mesa/src/mesa/drivers/dri/i965/brw_eu_compact.c

1226 lines
36 KiB
C
Raw Normal View History

/*
* Copyright © 2012 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
/** @file brw_eu_compact.c
*
* Instruction compaction is a feature of gm45 and newer hardware that allows
* for a smaller instruction encoding.
*
* The instruction cache is on the order of 32KB, and many programs generate
* far more instructions than that. The instruction cache is built to barely
* keep up with instruction dispatch abaility in cache hit cases -- L1
* instruction cache misses that still hit in the next level could limit
* throughput by around 50%.
*
* The idea of instruction compaction is that most instructions use a tiny
* subset of the GPU functionality, so we can encode what would be a 16 byte
* instruction in 8 bytes using some lookup tables for various fields.
*/
#include "brw_context.h"
#include "brw_eu.h"
#include "intel_asm_annotation.h"
static const uint32_t gen6_control_index_table[32] = {
0b00000000000000000,
0b01000000000000000,
0b00110000000000000,
0b00000000100000000,
0b00010000000000000,
0b00001000100000000,
0b00000000100000010,
0b00000000000000010,
0b01000000100000000,
0b01010000000000000,
0b10110000000000000,
0b00100000000000000,
0b11010000000000000,
0b11000000000000000,
0b01001000100000000,
0b01000000000001000,
0b01000000000000100,
0b00000000000001000,
0b00000000000000100,
0b00111000100000000,
0b00001000100000010,
0b00110000100000000,
0b00110000000000001,
0b00100000000000001,
0b00110000000000010,
0b00110000000000101,
0b00110000000001001,
0b00110000000010000,
0b00110000000000011,
0b00110000000000100,
0b00110000100001000,
0b00100000000001001
};
static const uint32_t gen6_datatype_table[32] = {
0b001001110000000000,
0b001000110000100000,
0b001001110000000001,
0b001000000001100000,
0b001010110100101001,
0b001000000110101101,
0b001100011000101100,
0b001011110110101101,
0b001000000111101100,
0b001000000001100001,
0b001000110010100101,
0b001000000001000001,
0b001000001000110001,
0b001000001000101001,
0b001000000000100000,
0b001000001000110010,
0b001010010100101001,
0b001011010010100101,
0b001000000110100101,
0b001100011000101001,
0b001011011000101100,
0b001011010110100101,
0b001011110110100101,
0b001111011110111101,
0b001111011110111100,
0b001111011110111101,
0b001111011110011101,
0b001111011110111110,
0b001000000000100001,
0b001000000000100010,
0b001001111111011101,
0b001000001110111110,
};
static const uint16_t gen6_subreg_table[32] = {
0b000000000000000,
0b000000000000100,
0b000000110000000,
0b111000000000000,
0b011110000001000,
0b000010000000000,
0b000000000010000,
0b000110000001100,
0b001000000000000,
0b000001000000000,
0b000001010010100,
0b000000001010110,
0b010000000000000,
0b110000000000000,
0b000100000000000,
0b000000010000000,
0b000000000001000,
0b100000000000000,
0b000001010000000,
0b001010000000000,
0b001100000000000,
0b000000001010100,
0b101101010010100,
0b010100000000000,
0b000000010001111,
0b011000000000000,
0b111110000000000,
0b101000000000000,
0b000000000001111,
0b000100010001111,
0b001000010001111,
0b000110000000000,
};
static const uint16_t gen6_src_index_table[32] = {
0b000000000000,
0b010110001000,
0b010001101000,
0b001000101000,
0b011010010000,
0b000100100000,
0b010001101100,
0b010101110000,
0b011001111000,
0b001100101000,
0b010110001100,
0b001000100000,
0b010110001010,
0b000000000010,
0b010101010000,
0b010101101000,
0b111101001100,
0b111100101100,
0b011001110000,
0b010110001001,
0b010101011000,
0b001101001000,
0b010000101100,
0b010000000000,
0b001101110000,
0b001100010000,
0b001100000000,
0b010001101010,
0b001101111000,
0b000001110000,
0b001100100000,
0b001101010000,
};
static const uint32_t gen7_control_index_table[32] = {
0b0000000000000000010,
0b0000100000000000000,
0b0000100000000000001,
0b0000100000000000010,
0b0000100000000000011,
0b0000100000000000100,
0b0000100000000000101,
0b0000100000000000111,
0b0000100000000001000,
0b0000100000000001001,
0b0000100000000001101,
0b0000110000000000000,
0b0000110000000000001,
0b0000110000000000010,
0b0000110000000000011,
0b0000110000000000100,
0b0000110000000000101,
0b0000110000000000111,
0b0000110000000001001,
0b0000110000000001101,
0b0000110000000010000,
0b0000110000100000000,
0b0001000000000000000,
0b0001000000000000010,
0b0001000000000000100,
0b0001000000100000000,
0b0010110000000000000,
0b0010110000000010000,
0b0011000000000000000,
0b0011000000100000000,
0b0101000000000000000,
0b0101000000100000000
};
static const uint32_t gen7_datatype_table[32] = {
0b001000000000000001,
0b001000000000100000,
0b001000000000100001,
0b001000000001100001,
0b001000000010111101,
0b001000001011111101,
0b001000001110100001,
0b001000001110100101,
0b001000001110111101,
0b001000010000100001,
0b001000110000100000,
0b001000110000100001,
0b001001010010100101,
0b001001110010100100,
0b001001110010100101,
0b001111001110111101,
0b001111011110011101,
0b001111011110111100,
0b001111011110111101,
0b001111111110111100,
0b000000001000001100,
0b001000000000111101,
0b001000000010100101,
0b001000010000100000,
0b001001010010100100,
0b001001110010000100,
0b001010010100001001,
0b001101111110111101,
0b001111111110111101,
0b001011110110101100,
0b001010010100101000,
0b001010110100101000
};
static const uint16_t gen7_subreg_table[32] = {
0b000000000000000,
0b000000000000001,
0b000000000001000,
0b000000000001111,
0b000000000010000,
0b000000010000000,
0b000000100000000,
0b000000110000000,
0b000001000000000,
0b000001000010000,
0b000010100000000,
0b001000000000000,
0b001000000000001,
0b001000010000001,
0b001000010000010,
0b001000010000011,
0b001000010000100,
0b001000010000111,
0b001000010001000,
0b001000010001110,
0b001000010001111,
0b001000110000000,
0b001000111101000,
0b010000000000000,
0b010000110000000,
0b011000000000000,
0b011110010000111,
0b100000000000000,
0b101000000000000,
0b110000000000000,
0b111000000000000,
0b111000000011100
};
static const uint16_t gen7_src_index_table[32] = {
0b000000000000,
0b000000000010,
0b000000010000,
0b000000010010,
0b000000011000,
0b000000100000,
0b000000101000,
0b000001001000,
0b000001010000,
0b000001110000,
0b000001111000,
0b001100000000,
0b001100000010,
0b001100001000,
0b001100010000,
0b001100010010,
0b001100100000,
0b001100101000,
0b001100111000,
0b001101000000,
0b001101000010,
0b001101001000,
0b001101010000,
0b001101100000,
0b001101101000,
0b001101110000,
0b001101110001,
0b001101111000,
0b010001101000,
0b010001101001,
0b010001101010,
0b010110001000
};
static const uint32_t gen8_control_index_table[32] = {
0b0000000000000000010,
0b0000100000000000000,
0b0000100000000000001,
0b0000100000000000010,
0b0000100000000000011,
0b0000100000000000100,
0b0000100000000000101,
0b0000100000000000111,
0b0000100000000001000,
0b0000100000000001001,
0b0000100000000001101,
0b0000110000000000000,
0b0000110000000000001,
0b0000110000000000010,
0b0000110000000000011,
0b0000110000000000100,
0b0000110000000000101,
0b0000110000000000111,
0b0000110000000001001,
0b0000110000000001101,
0b0000110000000010000,
0b0000110000100000000,
0b0001000000000000000,
0b0001000000000000010,
0b0001000000000000100,
0b0001000000100000000,
0b0010110000000000000,
0b0010110000000010000,
0b0011000000000000000,
0b0011000000100000000,
0b0101000000000000000,
0b0101000000100000000
};
static const uint32_t gen8_datatype_table[32] = {
0b001000000000000000001,
0b001000000000001000000,
0b001000000000001000001,
0b001000000000011000001,
0b001000000000101011101,
0b001000000010111011101,
0b001000000011101000001,
0b001000000011101000101,
0b001000000011101011101,
0b001000001000001000001,
0b001000011000001000000,
0b001000011000001000001,
0b001000101000101000101,
0b001000111000101000100,
0b001000111000101000101,
0b001011100011101011101,
0b001011101011100011101,
0b001011101011101011100,
0b001011101011101011101,
0b001011111011101011100,
0b000000000010000001100,
0b001000000000001011101,
0b001000000000101000101,
0b001000001000001000000,
0b001000101000101000100,
0b001000111000100000100,
0b001001001001000001001,
0b001010111011101011101,
0b001011111011101011101,
0b001001111001101001100,
0b001001001001001001000,
0b001001011001001001000
};
static const uint16_t gen8_subreg_table[32] = {
0b000000000000000,
0b000000000000001,
0b000000000001000,
0b000000000001111,
0b000000000010000,
0b000000010000000,
0b000000100000000,
0b000000110000000,
0b000001000000000,
0b000001000010000,
0b000001010000000,
0b001000000000000,
0b001000000000001,
0b001000010000001,
0b001000010000010,
0b001000010000011,
0b001000010000100,
0b001000010000111,
0b001000010001000,
0b001000010001110,
0b001000010001111,
0b001000110000000,
0b001000111101000,
0b010000000000000,
0b010000110000000,
0b011000000000000,
0b011110010000111,
0b100000000000000,
0b101000000000000,
0b110000000000000,
0b111000000000000,
0b111000000011100
};
static const uint16_t gen8_src_index_table[32] = {
0b000000000000,
0b000000000010,
0b000000010000,
0b000000010010,
0b000000011000,
0b000000100000,
0b000000101000,
0b000001001000,
0b000001010000,
0b000001110000,
0b000001111000,
0b001100000000,
0b001100000010,
0b001100001000,
0b001100010000,
0b001100010010,
0b001100100000,
0b001100101000,
0b001100111000,
0b001101000000,
0b001101000010,
0b001101001000,
0b001101010000,
0b001101100000,
0b001101101000,
0b001101110000,
0b001101110001,
0b001101111000,
0b010001101000,
0b010001101001,
0b010001101010,
0b010110001000
};
/* This is actually the control index table for Cherryview (26 bits), but the
* only difference from Broadwell (24 bits) is that it has two extra 0-bits at
* the start.
*
* The low 24 bits have the same mappings on both hardware.
*/
static const uint32_t gen8_3src_control_index_table[4] = {
0b00100000000110000000000001,
0b00000000000110000000000001,
0b00000000001000000000000001,
0b00000000001000000000100001
};
/* This is actually the control index table for Cherryview (49 bits), but the
* only difference from Broadwell (46 bits) is that it has three extra 0-bits
* at the start.
*
* The low 44 bits have the same mappings on both hardware, and since the high
* three bits on Broadwell are zero, we can reuse Cherryview's table.
*/
static const uint64_t gen8_3src_source_index_table[4] = {
0b0000001110010011100100111001000001111000000000000,
0b0000001110010011100100111001000001111000000000010,
0b0000001110010011100100111001000001111000000001000,
0b0000001110010011100100111001000001111000000100000
};
static const uint32_t *control_index_table;
static const uint32_t *datatype_table;
static const uint16_t *subreg_table;
static const uint16_t *src_index_table;
static bool
set_control_index(struct brw_context *brw, brw_compact_inst *dst, brw_inst *src)
{
uint32_t uncompacted = brw->gen >= 8 /* 17b/SNB; 19b/IVB+ */
? (brw_inst_bits(src, 33, 31) << 16) | /* 3b */
(brw_inst_bits(src, 23, 12) << 4) | /* 12b */
(brw_inst_bits(src, 10, 9) << 2) | /* 2b */
(brw_inst_bits(src, 34, 34) << 1) | /* 1b */
(brw_inst_bits(src, 8, 8)) /* 1b */
: (brw_inst_bits(src, 31, 31) << 16) | /* 1b */
(brw_inst_bits(src, 23, 8)); /* 16b */
/* On gen7, the flag register and subregister numbers are integrated into
* the control index.
*/
if (brw->gen == 7)
uncompacted |= brw_inst_bits(src, 90, 89) << 17; /* 2b */
for (int i = 0; i < 32; i++) {
if (control_index_table[i] == uncompacted) {
brw_compact_inst_set_control_index(dst, i);
return true;
}
}
return false;
}
static bool
set_datatype_index(struct brw_context *brw, brw_compact_inst *dst,
brw_inst *src)
{
uint32_t uncompacted = brw->gen >= 8 /* 18b/SNB+; 21b/BDW+ */
? (brw_inst_bits(src, 63, 61) << 18) | /* 3b */
(brw_inst_bits(src, 94, 89) << 12) | /* 6b */
(brw_inst_bits(src, 46, 35)) /* 12b */
: (brw_inst_bits(src, 63, 61) << 15) | /* 3b */
(brw_inst_bits(src, 46, 32)); /* 15b */
for (int i = 0; i < 32; i++) {
if (datatype_table[i] == uncompacted) {
brw_compact_inst_set_datatype_index(dst, i);
return true;
}
}
return false;
}
static bool
set_subreg_index(struct brw_context *brw, brw_compact_inst *dst, brw_inst *src,
bool is_immediate)
{
uint16_t uncompacted = /* 15b */
(brw_inst_bits(src, 52, 48) << 0) | /* 5b */
(brw_inst_bits(src, 68, 64) << 5); /* 5b */
if (!is_immediate)
uncompacted |= brw_inst_bits(src, 100, 96) << 10; /* 5b */
for (int i = 0; i < 32; i++) {
if (subreg_table[i] == uncompacted) {
brw_compact_inst_set_subreg_index(dst, i);
return true;
}
}
return false;
}
static bool
get_src_index(uint16_t uncompacted,
uint16_t *compacted)
{
for (int i = 0; i < 32; i++) {
if (src_index_table[i] == uncompacted) {
*compacted = i;
return true;
}
}
return false;
}
static bool
set_src0_index(struct brw_context *brw, brw_compact_inst *dst, brw_inst *src)
{
uint16_t compacted;
uint16_t uncompacted = brw_inst_bits(src, 88, 77); /* 12b */
if (!get_src_index(uncompacted, &compacted))
return false;
brw_compact_inst_set_src0_index(dst, compacted);
return true;
}
static bool
set_src1_index(struct brw_context *brw, brw_compact_inst *dst, brw_inst *src,
bool is_immediate)
{
uint16_t compacted;
if (is_immediate) {
compacted = (brw_inst_imm_ud(brw, src) >> 8) & 0x1f;
} else {
uint16_t uncompacted = brw_inst_bits(src, 120, 109); /* 12b */
if (!get_src_index(uncompacted, &compacted))
return false;
}
brw_compact_inst_set_src1_index(dst, compacted);
return true;
}
static bool
set_3src_control_index(struct brw_context *brw, brw_compact_inst *dst, brw_inst *src)
{
assert(brw->gen >= 8);
uint32_t uncompacted = /* 24b/BDW; 26b/CHV */
(brw_inst_bits(src, 34, 32) << 21) | /* 3b */
(brw_inst_bits(src, 28, 8)); /* 21b */
if (brw->is_cherryview)
uncompacted |= brw_inst_bits(src, 36, 35) << 24; /* 2b */
for (int i = 0; i < ARRAY_SIZE(gen8_3src_control_index_table); i++) {
if (gen8_3src_control_index_table[i] == uncompacted) {
brw_compact_inst_set_3src_control_index(dst, i);
return true;
}
}
return false;
}
static bool
set_3src_source_index(struct brw_context *brw, brw_compact_inst *dst, brw_inst *src)
{
assert(brw->gen >= 8);
uint64_t uncompacted = /* 46b/BDW; 49b/CHV */
(brw_inst_bits(src, 83, 83) << 43) | /* 1b */
(brw_inst_bits(src, 114, 107) << 35) | /* 8b */
(brw_inst_bits(src, 93, 86) << 27) | /* 8b */
(brw_inst_bits(src, 72, 65) << 19) | /* 8b */
(brw_inst_bits(src, 55, 37)); /* 19b */
if (brw->is_cherryview) {
uncompacted |=
(brw_inst_bits(src, 126, 125) << 47) | /* 2b */
(brw_inst_bits(src, 105, 104) << 45) | /* 2b */
(brw_inst_bits(src, 84, 84) << 44); /* 1b */
} else {
uncompacted |=
(brw_inst_bits(src, 125, 125) << 45) | /* 1b */
(brw_inst_bits(src, 104, 104) << 44); /* 1b */
}
for (int i = 0; i < ARRAY_SIZE(gen8_3src_source_index_table); i++) {
if (gen8_3src_source_index_table[i] == uncompacted) {
brw_compact_inst_set_3src_source_index(dst, i);
return true;
}
}
return false;
}
static bool
brw_try_compact_3src_instruction(struct brw_context *brw, brw_compact_inst *dst,
brw_inst *src)
{
assert(brw->gen >= 8);
#define compact(field) \
brw_compact_inst_set_3src_##field(dst, brw_inst_3src_##field(brw, src))
compact(opcode);
if (!set_3src_control_index(brw, dst, src))
return false;
if (!set_3src_source_index(brw, dst, src))
return false;
compact(dst_reg_nr);
compact(src0_rep_ctrl);
brw_compact_inst_set_3src_cmpt_control(dst, true);
compact(debug_control);
compact(saturate);
compact(src1_rep_ctrl);
compact(src2_rep_ctrl);
compact(src0_reg_nr);
compact(src1_reg_nr);
compact(src2_reg_nr);
compact(src0_subreg_nr);
compact(src1_subreg_nr);
compact(src2_subreg_nr);
#undef compact
return true;
}
/* Compacted instructions have 12-bits for immediate sources, and a 13th bit
* that's replicated through the high 20 bits.
*
* Effectively this means we get 12-bit integers, 0.0f, and some limited uses
* of packed vectors as compactable immediates.
*/
static bool
is_compactable_immediate(unsigned imm)
{
/* We get the low 12 bits as-is. */
imm &= ~0xfff;
/* We get one bit replicated through the top 20 bits. */
return imm == 0 || imm == 0xfffff000;
}
/* Returns whether an opcode takes three sources. */
static bool
is_3src(uint32_t op)
{
return opcode_descs[op].nsrc == 3;
}
/**
* Tries to compact instruction src into dst.
*
* It doesn't modify dst unless src is compactable, which is relied on by
* brw_compact_instructions().
*/
bool
brw_try_compact_instruction(struct brw_context *brw, brw_compact_inst *dst,
brw_inst *src)
{
brw_compact_inst temp;
assert(brw_inst_cmpt_control(brw, src) == 0);
if (brw_inst_opcode(brw, src) == BRW_OPCODE_IF ||
brw_inst_opcode(brw, src) == BRW_OPCODE_ELSE ||
brw_inst_opcode(brw, src) == BRW_OPCODE_ENDIF ||
brw_inst_opcode(brw, src) == BRW_OPCODE_HALT ||
brw_inst_opcode(brw, src) == BRW_OPCODE_DO ||
brw_inst_opcode(brw, src) == BRW_OPCODE_WHILE) {
/* FINISHME: The fixup code below, and brw_set_uip_jip and friends, needs
* to be able to handle compacted flow control instructions..
*/
return false;
}
if (is_3src(brw_inst_opcode(brw, src))) {
if (brw->gen >= 8) {
memset(&temp, 0, sizeof(temp));
if (brw_try_compact_3src_instruction(brw, &temp, src)) {
*dst = temp;
return true;
} else {
return false;
}
} else {
return false;
}
}
bool is_immediate =
brw_inst_src0_reg_file(brw, src) == BRW_IMMEDIATE_VALUE ||
brw_inst_src1_reg_file(brw, src) == BRW_IMMEDIATE_VALUE;
if (is_immediate && !is_compactable_immediate(brw_inst_imm_ud(brw, src))) {
return false;
}
memset(&temp, 0, sizeof(temp));
brw_compact_inst_set_opcode(&temp, brw_inst_opcode(brw, src));
brw_compact_inst_set_debug_control(&temp, brw_inst_debug_control(brw, src));
if (!set_control_index(brw, &temp, src))
return false;
if (!set_datatype_index(brw, &temp, src))
return false;
if (!set_subreg_index(brw, &temp, src, is_immediate))
return false;
brw_compact_inst_set_acc_wr_control(&temp,
brw_inst_acc_wr_control(brw, src));
brw_compact_inst_set_cond_modifier(&temp, brw_inst_cond_modifier(brw, src));
if (brw->gen <= 6)
brw_compact_inst_set_flag_subreg_nr(&temp,
brw_inst_flag_subreg_nr(brw, src));
brw_compact_inst_set_cmpt_control(&temp, true);
if (!set_src0_index(brw, &temp, src))
return false;
if (!set_src1_index(brw, &temp, src, is_immediate))
return false;
brw_compact_inst_set_dst_reg_nr(&temp, brw_inst_dst_da_reg_nr(brw, src));
brw_compact_inst_set_src0_reg_nr(&temp, brw_inst_src0_da_reg_nr(brw, src));
if (is_immediate) {
brw_compact_inst_set_src1_reg_nr(&temp, brw_inst_imm_ud(brw, src) & 0xff);
} else {
brw_compact_inst_set_src1_reg_nr(&temp,
brw_inst_src1_da_reg_nr(brw, src));
}
*dst = temp;
return true;
}
static void
set_uncompacted_control(struct brw_context *brw, brw_inst *dst,
brw_compact_inst *src)
{
uint32_t uncompacted =
control_index_table[brw_compact_inst_control_index(src)];
if (brw->gen >= 8) {
brw_inst_set_bits(dst, 33, 31, (uncompacted >> 16));
brw_inst_set_bits(dst, 23, 12, (uncompacted >> 4) & 0xfff);
brw_inst_set_bits(dst, 10, 9, (uncompacted >> 2) & 0x3);
brw_inst_set_bits(dst, 34, 34, (uncompacted >> 1) & 0x1);
brw_inst_set_bits(dst, 8, 8, (uncompacted >> 0) & 0x1);
} else {
brw_inst_set_bits(dst, 31, 31, (uncompacted >> 16) & 0x1);
brw_inst_set_bits(dst, 23, 8, (uncompacted & 0xffff));
if (brw->gen == 7)
brw_inst_set_bits(dst, 90, 89, uncompacted >> 17);
}
}
static void
set_uncompacted_datatype(struct brw_context *brw, brw_inst *dst,
brw_compact_inst *src)
{
uint32_t uncompacted = datatype_table[brw_compact_inst_datatype_index(src)];
if (brw->gen >= 8) {
brw_inst_set_bits(dst, 63, 61, (uncompacted >> 18));
brw_inst_set_bits(dst, 94, 89, (uncompacted >> 12) & 0x3f);
brw_inst_set_bits(dst, 46, 35, (uncompacted >> 0) & 0xfff);
} else {
brw_inst_set_bits(dst, 63, 61, (uncompacted >> 15));
brw_inst_set_bits(dst, 46, 32, (uncompacted & 0x7fff));
}
}
static void
set_uncompacted_subreg(struct brw_context *brw, brw_inst *dst,
brw_compact_inst *src)
{
uint16_t uncompacted = subreg_table[brw_compact_inst_subreg_index(src)];
brw_inst_set_bits(dst, 100, 96, (uncompacted >> 10));
brw_inst_set_bits(dst, 68, 64, (uncompacted >> 5) & 0x1f);
brw_inst_set_bits(dst, 52, 48, (uncompacted >> 0) & 0x1f);
}
static void
set_uncompacted_src0(struct brw_context *brw, brw_inst *dst,
brw_compact_inst *src)
{
uint32_t compacted = brw_compact_inst_src0_index(src);
uint16_t uncompacted = src_index_table[compacted];
brw_inst_set_bits(dst, 88, 77, uncompacted);
}
static void
set_uncompacted_src1(struct brw_context *brw, brw_inst *dst,
brw_compact_inst *src, bool is_immediate)
{
if (is_immediate) {
signed high5 = brw_compact_inst_src1_index(src);
/* Replicate top bit of src1_index into high 20 bits of the immediate. */
brw_inst_set_imm_ud(brw, dst, (high5 << 27) >> 19);
} else {
uint16_t uncompacted = src_index_table[brw_compact_inst_src1_index(src)];
brw_inst_set_bits(dst, 120, 109, uncompacted);
}
}
static void
set_uncompacted_3src_control_index(struct brw_context *brw, brw_inst *dst,
brw_compact_inst *src)
{
assert(brw->gen >= 8);
uint32_t compacted = brw_compact_inst_3src_control_index(src);
uint32_t uncompacted = gen8_3src_control_index_table[compacted];
brw_inst_set_bits(dst, 34, 32, (uncompacted >> 21) & 0x7);
brw_inst_set_bits(dst, 28, 8, (uncompacted >> 0) & 0x1fffff);
if (brw->is_cherryview)
brw_inst_set_bits(dst, 36, 35, (uncompacted >> 24) & 0x3);
}
static void
set_uncompacted_3src_source_index(struct brw_context *brw, brw_inst *dst,
brw_compact_inst *src)
{
assert(brw->gen >= 8);
uint32_t compacted = brw_compact_inst_3src_source_index(src);
uint64_t uncompacted = gen8_3src_source_index_table[compacted];
brw_inst_set_bits(dst, 83, 83, (uncompacted >> 43) & 0x1);
brw_inst_set_bits(dst, 114, 107, (uncompacted >> 35) & 0xff);
brw_inst_set_bits(dst, 93, 86, (uncompacted >> 27) & 0xff);
brw_inst_set_bits(dst, 72, 65, (uncompacted >> 19) & 0xff);
brw_inst_set_bits(dst, 55, 37, (uncompacted >> 0) & 0x7ffff);
if (brw->is_cherryview) {
brw_inst_set_bits(dst, 126, 125, (uncompacted >> 47) & 0x3);
brw_inst_set_bits(dst, 105, 104, (uncompacted >> 45) & 0x3);
brw_inst_set_bits(dst, 84, 84, (uncompacted >> 44) & 0x1);
} else {
brw_inst_set_bits(dst, 125, 125, (uncompacted >> 45) & 0x1);
brw_inst_set_bits(dst, 104, 104, (uncompacted >> 44) & 0x1);
}
}
static void
brw_uncompact_3src_instruction(struct brw_context *brw, brw_inst *dst,
brw_compact_inst *src)
{
assert(brw->gen >= 8);
#define uncompact(field) \
brw_inst_set_3src_##field(brw, dst, brw_compact_inst_3src_##field(src))
uncompact(opcode);
set_uncompacted_3src_control_index(brw, dst, src);
set_uncompacted_3src_source_index(brw, dst, src);
uncompact(dst_reg_nr);
uncompact(src0_rep_ctrl);
brw_inst_set_3src_cmpt_control(brw, dst, false);
uncompact(debug_control);
uncompact(saturate);
uncompact(src1_rep_ctrl);
uncompact(src2_rep_ctrl);
uncompact(src0_reg_nr);
uncompact(src1_reg_nr);
uncompact(src2_reg_nr);
uncompact(src0_subreg_nr);
uncompact(src1_subreg_nr);
uncompact(src2_subreg_nr);
#undef uncompact
}
void
brw_uncompact_instruction(struct brw_context *brw, brw_inst *dst,
brw_compact_inst *src)
{
memset(dst, 0, sizeof(*dst));
if (brw->gen >= 8 && is_3src(brw_compact_inst_3src_opcode(src))) {
brw_uncompact_3src_instruction(brw, dst, src);
return;
}
brw_inst_set_opcode(brw, dst, brw_compact_inst_opcode(src));
brw_inst_set_debug_control(brw, dst, brw_compact_inst_debug_control(src));
set_uncompacted_control(brw, dst, src);
set_uncompacted_datatype(brw, dst, src);
/* src0/1 register file fields are in the datatype table. */
bool is_immediate = brw_inst_src0_reg_file(brw, dst) == BRW_IMMEDIATE_VALUE ||
brw_inst_src1_reg_file(brw, dst) == BRW_IMMEDIATE_VALUE;
set_uncompacted_subreg(brw, dst, src);
brw_inst_set_acc_wr_control(brw, dst, brw_compact_inst_acc_wr_control(src));
brw_inst_set_cond_modifier(brw, dst, brw_compact_inst_cond_modifier(src));
if (brw->gen <= 6)
brw_inst_set_flag_subreg_nr(brw, dst,
brw_compact_inst_flag_subreg_nr(src));
set_uncompacted_src0(brw, dst, src);
set_uncompacted_src1(brw, dst, src, is_immediate);
brw_inst_set_dst_da_reg_nr(brw, dst, brw_compact_inst_dst_reg_nr(src));
brw_inst_set_src0_da_reg_nr(brw, dst, brw_compact_inst_src0_reg_nr(src));
if (is_immediate) {
brw_inst_set_imm_ud(brw, dst,
brw_inst_imm_ud(brw, dst) |
brw_compact_inst_src1_reg_nr(src));
} else {
brw_inst_set_src1_da_reg_nr(brw, dst, brw_compact_inst_src1_reg_nr(src));
}
}
void brw_debug_compact_uncompact(struct brw_context *brw,
brw_inst *orig,
brw_inst *uncompacted)
{
fprintf(stderr, "Instruction compact/uncompact changed (gen%d):\n",
brw->gen);
fprintf(stderr, " before: ");
brw_disassemble_inst(stderr, brw, orig, true);
fprintf(stderr, " after: ");
brw_disassemble_inst(stderr, brw, uncompacted, false);
uint32_t *before_bits = (uint32_t *)orig;
uint32_t *after_bits = (uint32_t *)uncompacted;
fprintf(stderr, " changed bits:\n");
for (int i = 0; i < 128; i++) {
uint32_t before = before_bits[i / 32] & (1 << (i & 31));
uint32_t after = after_bits[i / 32] & (1 << (i & 31));
if (before != after) {
fprintf(stderr, " bit %d, %s to %s\n", i,
before ? "set" : "unset",
after ? "set" : "unset");
}
}
}
static int
compacted_between(int old_ip, int old_target_ip, int *compacted_counts)
{
int this_compacted_count = compacted_counts[old_ip];
int target_compacted_count = compacted_counts[old_target_ip];
return target_compacted_count - this_compacted_count;
}
static void
update_uip_jip(struct brw_context *brw, brw_inst *insn,
int this_old_ip, int *compacted_counts)
{
int scale = brw->gen >= 8 ? sizeof(brw_compact_inst) : 1;
int32_t jip = brw_inst_jip(brw, insn) / scale;
jip -= compacted_between(this_old_ip, this_old_ip + jip, compacted_counts);
brw_inst_set_jip(brw, insn, jip * scale);
if (brw_inst_opcode(brw, insn) == BRW_OPCODE_ENDIF ||
brw_inst_opcode(brw, insn) == BRW_OPCODE_WHILE ||
(brw_inst_opcode(brw, insn) == BRW_OPCODE_ELSE && brw->gen <= 7))
return;
int32_t uip = brw_inst_uip(brw, insn) / scale;
uip -= compacted_between(this_old_ip, this_old_ip + uip, compacted_counts);
brw_inst_set_uip(brw, insn, uip * scale);
}
void
brw_init_compaction_tables(struct brw_context *brw)
{
assert(gen6_control_index_table[ARRAY_SIZE(gen6_control_index_table) - 1] != 0);
assert(gen6_datatype_table[ARRAY_SIZE(gen6_datatype_table) - 1] != 0);
assert(gen6_subreg_table[ARRAY_SIZE(gen6_subreg_table) - 1] != 0);
assert(gen6_src_index_table[ARRAY_SIZE(gen6_src_index_table) - 1] != 0);
assert(gen7_control_index_table[ARRAY_SIZE(gen7_control_index_table) - 1] != 0);
assert(gen7_datatype_table[ARRAY_SIZE(gen7_datatype_table) - 1] != 0);
assert(gen7_subreg_table[ARRAY_SIZE(gen7_subreg_table) - 1] != 0);
assert(gen7_src_index_table[ARRAY_SIZE(gen7_src_index_table) - 1] != 0);
assert(gen8_control_index_table[ARRAY_SIZE(gen8_control_index_table) - 1] != 0);
assert(gen8_datatype_table[ARRAY_SIZE(gen8_datatype_table) - 1] != 0);
assert(gen8_subreg_table[ARRAY_SIZE(gen8_subreg_table) - 1] != 0);
assert(gen8_src_index_table[ARRAY_SIZE(gen8_src_index_table) - 1] != 0);
switch (brw->gen) {
case 8:
control_index_table = gen8_control_index_table;
datatype_table = gen8_datatype_table;
subreg_table = gen8_subreg_table;
src_index_table = gen8_src_index_table;
break;
case 7:
control_index_table = gen7_control_index_table;
datatype_table = gen7_datatype_table;
subreg_table = gen7_subreg_table;
src_index_table = gen7_src_index_table;
break;
case 6:
control_index_table = gen6_control_index_table;
datatype_table = gen6_datatype_table;
subreg_table = gen6_subreg_table;
src_index_table = gen6_src_index_table;
break;
default:
return;
}
}
void
brw_compact_instructions(struct brw_compile *p, int start_offset,
int num_annotations, struct annotation *annotation)
{
struct brw_context *brw = p->brw;
void *store = p->store + start_offset / 16;
/* For an instruction at byte offset 8*i before compaction, this is the number
* of compacted instructions that preceded it.
*/
int compacted_counts[(p->next_insn_offset - start_offset) / 8];
/* For an instruction at byte offset 8*i after compaction, this is the
* 8-byte offset it was at before compaction.
*/
int old_ip[(p->next_insn_offset - start_offset) / 8];
if (brw->gen < 6)
return;
int offset = 0;
int compacted_count = 0;
for (int src_offset = 0; src_offset < p->next_insn_offset - start_offset;
src_offset += sizeof(brw_inst)) {
brw_inst *src = store + src_offset;
void *dst = store + offset;
old_ip[offset / 8] = src_offset / 8;
compacted_counts[src_offset / 8] = compacted_count;
brw_inst saved = *src;
if (brw_try_compact_instruction(brw, dst, src)) {
compacted_count++;
if (INTEL_DEBUG) {
brw_inst uncompacted;
brw_uncompact_instruction(brw, &uncompacted, dst);
if (memcmp(&saved, &uncompacted, sizeof(uncompacted))) {
brw_debug_compact_uncompact(brw, &saved, &uncompacted);
}
}
offset += 8;
} else {
/* It appears that the end of thread SEND instruction needs to be
* aligned, or the GPU hangs.
*/
if ((brw_inst_opcode(brw, src) == BRW_OPCODE_SEND ||
brw_inst_opcode(brw, src) == BRW_OPCODE_SENDC) &&
brw_inst_eot(brw, src) &&
(offset & 8) != 0) {
brw_compact_inst *align = store + offset;
memset(align, 0, sizeof(*align));
brw_compact_inst_set_opcode(align, BRW_OPCODE_NOP);
brw_compact_inst_set_cmpt_control(align, true);
offset += 8;
old_ip[offset / 8] = src_offset / 8;
dst = store + offset;
}
/* If we didn't compact this intruction, we need to move it down into
* place.
*/
if (offset != src_offset) {
memmove(dst, src, sizeof(brw_inst));
}
offset += sizeof(brw_inst);
}
}
/* Fix up control flow offsets. */
p->next_insn_offset = start_offset + offset;
for (offset = 0; offset < p->next_insn_offset - start_offset;) {
brw_inst *insn = store + offset;
int this_old_ip = old_ip[offset / 8];
int this_compacted_count = compacted_counts[this_old_ip];
int target_old_ip, target_compacted_count;
switch (brw_inst_opcode(brw, insn)) {
case BRW_OPCODE_BREAK:
case BRW_OPCODE_CONTINUE:
case BRW_OPCODE_HALT:
update_uip_jip(brw, insn, this_old_ip, compacted_counts);
break;
case BRW_OPCODE_IF:
case BRW_OPCODE_ELSE:
case BRW_OPCODE_ENDIF:
case BRW_OPCODE_WHILE:
if (brw->gen >= 7) {
update_uip_jip(brw, insn, this_old_ip, compacted_counts);
} else if (brw->gen == 6) {
int gen6_jump_count = brw_inst_gen6_jump_count(brw, insn);
target_old_ip = this_old_ip + gen6_jump_count;
target_compacted_count = compacted_counts[target_old_ip];
gen6_jump_count -= (target_compacted_count - this_compacted_count);
brw_inst_set_gen6_jump_count(brw, insn, gen6_jump_count);
}
break;
}
offset = next_offset(brw, store, offset);
}
/* p->nr_insn is counting the number of uncompacted instructions still, so
* divide. We do want to be sure there's a valid instruction in any
* alignment padding, so that the next compression pass (for the FS 8/16
* compile passes) parses correctly.
*/
if (p->next_insn_offset & 8) {
brw_compact_inst *align = store + offset;
memset(align, 0, sizeof(*align));
brw_compact_inst_set_opcode(align, BRW_OPCODE_NOP);
brw_compact_inst_set_cmpt_control(align, true);
p->next_insn_offset += 8;
}
p->nr_insn = p->next_insn_offset / 16;
/* Update the instruction offsets for each annotation. */
if (annotation) {
for (int offset = 0, i = 0; i < num_annotations; i++) {
while (start_offset + old_ip[offset / 8] * 8 != annotation[i].offset) {
assert(start_offset + old_ip[offset / 8] * 8 <
annotation[i].offset);
offset = next_offset(brw, store, offset);
}
annotation[i].offset = start_offset + offset;
offset = next_offset(brw, store, offset);
}
annotation[num_annotations].offset = p->next_insn_offset;
}
}