}
void
tu_GetPhysicalDeviceFeatures2(VkPhysicalDevice physicalDevice,
VkPhysicalDeviceFeatures2KHR *pFeatures)
{
vk_foreach_struct(ext, pFeatures->pNext)
{
switch (ext->sType) {
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTER_FEATURES_KHR: {
VkPhysicalDeviceVariablePointerFeaturesKHR *features = (void *)ext;
2018-08-17 13:48:46 +01:00
features->variablePointersStorageBuffer = false;
features->variablePointers = false;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES_KHR: {
VkPhysicalDeviceMultiviewFeaturesKHR *features =
(VkPhysicalDeviceMultiviewFeaturesKHR *)ext;
2018-08-17 13:48:46 +01:00
features->multiview = false;
features->multiviewGeometryShader = false;
features->multiviewTessellationShader = false;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETER_FEATURES: {
VkPhysicalDeviceShaderDrawParameterFeatures *features =
(VkPhysicalDeviceShaderDrawParameterFeatures *)ext;
2018-08-17 13:48:46 +01:00
features->shaderDrawParameters = false;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES: {
VkPhysicalDeviceProtectedMemoryFeatures *features =
(VkPhysicalDeviceProtectedMemoryFeatures *)ext;
features->protectedMemory = false;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES: {
VkPhysicalDevice16BitStorageFeatures *features =
(VkPhysicalDevice16BitStorageFeatures *)ext;
features->storageBuffer16BitAccess = false;
features->uniformAndStorageBuffer16BitAccess = false;
features->storagePushConstant16 = false;
features->storageInputOutput16 = false;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES: {
VkPhysicalDeviceSamplerYcbcrConversionFeatures *features =
(VkPhysicalDeviceSamplerYcbcrConversionFeatures *)ext;
features->samplerYcbcrConversion = false;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_FEATURES_EXT: {
VkPhysicalDeviceDescriptorIndexingFeaturesEXT *features =
(VkPhysicalDeviceDescriptorIndexingFeaturesEXT *)ext;
2018-08-17 13:48:46 +01:00
features->shaderInputAttachmentArrayDynamicIndexing = false;
features->shaderUniformTexelBufferArrayDynamicIndexing = false;
features->shaderStorageTexelBufferArrayDynamicIndexing = false;
features->shaderUniformBufferArrayNonUniformIndexing = false;
features->shaderSampledImageArrayNonUniformIndexing = false;
features->shaderStorageBufferArrayNonUniformIndexing = false;
features->shaderStorageImageArrayNonUniformIndexing = false;
features->shaderInputAttachmentArrayNonUniformIndexing = false;
features->shaderUniformTexelBufferArrayNonUniformIndexing = false;
features->shaderStorageTexelBufferArrayNonUniformIndexing = false;
2018-08-17 13:48:46 +01:00
features->descriptorBindingUniformBufferUpdateAfterBind = false;
features->descriptorBindingSampledImageUpdateAfterBind = false;
features->descriptorBindingStorageImageUpdateAfterBind = false;
features->descriptorBindingStorageBufferUpdateAfterBind = false;
features->descriptorBindingUniformTexelBufferUpdateAfterBind = false;
features->descriptorBindingStorageTexelBufferUpdateAfterBind = false;
features->descriptorBindingUpdateUnusedWhilePending = false;
features->descriptorBindingPartiallyBound = false;
features->descriptorBindingVariableDescriptorCount = false;
features->runtimeDescriptorArray = false;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONDITIONAL_RENDERING_FEATURES_EXT: {
VkPhysicalDeviceConditionalRenderingFeaturesEXT *features =
(VkPhysicalDeviceConditionalRenderingFeaturesEXT *)ext;
2018-08-17 13:48:46 +01:00
features->conditionalRendering = false;
features->inheritedConditionalRendering = false;
break;
}
default:
break;
}
}
return tu_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
}
void
tu_GetPhysicalDeviceProperties(VkPhysicalDevice physicalDevice,
VkPhysicalDeviceProperties *pProperties)
{
TU_FROM_HANDLE(tu_physical_device, pdevice, physicalDevice);
VkSampleCountFlags sample_counts = 0xf;
/* make sure that the entire descriptor set is addressable with a signed
* 32-bit int. So the sum of all limits scaled by descriptor size has to
* be at most 2 GiB. the combined image & samples object count as one of
* both. This limit is for the pipeline layout, not for the set layout, but
* there is no set limit, so we just set a pipeline limit. I don't think
* any app is going to hit this soon. */
size_t max_descriptor_set_size =
((1ull << 31) - 16 * MAX_DYNAMIC_BUFFERS) /
(32 /* uniform buffer, 32 due to potential space wasted on alignment */ +
32 /* storage buffer, 32 due to potential space wasted on alignment */ +
32 /* sampler, largest when combined with image */ +
64 /* sampled image */ + 64 /* storage image */);
VkPhysicalDeviceLimits limits = {
.maxImageDimension1D = (1 << 14),
.maxImageDimension2D = (1 << 14),
.maxImageDimension3D = (1 << 11),
.maxImageDimensionCube = (1 << 14),
.maxImageArrayLayers = (1 << 11),
.maxTexelBufferElements = 128 * 1024 * 1024,
.maxUniformBufferRange = UINT32_MAX,
.maxStorageBufferRange = UINT32_MAX,
.maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
.maxMemoryAllocationCount = UINT32_MAX,
.maxSamplerAllocationCount = 64 * 1024,
.bufferImageGranularity = 64, /* A cache line */
.sparseAddressSpaceSize = 0xffffffffu, /* buffer max size */
.maxBoundDescriptorSets = MAX_SETS,
.maxPerStageDescriptorSamplers = max_descriptor_set_size,
.maxPerStageDescriptorUniformBuffers = max_descriptor_set_size,
.maxPerStageDescriptorStorageBuffers = max_descriptor_set_size,
.maxPerStageDescriptorSampledImages = max_descriptor_set_size,
.maxPerStageDescriptorStorageImages = max_descriptor_set_size,
.maxPerStageDescriptorInputAttachments = max_descriptor_set_size,
.maxPerStageResources = max_descriptor_set_size,
.maxDescriptorSetSamplers = max_descriptor_set_size,
.maxDescriptorSetUniformBuffers = max_descriptor_set_size,
.maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_UNIFORM_BUFFERS,
.maxDescriptorSetStorageBuffers = max_descriptor_set_size,
.maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_STORAGE_BUFFERS,
.maxDescriptorSetSampledImages = max_descriptor_set_size,
.maxDescriptorSetStorageImages = max_descriptor_set_size,
.maxDescriptorSetInputAttachments = max_descriptor_set_size,
.maxVertexInputAttributes = 32,
.maxVertexInputBindings = 32,
.maxVertexInputAttributeOffset = 2047,
.maxVertexInputBindingStride = 2048,
.maxVertexOutputComponents = 128,
.maxTessellationGenerationLevel = 64,
.maxTessellationPatchSize = 32,
.maxTessellationControlPerVertexInputComponents = 128,
.maxTessellationControlPerVertexOutputComponents = 128,
.maxTessellationControlPerPatchOutputComponents = 120,
.maxTessellationControlTotalOutputComponents = 4096,
.maxTessellationEvaluationInputComponents = 128,
.maxTessellationEvaluationOutputComponents = 128,
.maxGeometryShaderInvocations = 127,
.maxGeometryInputComponents = 64,
.maxGeometryOutputComponents = 128,
.maxGeometryOutputVertices = 256,
.maxGeometryTotalOutputComponents = 1024,
.maxFragmentInputComponents = 128,
.maxFragmentOutputAttachments = 8,
.maxFragmentDualSrcAttachments = 1,
.maxFragmentCombinedOutputResources = 8,
.maxComputeSharedMemorySize = 32768,
.maxComputeWorkGroupCount = { 65535, 65535, 65535 },
.maxComputeWorkGroupInvocations = 2048,
.maxComputeWorkGroupSize = { 2048, 2048, 2048 },
.subPixelPrecisionBits = 4 /* FIXME */,
.subTexelPrecisionBits = 4 /* FIXME */,
.mipmapPrecisionBits = 4 /* FIXME */,
.maxDrawIndexedIndexValue = UINT32_MAX,
.maxDrawIndirectCount = UINT32_MAX,
.maxSamplerLodBias = 16,
.maxSamplerAnisotropy = 16,
.maxViewports = MAX_VIEWPORTS,
.maxViewportDimensions = { (1 << 14), (1 << 14) },
.viewportBoundsRange = { INT16_MIN, INT16_MAX },
.viewportSubPixelBits = 8,
.minMemoryMapAlignment = 4096, /* A page */
.minTexelBufferOffsetAlignment = 1,
.minUniformBufferOffsetAlignment = 4,
.minStorageBufferOffsetAlignment = 4,
.minTexelOffset = -32,
.maxTexelOffset = 31,
.minTexelGatherOffset = -32,
.maxTexelGatherOffset = 31,
.minInterpolationOffset = -2,
.maxInterpolationOffset = 2,
.subPixelInterpolationOffsetBits = 8,
.maxFramebufferWidth = (1 << 14),
.maxFramebufferHeight = (1 << 14),
.maxFramebufferLayers = (1 << 10),
.framebufferColorSampleCounts = sample_counts,
.framebufferDepthSampleCounts = sample_counts,
.framebufferStencilSampleCounts = sample_counts,
.framebufferNoAttachmentsSampleCounts = sample_counts,
.maxColorAttachments = MAX_RTS,
.sampledImageColorSampleCounts = sample_counts,
.sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT,
.sampledImageDepthSampleCounts = sample_counts,
.sampledImageStencilSampleCounts = sample_counts,
.storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
.maxSampleMaskWords = 1,
.timestampComputeAndGraphics = true,
.timestampPeriod = 1,
.maxClipDistances = 8,
.maxCullDistances = 8,
.maxCombinedClipAndCullDistances = 8,
.discreteQueuePriorities = 1,
.pointSizeRange = { 0.125, 255.875 },
.lineWidthRange = { 0.0, 7.9921875 },
.pointSizeGranularity = (1.0 / 8.0),
.lineWidthGranularity = (1.0 / 128.0),
.strictLines = false, /* FINISHME */
.standardSampleLocations = true,
.optimalBufferCopyOffsetAlignment = 128,
.optimalBufferCopyRowPitchAlignment = 128,
.nonCoherentAtomSize = 64,
};
*pProperties = (VkPhysicalDeviceProperties){
.apiVersion = tu_physical_device_api_version(pdevice),
.driverVersion = vk_get_driver_version(),
.vendorID = 0, /* TODO */
.deviceID = 0,
.deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
.limits = limits,
.sparseProperties = { 0 },
};
strcpy(pProperties->deviceName, pdevice->name);
memcpy(pProperties->pipelineCacheUUID, pdevice->cache_uuid, VK_UUID_SIZE);
}
void
tu_GetPhysicalDeviceProperties2(VkPhysicalDevice physicalDevice,
VkPhysicalDeviceProperties2KHR *pProperties)
{
TU_FROM_HANDLE(tu_physical_device, pdevice, physicalDevice);
tu_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
vk_foreach_struct(ext, pProperties->pNext)
{
switch (ext->sType) {
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
(VkPhysicalDevicePushDescriptorPropertiesKHR *)ext;
properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES_KHR: {
VkPhysicalDeviceIDPropertiesKHR *properties =
(VkPhysicalDeviceIDPropertiesKHR *)ext;
memcpy(properties->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
memcpy(properties->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
properties->deviceLUIDValid = false;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES_KHR: {
VkPhysicalDeviceMultiviewPropertiesKHR *properties =
(VkPhysicalDeviceMultiviewPropertiesKHR *)ext;
properties->maxMultiviewViewCount = MAX_VIEWS;
properties->maxMultiviewInstanceIndex = INT_MAX;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES_KHR: {
VkPhysicalDevicePointClippingPropertiesKHR *properties =
(VkPhysicalDevicePointClippingPropertiesKHR *)ext;
properties->pointClippingBehavior =
VK_POINT_CLIPPING_BEHAVIOR_ALL_CLIP_PLANES_KHR;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES: {
VkPhysicalDeviceMaintenance3Properties *properties =
(VkPhysicalDeviceMaintenance3Properties *)ext;
/* Make sure everything is addressable by a signed 32-bit int, and
* our largest descriptors are 96 bytes. */
properties->maxPerSetDescriptors = (1ull << 31) / 96;
/* Our buffer size fields allow only this much */
properties->maxMemoryAllocationSize = 0xFFFFFFFFull;
break;
}
default:
break;
}
}
}
static const VkQueueFamilyProperties
tu_queue_family_properties = {
.queueFlags = VK_QUEUE_GRAPHICS_BIT |
VK_QUEUE_COMPUTE_BIT |
VK_QUEUE_TRANSFER_BIT,
.queueCount = 1,
.timestampValidBits = 64,
.minImageTransferGranularity = (VkExtent3D) { 1, 1, 1 },
};
void
tu_GetPhysicalDeviceQueueFamilyProperties(
VkPhysicalDevice physicalDevice,
uint32_t *pQueueFamilyPropertyCount,
VkQueueFamilyProperties *pQueueFamilyProperties)
{
VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pQueueFamilyPropertyCount);
vk_outarray_append(&out, p) {
*p = tu_queue_family_properties;
}
}
void
tu_GetPhysicalDeviceQueueFamilyProperties2(
VkPhysicalDevice physicalDevice,
uint32_t *pQueueFamilyPropertyCount,
VkQueueFamilyProperties2KHR *pQueueFamilyProperties)
{
VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pQueueFamilyPropertyCount);
vk_outarray_append(&out, p) {
p->queueFamilyProperties = tu_queue_family_properties;
}
}
2018-08-10 12:30:08 +01:00
static uint64_t
tu_get_system_heap_size()
2018-08-10 12:30:08 +01:00
{
struct sysinfo info;
sysinfo(&info);
uint64_t total_ram = (uint64_t)info.totalram * (uint64_t)info.mem_unit;
/* We don't want to burn too much ram with the GPU. If the user has 4GiB
* or less, we use at most half. If they have more than 4GiB, we use 3/4.
*/
uint64_t available_ram;
if (total_ram <= 4ull * 1024ull * 1024ull * 1024ull)
available_ram = total_ram / 2;
else
available_ram = total_ram * 3 / 4;
return available_ram;
2018-08-10 12:30:08 +01:00
}
void
tu_GetPhysicalDeviceMemoryProperties(
VkPhysicalDevice physicalDevice,
VkPhysicalDeviceMemoryProperties *pMemoryProperties)
{
2018-08-10 12:30:08 +01:00
pMemoryProperties->memoryHeapCount = 1;
pMemoryProperties->memoryHeaps[0].size = tu_get_system_heap_size();
2018-08-10 12:30:08 +01:00
pMemoryProperties->memoryHeaps[0].flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT;
pMemoryProperties->memoryTypeCount = 1;
pMemoryProperties->memoryTypes[0].propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
pMemoryProperties->memoryTypes[0].heapIndex = 0;
}
void
tu_GetPhysicalDeviceMemoryProperties2(
VkPhysicalDevice physicalDevice,
VkPhysicalDeviceMemoryProperties2KHR *pMemoryProperties)
{
return tu_GetPhysicalDeviceMemoryProperties(
physicalDevice, &pMemoryProperties->memoryProperties);
}
static int
tu_queue_init(struct tu_device *device,
struct tu_queue *queue,
uint32_t queue_family_index,
int idx,
VkDeviceQueueCreateFlags flags)
{
queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
queue->device = device;
queue->queue_family_index = queue_family_index;
queue->queue_idx = idx;
queue->flags = flags;
return VK_SUCCESS;
}
static void
tu_queue_finish(struct tu_queue *queue)
{
}
static int
tu_get_device_extension_index(const char *name)
{
for (unsigned i = 0; i < TU_DEVICE_EXTENSION_COUNT; ++i) {
if (strcmp(name, tu_device_extensions[i].extensionName) == 0)
return i;
}
return -1;
}
VkResult
tu_CreateDevice(VkPhysicalDevice physicalDevice,
const VkDeviceCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkDevice *pDevice)
{
TU_FROM_HANDLE(tu_physical_device, physical_device, physicalDevice);
VkResult result;
struct tu_device *device;
/* Check enabled features */
if (pCreateInfo->pEnabledFeatures) {
VkPhysicalDeviceFeatures supported_features;
tu_GetPhysicalDeviceFeatures(physicalDevice, &supported_features);
VkBool32 *supported_feature = (VkBool32 *)&supported_features;
VkBool32 *enabled_feature = (VkBool32 *)pCreateInfo->pEnabledFeatures;
unsigned num_features =
sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
for (uint32_t i = 0; i < num_features; i++) {
if (enabled_feature[i] && !supported_feature[i])
return vk_error(physical_device->instance,
VK_ERROR_FEATURE_NOT_PRESENT);
}
}
device = vk_zalloc2(&physical_device->instance->alloc,
pAllocator,
sizeof(*device),
8,
VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
if (!device)
return vk_error(physical_device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
device->instance = physical_device->instance;
device->physical_device = physical_device;
if (pAllocator)
device->alloc = *pAllocator;
else
device->alloc = physical_device->instance->alloc;
for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
const char *ext_name = pCreateInfo->ppEnabledExtensionNames[i];
int index = tu_get_device_extension_index(ext_name);
if (index < 0 ||
!physical_device->supported_extensions.extensions[index]) {
vk_free(&device->alloc, device);
return vk_error(physical_device->instance,
VK_ERROR_EXTENSION_NOT_PRESENT);
}
device->enabled_extensions.extensions[index] = true;
}
for (unsigned i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
const VkDeviceQueueCreateInfo *queue_create =
&pCreateInfo->pQueueCreateInfos[i];
uint32_t qfi = queue_create->queueFamilyIndex;
device->queues[qfi] =
vk_alloc(&device->alloc,
queue_create->queueCount * sizeof(struct tu_queue),
8,
VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
if (!device->queues[qfi]) {
result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto fail;
}
memset(device->queues[qfi],
0,
queue_create->queueCount * sizeof(struct tu_queue));
device->queue_count[qfi] = queue_create->queueCount;
for (unsigned q = 0; q < queue_create->queueCount; q++) {
result = tu_queue_init(
device, &device->queues[qfi][q], qfi, q, queue_create->flags);
if (result != VK_SUCCESS)
goto fail;
}
}
VkPipelineCacheCreateInfo ci;
ci.sType = VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO;
ci.pNext = NULL;
ci.flags = 0;
ci.pInitialData = NULL;
ci.initialDataSize = 0;
VkPipelineCache pc;
result =
tu_CreatePipelineCache(tu_device_to_handle(device), &ci, NULL, &pc);
if (result != VK_SUCCESS)
goto fail;
device->mem_cache = tu_pipeline_cache_from_handle(pc);
*pDevice = tu_device_to_handle(device);
return VK_SUCCESS;
fail:
for (unsigned i = 0; i < TU_MAX_QUEUE_FAMILIES; i++) {
for (unsigned q = 0; q < device->queue_count[i]; q++)
tu_queue_finish(&device->queues[i][q]);
if (device->queue_count[i])
vk_free(&device->alloc, device->queues[i]);
}
vk_free(&device->alloc, device);
return result;
}
void
tu_DestroyDevice(VkDevice _device, const VkAllocationCallbacks *pAllocator)
{
TU_FROM_HANDLE(tu_device, device, _device);
if (!device)
return;
for (unsigned i = 0; i < TU_MAX_QUEUE_FAMILIES; i++) {
for (unsigned q = 0; q < device->queue_count[i]; q++)
tu_queue_finish(&device->queues[i][q]);
if (device->queue_count[i])
vk_free(&device->alloc, device->queues[i]);
}
VkPipelineCache pc = tu_pipeline_cache_to_handle(device->mem_cache);
tu_DestroyPipelineCache(tu_device_to_handle(device), pc, NULL);
vk_free(&device->alloc, device);
}
VkResult
tu_EnumerateInstanceLayerProperties(uint32_t *pPropertyCount,
VkLayerProperties *pProperties)
{
*pPropertyCount = 0;
return VK_SUCCESS;
}
VkResult
tu_EnumerateDeviceLayerProperties(VkPhysicalDevice physicalDevice,
uint32_t *pPropertyCount,
VkLayerProperties *pProperties)
{
*pPropertyCount = 0;
return VK_SUCCESS;
}
void
tu_GetDeviceQueue2(VkDevice _device,
const VkDeviceQueueInfo2 *pQueueInfo,
VkQueue *pQueue)
{
TU_FROM_HANDLE(tu_device, device, _device);
struct tu_queue *queue;
queue =
&device->queues[pQueueInfo->queueFamilyIndex][pQueueInfo->queueIndex];
if (pQueueInfo->flags != queue->flags) {
/* From the Vulkan 1.1.70 spec:
*
* "The queue returned by vkGetDeviceQueue2 must have the same
* flags value from this structure as that used at device
* creation time in a VkDeviceQueueCreateInfo instance. If no
* matching flags were specified at device creation time then
* pQueue will return VK_NULL_HANDLE."
*/
*pQueue = VK_NULL_HANDLE;
return;
}
*pQueue = tu_queue_to_handle(queue);
}
void
tu_GetDeviceQueue(VkDevice _device,
uint32_t queueFamilyIndex,
uint32_t queueIndex,
VkQueue *pQueue)
{
const VkDeviceQueueInfo2 info =
(VkDeviceQueueInfo2){.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_INFO_2,
.queueFamilyIndex = queueFamilyIndex,
.queueIndex = queueIndex };
tu_GetDeviceQueue2(_device, &info, pQueue);
}
VkResult
tu_QueueSubmit(VkQueue _queue,
uint32_t submitCount,
const VkSubmitInfo *pSubmits,
VkFence _fence)
{
return VK_SUCCESS;
}
VkResult
tu_QueueWaitIdle(VkQueue _queue)
{
return VK_SUCCESS;
}
VkResult
tu_DeviceWaitIdle(VkDevice _device)
{
TU_FROM_HANDLE(tu_device, device, _device);
for (unsigned i = 0; i < TU_MAX_QUEUE_FAMILIES; i++) {
for (unsigned q = 0; q < device->queue_count[i]; q++) {
tu_QueueWaitIdle(tu_queue_to_handle(&device->queues[i][q]));
}
}
return VK_SUCCESS;
}
VkResult
tu_EnumerateInstanceExtensionProperties(const char *pLayerName,
uint32_t *pPropertyCount,
VkExtensionProperties *pProperties)
{
VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
/* We spport no lyaers */
if (pLayerName)
return vk_error(NULL, VK_ERROR_LAYER_NOT_PRESENT);
for (int i = 0; i < TU_INSTANCE_EXTENSION_COUNT; i++) {
if (tu_supported_instance_extensions.extensions[i]) {
vk_outarray_append(&out, prop) { *prop = tu_instance_extensions[i]; }
}
}
return vk_outarray_status(&out);
}
VkResult
tu_EnumerateDeviceExtensionProperties(VkPhysicalDevice physicalDevice,
const char *pLayerName,
uint32_t *pPropertyCount,
VkExtensionProperties *pProperties)
{
/* We spport no lyaers */
TU_FROM_HANDLE(tu_physical_device, device, physicalDevice);
VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
/* We spport no lyaers */
if (pLayerName)
return vk_error(NULL, VK_ERROR_LAYER_NOT_PRESENT);
for (int i = 0; i < TU_DEVICE_EXTENSION_COUNT; i++) {
if (device->supported_extensions.extensions[i]) {
vk_outarray_append(&out, prop) { *prop = tu_device_extensions[i]; }
}
}
return vk_outarray_status(&out);
}
PFN_vkVoidFunction
tu_GetInstanceProcAddr(VkInstance _instance, const char *pName)
{
TU_FROM_HANDLE(tu_instance, instance, _instance);
return tu_lookup_entrypoint_checked(pName,
instance ? instance->api_version : 0,
instance ? &instance->enabled_extensions
: NULL,
NULL);
}
/* The loader wants us to expose a second GetInstanceProcAddr function
* to work around certain LD_PRELOAD issues seen in apps.
*/
PUBLIC
VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL
vk_icdGetInstanceProcAddr(VkInstance instance, const char *pName);
PUBLIC
VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL
vk_icdGetInstanceProcAddr(VkInstance instance, const char *pName)
{
return tu_GetInstanceProcAddr(instance, pName);
}
PFN_vkVoidFunction
tu_GetDeviceProcAddr(VkDevice _device, const char *pName)
{
TU_FROM_HANDLE(tu_device, device, _device);
return tu_lookup_entrypoint_checked(pName,
device->instance->api_version,
&device->instance->enabled_extensions,
&device->enabled_extensions);
}
static VkResult
tu_alloc_memory(struct tu_device *device,
const VkMemoryAllocateInfo *pAllocateInfo,
const VkAllocationCallbacks *pAllocator,
VkDeviceMemory *pMem)
{
struct tu_device_memory *mem;
VkResult result;
assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
if (pAllocateInfo->allocationSize == 0) {
/* Apparently, this is allowed */
*pMem = VK_NULL_HANDLE;
return VK_SUCCESS;
}
mem = vk_alloc2(&device->alloc,
pAllocator,
sizeof(*mem),
8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (mem == NULL)
return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
result = tu_bo_init_new(device, &mem->bo, pAllocateInfo->allocationSize);
if (!result) {
vk_free2(&device->alloc, pAllocator, mem);
return result;
}
mem->size = pAllocateInfo->allocationSize;
mem->type_index = pAllocateInfo->memoryTypeIndex;
mem->map = NULL;
mem->user_ptr = NULL;
*pMem = tu_device_memory_to_handle(mem);
return VK_SUCCESS;
}
VkResult
tu_AllocateMemory(VkDevice _device,
const VkMemoryAllocateInfo *pAllocateInfo,
const VkAllocationCallbacks *pAllocator,
VkDeviceMemory *pMem)
{
TU_FROM_HANDLE(tu_device, device, _device);
return tu_alloc_memory(device, pAllocateInfo, pAllocator, pMem);
}
void
tu_FreeMemory(VkDevice _device,
VkDeviceMemory _mem,
const VkAllocationCallbacks *pAllocator)
{
TU_FROM_HANDLE(tu_device, device, _device);
TU_FROM_HANDLE(tu_device_memory, mem, _mem);
if (mem == NULL)
return;
tu_bo_finish(device, &mem->bo);
vk_free2(&device->alloc, pAllocator, mem);
}
VkResult
tu_MapMemory(VkDevice _device,
VkDeviceMemory _memory,
VkDeviceSize offset,
VkDeviceSize size,
VkMemoryMapFlags flags,
void **ppData)
{
TU_FROM_HANDLE(tu_device, device, _device);
TU_FROM_HANDLE(tu_device_memory, mem, _memory);
VkResult result;
if (mem == NULL) {
*ppData = NULL;
return VK_SUCCESS;
}
if (mem->user_ptr) {
*ppData = mem->user_ptr;
} else if (!mem->map){
result = tu_bo_map(device, &mem->bo);
if (result != VK_SUCCESS)
return result;
mem->map = mem->bo.map;
} else
*ppData = mem->map;
if (*ppData) {
*ppData += offset;
return VK_SUCCESS;
}
return vk_error(device->instance, VK_ERROR_MEMORY_MAP_FAILED);
}
void
tu_UnmapMemory(VkDevice _device, VkDeviceMemory _memory)
{
/* I do not see any unmapping done by the freedreno Gallium driver. */
}
VkResult
tu_FlushMappedMemoryRanges(VkDevice _device,
uint32_t memoryRangeCount,
const VkMappedMemoryRange *pMemoryRanges)
{
return VK_SUCCESS;
}
VkResult
tu_InvalidateMappedMemoryRanges(VkDevice _device,
uint32_t memoryRangeCount,
const VkMappedMemoryRange *pMemoryRanges)
{
return VK_SUCCESS;
}
void
tu_GetBufferMemoryRequirements(VkDevice _device,
VkBuffer _buffer,
VkMemoryRequirements *pMemoryRequirements)
{
TU_FROM_HANDLE(tu_buffer, buffer, _buffer);
pMemoryRequirements->memoryTypeBits = 1;
pMemoryRequirements->alignment = 16;
pMemoryRequirements->size =
align64(buffer->size, pMemoryRequirements->alignment);
}
void
tu_GetBufferMemoryRequirements2(
VkDevice device,
const VkBufferMemoryRequirementsInfo2KHR *pInfo,
VkMemoryRequirements2KHR *pMemoryRequirements)
{
tu_GetBufferMemoryRequirements(
device, pInfo->buffer, &pMemoryRequirements->memoryRequirements);
}
void
tu_GetImageMemoryRequirements(VkDevice _device,
VkImage _image,
VkMemoryRequirements *pMemoryRequirements)
{
TU_FROM_HANDLE(tu_image, image, _image);
pMemoryRequirements->memoryTypeBits = 1;
pMemoryRequirements->size = image->size;
pMemoryRequirements->alignment = image->alignment;
}
void
tu_GetImageMemoryRequirements2(VkDevice device,
const VkImageMemoryRequirementsInfo2KHR *pInfo,
VkMemoryRequirements2KHR *pMemoryRequirements)
{
tu_GetImageMemoryRequirements(
device, pInfo->image, &pMemoryRequirements->memoryRequirements);
}
void
tu_GetImageSparseMemoryRequirements(
VkDevice device,
VkImage image,
uint32_t *pSparseMemoryRequirementCount,
VkSparseImageMemoryRequirements *pSparseMemoryRequirements)
{
tu_stub();
}
void
tu_GetImageSparseMemoryRequirements2(
VkDevice device,
const VkImageSparseMemoryRequirementsInfo2KHR *pInfo,
uint32_t *pSparseMemoryRequirementCount,
VkSparseImageMemoryRequirements2KHR *pSparseMemoryRequirements)
{
tu_stub();
}
void
tu_GetDeviceMemoryCommitment(VkDevice device,
VkDeviceMemory memory,
VkDeviceSize *pCommittedMemoryInBytes)
{
*pCommittedMemoryInBytes = 0;
}
VkResult
tu_BindBufferMemory2(VkDevice device,
uint32_t bindInfoCount,
const VkBindBufferMemoryInfoKHR *pBindInfos)
{
return VK_SUCCESS;
}
VkResult
tu_BindBufferMemory(VkDevice device,
VkBuffer buffer,
VkDeviceMemory memory,
VkDeviceSize memoryOffset)
{
const VkBindBufferMemoryInfoKHR info = {
.sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO_KHR,
.buffer = buffer,
.memory = memory,
.memoryOffset = memoryOffset
};
return tu_BindBufferMemory2(device, 1, &info);
}
VkResult
tu_BindImageMemory2(VkDevice device,
uint32_t bindInfoCount,
const VkBindImageMemoryInfoKHR *pBindInfos)
{
return VK_SUCCESS;
}
VkResult
tu_BindImageMemory(VkDevice device,
VkImage image,
VkDeviceMemory memory,
VkDeviceSize memoryOffset)
{
const VkBindImageMemoryInfoKHR info = {
.sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO_KHR,
.image = image,
.memory = memory,
.memoryOffset = memoryOffset
};
return tu_BindImageMemory2(device, 1, &info);
}
VkResult
tu_QueueBindSparse(VkQueue _queue,
uint32_t bindInfoCount,
const VkBindSparseInfo *pBindInfo,
VkFence _fence)
{
return VK_SUCCESS;
}
VkResult
tu_CreateFence(VkDevice _device,
const VkFenceCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkFence *pFence)
{
TU_FROM_HANDLE(tu_device, device, _device);
struct tu_fence *fence = vk_alloc2(&device->alloc,
pAllocator,
sizeof(*fence),
8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (!fence)
return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
*pFence = tu_fence_to_handle(fence);
return VK_SUCCESS;
}
void
tu_DestroyFence(VkDevice _device,
VkFence _fence,
const VkAllocationCallbacks *pAllocator)
{
TU_FROM_HANDLE(tu_device, device, _device);
TU_FROM_HANDLE(tu_fence, fence, _fence);
if (!fence)
return;
vk_free2(&device->alloc, pAllocator, fence);
}
VkResult
tu_WaitForFences(VkDevice _device,
uint32_t fenceCount,
const VkFence *pFences,
VkBool32 waitAll,
uint64_t timeout)
{
return VK_SUCCESS;
}
VkResult
tu_ResetFences(VkDevice _device, uint32_t fenceCount, const VkFence *pFences)
{
return VK_SUCCESS;
}
VkResult
tu_GetFenceStatus(VkDevice _device, VkFence _fence)
{
return VK_SUCCESS;
}
// Queue semaphore functions
VkResult
tu_CreateSemaphore(VkDevice _device,
const VkSemaphoreCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkSemaphore *pSemaphore)
{
TU_FROM_HANDLE(tu_device, device, _device);
struct tu_semaphore *sem = vk_alloc2(&device->alloc,
pAllocator,
sizeof(*sem),
8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (!sem)
return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
*pSemaphore = tu_semaphore_to_handle(sem);
return VK_SUCCESS;
}
void
tu_DestroySemaphore(VkDevice _device,
VkSemaphore _semaphore,
const VkAllocationCallbacks *pAllocator)
{
TU_FROM_HANDLE(tu_device, device, _device);
TU_FROM_HANDLE(tu_semaphore, sem, _semaphore);
if (!_semaphore)
return;
vk_free2(&device->alloc, pAllocator, sem);
}
VkResult
tu_CreateEvent(VkDevice _device,
const VkEventCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkEvent *pEvent)
{
TU_FROM_HANDLE(tu_device, device, _device);
struct tu_event *event = vk_alloc2(&device->alloc,
pAllocator,
sizeof(*event),
8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (!event)
return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
*pEvent = tu_event_to_handle(event);
return VK_SUCCESS;
}
void
tu_DestroyEvent(VkDevice _device,
VkEvent _event,
const VkAllocationCallbacks *pAllocator)
{
TU_FROM_HANDLE(tu_device, device, _device);
TU_FROM_HANDLE(tu_event, event, _event);
if (!event)
return;
vk_free2(&device->alloc, pAllocator, event);
}
VkResult
tu_GetEventStatus(VkDevice _device, VkEvent _event)
{
TU_FROM_HANDLE(tu_event, event, _event);
if (*event->map == 1)
return VK_EVENT_SET;
return VK_EVENT_RESET;
}
VkResult
tu_SetEvent(VkDevice _device, VkEvent _event)
{
TU_FROM_HANDLE(tu_event, event, _event);
*event->map = 1;
return VK_SUCCESS;
}
VkResult
tu_ResetEvent(VkDevice _device, VkEvent _event)
{
TU_FROM_HANDLE(tu_event, event, _event);
*event->map = 0;
return VK_SUCCESS;
}
VkResult
tu_CreateBuffer(VkDevice _device,
const VkBufferCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkBuffer *pBuffer)
{
TU_FROM_HANDLE(tu_device, device, _device);
struct tu_buffer *buffer;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
buffer = vk_alloc2(&device->alloc,
pAllocator,
sizeof(*buffer),
8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (buffer == NULL)
return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
buffer->size = pCreateInfo->size;
buffer->usage = pCreateInfo->usage;
buffer->flags = pCreateInfo->flags;
*pBuffer = tu_buffer_to_handle(buffer);
return VK_SUCCESS;
}
void
tu_DestroyBuffer(VkDevice _device,
VkBuffer _buffer,
const VkAllocationCallbacks *pAllocator)
{
TU_FROM_HANDLE(tu_device, device, _device);
TU_FROM_HANDLE(tu_buffer, buffer, _buffer);
if (!buffer)
return;
vk_free2(&device->alloc, pAllocator, buffer);
}
static uint32_t
tu_surface_max_layer_count(struct tu_image_view *iview)
{
return iview->type == VK_IMAGE_VIEW_TYPE_3D
? iview->extent.depth
: (iview->base_layer + iview->layer_count);
}
VkResult
tu_CreateFramebuffer(VkDevice _device,
const VkFramebufferCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkFramebuffer *pFramebuffer)
{
TU_FROM_HANDLE(tu_device, device, _device);
struct tu_framebuffer *framebuffer;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
size_t size =
sizeof(*framebuffer) +
sizeof(struct tu_attachment_info) * pCreateInfo->attachmentCount;
framebuffer = vk_alloc2(
&device->alloc, pAllocator, size, 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (framebuffer == NULL)
return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
framebuffer->attachment_count = pCreateInfo->attachmentCount;
framebuffer->width = pCreateInfo->width;
framebuffer->height = pCreateInfo->height;
framebuffer->layers = pCreateInfo->layers;
for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
VkImageView _iview = pCreateInfo->pAttachments[i];
struct tu_image_view *iview = tu_image_view_from_handle(_iview);
framebuffer->attachments[i].attachment = iview;
framebuffer->width = MIN2(framebuffer->width, iview->extent.width);
framebuffer->height = MIN2(framebuffer->height, iview->extent.height);
framebuffer->layers =
MIN2(framebuffer->layers, tu_surface_max_layer_count(iview));
}
*pFramebuffer = tu_framebuffer_to_handle(framebuffer);
return VK_SUCCESS;
}
void
tu_DestroyFramebuffer(VkDevice _device,
VkFramebuffer _fb,
const VkAllocationCallbacks *pAllocator)
{
TU_FROM_HANDLE(tu_device, device, _device);
TU_FROM_HANDLE(tu_framebuffer, fb, _fb);
if (!fb)
return;
vk_free2(&device->alloc, pAllocator, fb);
}
static void
tu_init_sampler(struct tu_device *device,
struct tu_sampler *sampler,
const VkSamplerCreateInfo *pCreateInfo)
{
}
VkResult
tu_CreateSampler(VkDevice _device,
const VkSamplerCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkSampler *pSampler)
{
TU_FROM_HANDLE(tu_device, device, _device);
struct tu_sampler *sampler;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO);
sampler = vk_alloc2(&device->alloc,
pAllocator,
sizeof(*sampler),
8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (!sampler)
return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
tu_init_sampler(device, sampler, pCreateInfo);
*pSampler = tu_sampler_to_handle(sampler);
return VK_SUCCESS;
}
void
tu_DestroySampler(VkDevice _device,
VkSampler _sampler,
const VkAllocationCallbacks *pAllocator)
{
TU_FROM_HANDLE(tu_device, device, _device);
TU_FROM_HANDLE(tu_sampler, sampler, _sampler);
if (!sampler)
return;
vk_free2(&device->alloc, pAllocator, sampler);
}
/* vk_icd.h does not declare this function, so we declare it here to
* suppress Wmissing-prototypes.
*/
PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t *pSupportedVersion);
PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t *pSupportedVersion)
{
/* For the full details on loader interface versioning, see
* <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
* What follows is a condensed summary, to help you navigate the large and
* confusing official doc.
*
* - Loader interface v0 is incompatible with later versions. We don't
* support it.
*
* - In loader interface v1:
* - The first ICD entrypoint called by the loader is
* vk_icdGetInstanceProcAddr(). The ICD must statically expose this
* entrypoint.
* - The ICD must statically expose no other Vulkan symbol unless it is
* linked with -Bsymbolic.
* - Each dispatchable Vulkan handle created by the ICD must be
* a pointer to a struct whose first member is VK_LOADER_DATA. The
* ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
* - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
* vkDestroySurfaceKHR(). The ICD must be capable of working with
* such loader-managed surfaces.
*
* - Loader interface v2 differs from v1 in:
* - The first ICD entrypoint called by the loader is
* vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
* statically expose this entrypoint.
*
* - Loader interface v3 differs from v2 in:
* - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
* vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
* because the loader no longer does so.
*/
*pSupportedVersion = MIN2(*pSupportedVersion, 3u);
return VK_SUCCESS;
}
void
tu_GetPhysicalDeviceExternalSemaphoreProperties(
VkPhysicalDevice physicalDevice,
const VkPhysicalDeviceExternalSemaphoreInfoKHR *pExternalSemaphoreInfo,
VkExternalSemaphorePropertiesKHR *pExternalSemaphoreProperties)
{
pExternalSemaphoreProperties->exportFromImportedHandleTypes = 0;
pExternalSemaphoreProperties->compatibleHandleTypes = 0;
pExternalSemaphoreProperties->externalSemaphoreFeatures = 0;
}
void
tu_GetPhysicalDeviceExternalFenceProperties(
VkPhysicalDevice physicalDevice,
const VkPhysicalDeviceExternalFenceInfoKHR *pExternalFenceInfo,
VkExternalFencePropertiesKHR *pExternalFenceProperties)
{
pExternalFenceProperties->exportFromImportedHandleTypes = 0;
pExternalFenceProperties->compatibleHandleTypes = 0;
pExternalFenceProperties->externalFenceFeatures = 0;
}
VkResult
tu_CreateDebugReportCallbackEXT(
VkInstance _instance,
const VkDebugReportCallbackCreateInfoEXT *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkDebugReportCallbackEXT *pCallback)
{
TU_FROM_HANDLE(tu_instance, instance, _instance);
return vk_create_debug_report_callback(&instance->debug_report_callbacks,
pCreateInfo,
pAllocator,
&instance->alloc,
pCallback);
}
void
tu_DestroyDebugReportCallbackEXT(VkInstance _instance,
VkDebugReportCallbackEXT _callback,
const VkAllocationCallbacks *pAllocator)
{
TU_FROM_HANDLE(tu_instance, instance, _instance);
vk_destroy_debug_report_callback(&instance->debug_report_callbacks,
_callback,
pAllocator,
&instance->alloc);
}
void
tu_DebugReportMessageEXT(VkInstance _instance,
VkDebugReportFlagsEXT flags,
VkDebugReportObjectTypeEXT objectType,
uint64_t object,
size_t location,
int32_t messageCode,
const char *pLayerPrefix,
const char *pMessage)
{
TU_FROM_HANDLE(tu_instance, instance, _instance);
vk_debug_report(&instance->debug_report_callbacks,
flags,
objectType,
object,
location,
messageCode,
pLayerPrefix,
pMessage);
}
void
tu_GetDeviceGroupPeerMemoryFeatures(
VkDevice device,
uint32_t heapIndex,
uint32_t localDeviceIndex,
uint32_t remoteDeviceIndex,
VkPeerMemoryFeatureFlags *pPeerMemoryFeatures)
{
assert(localDeviceIndex == remoteDeviceIndex);
*pPeerMemoryFeatures = VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT |
VK_PEER_MEMORY_FEATURE_COPY_DST_BIT |
VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT |
VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT;
}