mesa/src/glsl/nir/nir.c

1720 lines
46 KiB
C
Raw Normal View History

/*
* Copyright © 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Connor Abbott (cwabbott0@gmail.com)
*
*/
#include "nir.h"
#include <assert.h>
nir_shader *
nir_shader_create(void *mem_ctx)
{
nir_shader *shader = ralloc(mem_ctx, nir_shader);
shader->uniforms = _mesa_hash_table_create(shader, _mesa_key_hash_string,
_mesa_key_string_equal);
shader->inputs = _mesa_hash_table_create(shader, _mesa_key_hash_string,
_mesa_key_string_equal);
shader->outputs = _mesa_hash_table_create(shader, _mesa_key_hash_string,
_mesa_key_string_equal);
shader->num_user_structures = 0;
shader->user_structures = NULL;
exec_list_make_empty(&shader->functions);
exec_list_make_empty(&shader->registers);
exec_list_make_empty(&shader->globals);
exec_list_make_empty(&shader->system_values);
shader->reg_alloc = 0;
return shader;
}
static nir_register *
reg_create(void *mem_ctx, struct exec_list *list)
{
nir_register *reg = ralloc(mem_ctx, nir_register);
reg->uses = _mesa_set_create(mem_ctx, _mesa_key_pointer_equal);
reg->defs = _mesa_set_create(mem_ctx, _mesa_key_pointer_equal);
reg->if_uses = _mesa_set_create(mem_ctx, _mesa_key_pointer_equal);
reg->num_components = 0;
reg->num_array_elems = 0;
reg->is_packed = false;
reg->name = NULL;
exec_list_push_tail(list, &reg->node);
return reg;
}
nir_register *
nir_global_reg_create(nir_shader *shader)
{
nir_register *reg = reg_create(shader, &shader->registers);
reg->index = shader->reg_alloc++;
reg->is_global = true;
return reg;
}
nir_register *
nir_local_reg_create(nir_function_impl *impl)
{
nir_register *reg = reg_create(ralloc_parent(impl), &impl->registers);
reg->index = impl->reg_alloc++;
reg->is_global = false;
return reg;
}
void
nir_reg_remove(nir_register *reg)
{
exec_node_remove(&reg->node);
}
nir_function *
nir_function_create(nir_shader *shader, const char *name)
{
nir_function *func = ralloc(shader, nir_function);
exec_list_push_tail(&shader->functions, &func->node);
exec_list_make_empty(&func->overload_list);
func->name = name;
return func;
}
nir_function_overload *
nir_function_overload_create(nir_function *func)
{
void *mem_ctx = ralloc_parent(func);
nir_function_overload *overload = ralloc(mem_ctx, nir_function_overload);
overload->num_params = 0;
overload->params = NULL;
overload->return_type = glsl_void_type();
overload->impl = NULL;
exec_list_push_tail(&func->overload_list, &overload->node);
overload->function = func;
return overload;
}
nir_src nir_src_copy(nir_src src, void *mem_ctx)
{
nir_src ret;
ret.is_ssa = src.is_ssa;
if (ret.is_ssa) {
ret.ssa = src.ssa;
} else {
ret.reg.base_offset = src.reg.base_offset;
ret.reg.reg = src.reg.reg;
if (src.reg.indirect) {
ret.reg.indirect = ralloc(mem_ctx, nir_src);
*ret.reg.indirect = *src.reg.indirect;
} else {
ret.reg.indirect = NULL;
}
}
return ret;
}
nir_dest nir_dest_copy(nir_dest dest, void *mem_ctx)
{
nir_dest ret;
ret.is_ssa = dest.is_ssa;
if (ret.is_ssa) {
ret.ssa = dest.ssa;
} else {
ret.reg.base_offset = dest.reg.base_offset;
ret.reg.reg = dest.reg.reg;
if (dest.reg.indirect) {
ret.reg.indirect = ralloc(mem_ctx, nir_src);
*ret.reg.indirect = *dest.reg.indirect;
} else {
ret.reg.indirect = NULL;
}
}
return ret;
}
static inline void
block_add_pred(nir_block *block, nir_block *pred)
{
_mesa_set_add(block->predecessors, _mesa_hash_pointer(pred), pred);
}
static void
cf_init(nir_cf_node *node, nir_cf_node_type type)
{
exec_node_init(&node->node);
node->parent = NULL;
node->type = type;
}
static void
link_blocks(nir_block *pred, nir_block *succ1, nir_block *succ2)
{
pred->successors[0] = succ1;
block_add_pred(succ1, pred);
pred->successors[1] = succ2;
if (succ2 != NULL)
block_add_pred(succ2, pred);
}
static void
unlink_blocks(nir_block *pred, nir_block *succ)
{
if (pred->successors[0] == succ) {
pred->successors[0] = pred->successors[1];
pred->successors[1] = NULL;
} else {
assert(pred->successors[1] == succ);
pred->successors[1] = NULL;
}
struct set_entry *entry = _mesa_set_search(succ->predecessors,
_mesa_hash_pointer(pred), pred);
assert(entry);
_mesa_set_remove(succ->predecessors, entry);
}
static void
unlink_block_successors(nir_block *block)
{
if (block->successors[0] != NULL)
unlink_blocks(block, block->successors[0]);
if (block->successors[1] != NULL)
unlink_blocks(block, block->successors[1]);
}
nir_function_impl *
nir_function_impl_create(nir_function_overload *overload)
{
assert(overload->impl == NULL);
void *mem_ctx = ralloc_parent(overload);
nir_function_impl *impl = ralloc(mem_ctx, nir_function_impl);
overload->impl = impl;
impl->overload = overload;
cf_init(&impl->cf_node, nir_cf_node_function);
exec_list_make_empty(&impl->body);
exec_list_make_empty(&impl->registers);
exec_list_make_empty(&impl->locals);
impl->num_params = 0;
impl->params = NULL;
impl->return_var = NULL;
impl->reg_alloc = 0;
impl->ssa_alloc = 0;
impl->block_index_dirty = true;
/* create start & end blocks */
nir_block *start_block = nir_block_create(mem_ctx);
nir_block *end_block = nir_block_create(mem_ctx);
start_block->cf_node.parent = &impl->cf_node;
end_block->cf_node.parent = &impl->cf_node;
impl->start_block = start_block;
impl->end_block = end_block;
exec_list_push_tail(&impl->body, &start_block->cf_node.node);
start_block->successors[0] = end_block;
block_add_pred(end_block, start_block);
return impl;
}
nir_block *
nir_block_create(void *mem_ctx)
{
nir_block *block = ralloc(mem_ctx, nir_block);
cf_init(&block->cf_node, nir_cf_node_block);
block->successors[0] = block->successors[1] = NULL;
block->predecessors = _mesa_set_create(mem_ctx, _mesa_key_pointer_equal);
exec_list_make_empty(&block->instr_list);
return block;
}
static inline void
src_init(nir_src *src)
{
src->is_ssa = false;
src->reg.reg = NULL;
src->reg.indirect = NULL;
src->reg.base_offset = 0;
}
nir_if *
nir_if_create(void *mem_ctx)
{
nir_if *if_stmt = ralloc(mem_ctx, nir_if);
cf_init(&if_stmt->cf_node, nir_cf_node_if);
src_init(&if_stmt->condition);
nir_block *then = nir_block_create(mem_ctx);
exec_list_make_empty(&if_stmt->then_list);
exec_list_push_tail(&if_stmt->then_list, &then->cf_node.node);
then->cf_node.parent = &if_stmt->cf_node;
nir_block *else_stmt = nir_block_create(mem_ctx);
exec_list_make_empty(&if_stmt->else_list);
exec_list_push_tail(&if_stmt->else_list, &else_stmt->cf_node.node);
else_stmt->cf_node.parent = &if_stmt->cf_node;
return if_stmt;
}
nir_loop *
nir_loop_create(void *mem_ctx)
{
nir_loop *loop = ralloc(mem_ctx, nir_loop);
cf_init(&loop->cf_node, nir_cf_node_loop);
nir_block *body = nir_block_create(mem_ctx);
exec_list_make_empty(&loop->body);
exec_list_push_tail(&loop->body, &body->cf_node.node);
body->cf_node.parent = &loop->cf_node;
body->successors[0] = body;
block_add_pred(body, body);
return loop;
}
static void
instr_init(nir_instr *instr, nir_instr_type type)
{
instr->type = type;
instr->block = NULL;
exec_node_init(&instr->node);
}
static void
dest_init(nir_dest *dest)
{
dest->is_ssa = false;
dest->reg.reg = NULL;
dest->reg.indirect = NULL;
dest->reg.base_offset = 0;
}
static void
alu_dest_init(nir_alu_dest *dest)
{
dest_init(&dest->dest);
dest->saturate = false;
dest->write_mask = 0xf;
}
static void
alu_src_init(nir_alu_src *src)
{
src_init(&src->src);
src->abs = src->negate = false;
src->swizzle[0] = 0;
src->swizzle[1] = 1;
src->swizzle[2] = 2;
src->swizzle[3] = 3;
}
nir_alu_instr *
nir_alu_instr_create(void *mem_ctx, nir_op op)
{
unsigned num_srcs = nir_op_infos[op].num_inputs;
nir_alu_instr *instr =
ralloc_size(mem_ctx,
sizeof(nir_alu_instr) + num_srcs * sizeof(nir_alu_src));
instr_init(&instr->instr, nir_instr_type_alu);
instr->op = op;
alu_dest_init(&instr->dest);
for (unsigned i = 0; i < num_srcs; i++)
alu_src_init(&instr->src[i]);
instr->has_predicate = false;
src_init(&instr->predicate);
return instr;
}
nir_jump_instr *
nir_jump_instr_create(void *mem_ctx, nir_jump_type type)
{
nir_jump_instr *instr = ralloc(mem_ctx, nir_jump_instr);
instr_init(&instr->instr, nir_instr_type_jump);
instr->type = type;
return instr;
}
nir_load_const_instr *
nir_load_const_instr_create(void *mem_ctx)
{
nir_load_const_instr *instr = ralloc(mem_ctx, nir_load_const_instr);
instr_init(&instr->instr, nir_instr_type_load_const);
dest_init(&instr->dest);
instr->num_components = 0;
instr->array_elems = 0;
instr->has_predicate = false;
src_init(&instr->predicate);
return instr;
}
nir_intrinsic_instr *
nir_intrinsic_instr_create(void *mem_ctx, nir_intrinsic_op op)
{
unsigned num_srcs = nir_intrinsic_infos[op].num_srcs;
nir_intrinsic_instr *instr =
ralloc_size(mem_ctx,
sizeof(nir_intrinsic_instr) + num_srcs * sizeof(nir_src));
instr_init(&instr->instr, nir_instr_type_intrinsic);
instr->intrinsic = op;
if (nir_intrinsic_infos[op].has_dest)
dest_init(&instr->dest);
for (unsigned i = 0; i < num_srcs; i++)
src_init(&instr->src[i]);
instr->has_predicate = false;
src_init(&instr->predicate);
return instr;
}
nir_call_instr *
nir_call_instr_create(void *mem_ctx, nir_function_overload *callee)
{
nir_call_instr *instr = ralloc(mem_ctx, nir_call_instr);
instr_init(&instr->instr, nir_instr_type_call);
instr->callee = callee;
instr->num_params = callee->num_params;
instr->params = ralloc_array(mem_ctx, nir_deref_var *, instr->num_params);
instr->return_deref = NULL;
instr->has_predicate = false;
src_init(&instr->predicate);
return instr;
}
nir_tex_instr *
nir_tex_instr_create(void *mem_ctx, unsigned num_srcs)
{
nir_tex_instr *instr = ralloc(mem_ctx, nir_tex_instr);
instr_init(&instr->instr, nir_instr_type_texture);
dest_init(&instr->dest);
instr->num_srcs = num_srcs;
for (unsigned i = 0; i < num_srcs; i++)
src_init(&instr->src[i]);
instr->has_predicate = false;
src_init(&instr->predicate);
return instr;
}
nir_phi_instr *
nir_phi_instr_create(void *mem_ctx)
{
nir_phi_instr *instr = ralloc(mem_ctx, nir_phi_instr);
instr_init(&instr->instr, nir_instr_type_phi);
dest_init(&instr->dest);
exec_list_make_empty(&instr->srcs);
return instr;
}
nir_ssa_undef_instr *
nir_ssa_undef_instr_create(void *mem_ctx)
{
nir_ssa_undef_instr *instr = ralloc(mem_ctx, nir_ssa_undef_instr);
instr_init(&instr->instr, nir_instr_type_ssa_undef);
instr->def.name = NULL;
instr->def.parent_instr = &instr->instr;
return instr;
}
nir_deref_var *
nir_deref_var_create(void *mem_ctx, nir_variable *var)
{
nir_deref_var *deref = ralloc(mem_ctx, nir_deref_var);
deref->deref.deref_type = nir_deref_type_var;
deref->deref.child = NULL;
deref->deref.type = var->type;
deref->var = var;
return deref;
}
nir_deref_array *
nir_deref_array_create(void *mem_ctx)
{
nir_deref_array *deref = ralloc(mem_ctx, nir_deref_array);
deref->deref.deref_type = nir_deref_type_array;
deref->deref.child = NULL;
deref->has_indirect = false;
src_init(&deref->indirect);
deref->base_offset = 0;
return deref;
}
nir_deref_struct *
nir_deref_struct_create(void *mem_ctx, const char *field)
{
nir_deref_struct *deref = ralloc(mem_ctx, nir_deref_struct);
deref->deref.deref_type = nir_deref_type_struct;
deref->deref.child = NULL;
deref->elem = ralloc_strdup(deref, field);
return deref;
}
static nir_deref_var *
copy_deref_var(void *mem_ctx, nir_deref_var *deref)
{
nir_deref_var *ret = nir_deref_var_create(mem_ctx, deref->var);
if (deref->deref.child)
ret->deref.child = nir_copy_deref(mem_ctx, deref->deref.child);
return ret;
}
static nir_deref_array *
copy_deref_array(void *mem_ctx, nir_deref_array *deref)
{
nir_deref_array *ret = nir_deref_array_create(mem_ctx);
ret->base_offset = deref->base_offset;
if (deref->has_indirect)
ret->indirect = deref->indirect;
ret->deref.type = deref->deref.type;
if (deref->deref.child)
ret->deref.child = nir_copy_deref(mem_ctx, deref->deref.child);
return ret;
}
static nir_deref_struct *
copy_deref_struct(void *mem_ctx, nir_deref_struct *deref)
{
nir_deref_struct *ret = nir_deref_struct_create(mem_ctx, deref->elem);
ret->deref.type = deref->deref.type;
if (deref->deref.child)
ret->deref.child = nir_copy_deref(mem_ctx, deref->deref.child);
return ret;
}
nir_deref *
nir_copy_deref(void *mem_ctx, nir_deref *deref)
{
switch (deref->deref_type) {
case nir_deref_type_var:
return &copy_deref_var(mem_ctx, nir_deref_as_var(deref))->deref;
case nir_deref_type_array:
return &copy_deref_array(mem_ctx, nir_deref_as_array(deref))->deref;
case nir_deref_type_struct:
return &copy_deref_struct(mem_ctx, nir_deref_as_struct(deref))->deref;
default:
unreachable("Invalid dereference type");
}
return NULL;
}
/**
* \name Control flow modification
*
* These functions modify the control flow tree while keeping the control flow
* graph up-to-date. The invariants respected are:
* 1. Each then statement, else statement, or loop body must have at least one
* control flow node.
* 2. Each if-statement and loop must have one basic block before it and one
* after.
* 3. Two basic blocks cannot be directly next to each other.
* 4. If a basic block has a jump instruction, there must be only one and it
* must be at the end of the block.
* 5. The CFG must always be connected - this means that we must insert a fake
* CFG edge for loops with no break statement.
*
* The purpose of the second one is so that we have places to insert code during
* GCM, as well as eliminating the possibility of critical edges.
*/
/*@{*/
static void
link_non_block_to_block(nir_cf_node *node, nir_block *block)
{
if (node->type == nir_cf_node_if) {
/*
* We're trying to link an if to a block after it; this just means linking
* the last block of the then and else branches.
*/
nir_if *if_stmt = nir_cf_node_as_if(node);
nir_cf_node *last_then = nir_if_last_then_node(if_stmt);
assert(last_then->type == nir_cf_node_block);
nir_block *last_then_block = nir_cf_node_as_block(last_then);
nir_cf_node *last_else = nir_if_last_else_node(if_stmt);
assert(last_else->type == nir_cf_node_block);
nir_block *last_else_block = nir_cf_node_as_block(last_else);
if (exec_list_is_empty(&last_then_block->instr_list) ||
nir_block_last_instr(last_then_block)->type != nir_instr_type_jump) {
unlink_block_successors(last_then_block);
link_blocks(last_then_block, block, NULL);
}
if (exec_list_is_empty(&last_else_block->instr_list) ||
nir_block_last_instr(last_else_block)->type != nir_instr_type_jump) {
unlink_block_successors(last_else_block);
link_blocks(last_else_block, block, NULL);
}
} else {
assert(node->type == nir_cf_node_loop);
/*
* We can only get to this codepath if we're inserting a new loop, or
* at least a loop with no break statements; we can't insert break
* statements into a loop when we haven't inserted it into the CFG
* because we wouldn't know which block comes after the loop
* and therefore, which block should be the successor of the block with
* the break). Therefore, we need to insert a fake edge (see invariant
* #5).
*/
nir_loop *loop = nir_cf_node_as_loop(node);
nir_cf_node *last = nir_loop_last_cf_node(loop);
assert(last->type == nir_cf_node_block);
nir_block *last_block = nir_cf_node_as_block(last);
last_block->successors[1] = block;
block_add_pred(block, last_block);
}
}
static void
link_block_to_non_block(nir_block *block, nir_cf_node *node)
{
if (node->type == nir_cf_node_if) {
/*
* We're trying to link a block to an if after it; this just means linking
* the block to the first block of the then and else branches.
*/
nir_if *if_stmt = nir_cf_node_as_if(node);
nir_cf_node *first_then = nir_if_first_then_node(if_stmt);
assert(first_then->type == nir_cf_node_block);
nir_block *first_then_block = nir_cf_node_as_block(first_then);
nir_cf_node *first_else = nir_if_first_else_node(if_stmt);
assert(first_else->type == nir_cf_node_block);
nir_block *first_else_block = nir_cf_node_as_block(first_else);
unlink_block_successors(block);
link_blocks(block, first_then_block, first_else_block);
} else {
/*
* For similar reasons as the corresponding case in
* link_non_block_to_block(), don't worry about if the loop header has
* any predecessors that need to be unlinked.
*/
assert(node->type == nir_cf_node_loop);
nir_loop *loop = nir_cf_node_as_loop(node);
nir_cf_node *loop_header = nir_loop_first_cf_node(loop);
assert(loop_header->type == nir_cf_node_block);
nir_block *loop_header_block = nir_cf_node_as_block(loop_header);
unlink_block_successors(block);
link_blocks(block, loop_header_block, NULL);
}
}
/**
* Takes a basic block and inserts a new empty basic block before it, making its
* predecessors point to the new block. This essentially splits the block into
* an empty header and a body so that another non-block CF node can be inserted
* between the two. Note that this does *not* link the two basic blocks, so
* some kind of cleanup *must* be performed after this call.
*/
static nir_block *
split_block_beginning(nir_block *block)
{
nir_block *new_block = nir_block_create(ralloc_parent(block));
new_block->cf_node.parent = block->cf_node.parent;
exec_node_insert_node_before(&block->cf_node.node, &new_block->cf_node.node);
struct set_entry *entry;
set_foreach(block->predecessors, entry) {
nir_block *pred = (nir_block *) entry->key;
unlink_blocks(pred, block);
link_blocks(pred, new_block, NULL);
}
return new_block;
}
/**
* Moves the successors of source to the successors of dest, leaving both
* successors of source NULL.
*/
static void
move_successors(nir_block *source, nir_block *dest)
{
nir_block *succ1 = source->successors[0];
if (succ1)
unlink_blocks(source, succ1);
nir_block *succ2 = source->successors[1];
if (succ2)
unlink_blocks(source, succ2);
unlink_block_successors(dest);
link_blocks(dest, succ1, succ2);
}
static nir_block *
split_block_end(nir_block *block)
{
nir_block *new_block = nir_block_create(ralloc_parent(block));
new_block->cf_node.parent = block->cf_node.parent;
exec_node_insert_after(&block->cf_node.node, &new_block->cf_node.node);
move_successors(block, new_block);
return new_block;
}
/**
* Inserts a non-basic block between two basic blocks and links them together.
*/
static void
insert_non_block(nir_block *before, nir_cf_node *node, nir_block *after)
{
node->parent = before->cf_node.parent;
exec_node_insert_after(&before->cf_node.node, &node->node);
link_block_to_non_block(before, node);
link_non_block_to_block(node, after);
}
/**
* Inserts a non-basic block before a basic block.
*/
static void
insert_non_block_before_block(nir_cf_node *node, nir_block *block)
{
/* split off the beginning of block into new_block */
nir_block *new_block = split_block_beginning(block);
/* insert our node in between new_block and block */
insert_non_block(new_block, node, block);
}
static void
insert_non_block_after_block(nir_block *block, nir_cf_node *node)
{
/* split off the end of block into new_block */
nir_block *new_block = split_block_end(block);
/* insert our node in between block and new_block */
insert_non_block(block, node, new_block);
}
/* walk up the control flow tree to find the innermost enclosed loop */
static nir_loop *
nearest_loop(nir_cf_node *node)
{
while (node->type != nir_cf_node_loop) {
node = node->parent;
}
return nir_cf_node_as_loop(node);
}
nir_function_impl *
nir_cf_node_get_function(nir_cf_node *node)
{
while (node->type != nir_cf_node_function) {
node = node->parent;
}
return nir_cf_node_as_function(node);
}
/*
* update the CFG after a jump instruction has been added to the end of a block
*/
static void
handle_jump(nir_block *block)
{
nir_instr *instr = nir_block_last_instr(block);
nir_jump_instr *jump_instr = nir_instr_as_jump(instr);
unlink_block_successors(block);
if (jump_instr->type == nir_jump_break ||
jump_instr->type == nir_jump_continue) {
nir_loop *loop = nearest_loop(&block->cf_node);
if (jump_instr->type == nir_jump_continue) {
nir_cf_node *first_node = nir_loop_first_cf_node(loop);
assert(first_node->type == nir_cf_node_block);
nir_block *first_block = nir_cf_node_as_block(first_node);
link_blocks(block, first_block, NULL);
} else {
nir_cf_node *after = nir_cf_node_next(&loop->cf_node);
assert(after->type == nir_cf_node_block);
nir_block *after_block = nir_cf_node_as_block(after);
link_blocks(block, after_block, NULL);
/* If we inserted a fake link, remove it */
nir_cf_node *last = nir_loop_last_cf_node(loop);
assert(last->type == nir_cf_node_block);
nir_block *last_block = nir_cf_node_as_block(last);
if (last_block->successors[1] != NULL)
unlink_blocks(last_block, after_block);
}
} else {
2014-10-29 21:15:13 +00:00
assert(jump_instr->type == nir_jump_return);
nir_function_impl *impl = nir_cf_node_get_function(&block->cf_node);
link_blocks(block, impl->end_block, NULL);
}
}
static void
handle_remove_jump(nir_block *block, nir_jump_type type)
{
unlink_block_successors(block);
if (exec_node_is_tail_sentinel(block->cf_node.node.next)) {
nir_cf_node *parent = block->cf_node.parent;
if (parent->type == nir_cf_node_if) {
nir_cf_node *next = nir_cf_node_next(parent);
assert(next->type == nir_cf_node_block);
nir_block *next_block = nir_cf_node_as_block(next);
link_blocks(block, next_block, NULL);
} else {
assert(parent->type == nir_cf_node_loop);
nir_loop *loop = nir_cf_node_as_loop(parent);
nir_cf_node *head = nir_loop_first_cf_node(loop);
assert(head->type == nir_cf_node_block);
nir_block *head_block = nir_cf_node_as_block(head);
link_blocks(block, head_block, NULL);
}
} else {
nir_cf_node *next = nir_cf_node_next(&block->cf_node);
if (next->type == nir_cf_node_if) {
nir_if *next_if = nir_cf_node_as_if(next);
nir_cf_node *first_then = nir_if_first_then_node(next_if);
assert(first_then->type == nir_cf_node_block);
nir_block *first_then_block = nir_cf_node_as_block(first_then);
nir_cf_node *first_else = nir_if_first_else_node(next_if);
assert(first_else->type == nir_cf_node_block);
nir_block *first_else_block = nir_cf_node_as_block(first_else);
link_blocks(block, first_then_block, first_else_block);
} else {
assert(next->type == nir_cf_node_loop);
nir_loop *next_loop = nir_cf_node_as_loop(next);
nir_cf_node *first = nir_loop_first_cf_node(next_loop);
assert(first->type == nir_cf_node_block);
nir_block *first_block = nir_cf_node_as_block(first);
link_blocks(block, first_block, NULL);
}
}
if (type == nir_jump_break) {
nir_loop *loop = nearest_loop(&block->cf_node);
nir_cf_node *next = nir_cf_node_next(&loop->cf_node);
assert(next->type == nir_cf_node_block);
nir_block *next_block = nir_cf_node_as_block(next);
if (next_block->predecessors->entries == 0) {
/* insert fake link */
nir_cf_node *last = nir_loop_last_cf_node(loop);
assert(last->type == nir_cf_node_block);
nir_block *last_block = nir_cf_node_as_block(last);
last_block->successors[1] = next_block;
block_add_pred(next_block, last_block);
}
}
}
/**
* Inserts a basic block before another by merging the instructions.
*
* @param block the target of the insertion
* @param before the block to be inserted - must not have been inserted before
* @param has_jump whether \before has a jump instruction at the end
*/
static void
insert_block_before_block(nir_block *block, nir_block *before, bool has_jump)
{
assert(!has_jump || exec_list_is_empty(&block->instr_list));
foreach_list_typed(nir_instr, instr, node, &before->instr_list) {
instr->block = block;
}
exec_list_prepend(&block->instr_list, &before->instr_list);
if (has_jump)
handle_jump(block);
}
/**
* Inserts a basic block after another by merging the instructions.
*
* @param block the target of the insertion
* @param after the block to be inserted - must not have been inserted before
* @param has_jump whether \after has a jump instruction at the end
*/
static void
insert_block_after_block(nir_block *block, nir_block *after, bool has_jump)
{
foreach_list_typed(nir_instr, instr, node, &after->instr_list) {
instr->block = block;
}
exec_list_append(&block->instr_list, &after->instr_list);
if (has_jump)
handle_jump(block);
}
static void
update_if_uses(nir_cf_node *node)
{
if (node->type != nir_cf_node_if)
return;
nir_if *if_stmt = nir_cf_node_as_if(node);
if (if_stmt->condition.is_ssa)
return;
nir_register *reg = if_stmt->condition.reg.reg;
assert(reg != NULL);
_mesa_set_add(reg->if_uses, _mesa_hash_pointer(if_stmt), if_stmt);
}
void
nir_cf_node_insert_after(nir_cf_node *node, nir_cf_node *after)
{
update_if_uses(after);
if (after->type == nir_cf_node_block) {
/*
* either node or the one after it must be a basic block, by invariant #2;
* in either case, just merge the blocks together.
*/
nir_block *after_block = nir_cf_node_as_block(after);
bool has_jump = !exec_list_is_empty(&after_block->instr_list) &&
nir_block_last_instr(after_block)->type == nir_instr_type_jump;
if (node->type == nir_cf_node_block) {
insert_block_after_block(nir_cf_node_as_block(node), after_block,
has_jump);
} else {
nir_cf_node *next = nir_cf_node_next(node);
assert(next->type == nir_cf_node_block);
nir_block *next_block = nir_cf_node_as_block(next);
insert_block_before_block(next_block, after_block, has_jump);
}
} else {
if (node->type == nir_cf_node_block) {
insert_non_block_after_block(nir_cf_node_as_block(node), after);
} else {
/*
* We have to insert a non-basic block after a non-basic block. Since
* every non-basic block has a basic block after it, this is equivalent
* to inserting a non-basic block before a basic block.
*/
nir_cf_node *next = nir_cf_node_next(node);
assert(next->type == nir_cf_node_block);
nir_block *next_block = nir_cf_node_as_block(next);
insert_non_block_before_block(after, next_block);
}
}
nir_function_impl *impl = nir_cf_node_get_function(node);
impl->block_index_dirty = true;
}
void
nir_cf_node_insert_before(nir_cf_node *node, nir_cf_node *before)
{
update_if_uses(before);
if (before->type == nir_cf_node_block) {
nir_block *before_block = nir_cf_node_as_block(before);
bool has_jump = !exec_list_is_empty(&before_block->instr_list) &&
nir_block_last_instr(before_block)->type == nir_instr_type_jump;
if (node->type == nir_cf_node_block) {
insert_block_before_block(nir_cf_node_as_block(node), before_block,
has_jump);
} else {
nir_cf_node *prev = nir_cf_node_prev(node);
assert(prev->type == nir_cf_node_block);
nir_block *prev_block = nir_cf_node_as_block(prev);
insert_block_after_block(prev_block, before_block, has_jump);
}
} else {
if (node->type == nir_cf_node_block) {
insert_non_block_before_block(before, nir_cf_node_as_block(node));
} else {
/*
* We have to insert a non-basic block before a non-basic block. This
* is equivalent to inserting a non-basic block after a basic block.
*/
nir_cf_node *prev_node = nir_cf_node_prev(node);
assert(prev_node->type == nir_cf_node_block);
nir_block *prev_block = nir_cf_node_as_block(prev_node);
insert_non_block_after_block(prev_block, before);
}
}
nir_function_impl *impl = nir_cf_node_get_function(node);
impl->block_index_dirty = true;
}
void
nir_cf_node_insert_begin(struct exec_list *list, nir_cf_node *node)
{
nir_cf_node *begin = exec_node_data(nir_cf_node, list->head, node);
nir_cf_node_insert_before(begin, node);
}
void
nir_cf_node_insert_end(struct exec_list *list, nir_cf_node *node)
{
nir_cf_node *end = exec_node_data(nir_cf_node, list->tail_pred, node);
nir_cf_node_insert_after(end, node);
}
/**
* Stitch two basic blocks together into one. The aggregate must have the same
* predecessors as the first and the same successors as the second.
*/
static void
stitch_blocks(nir_block *before, nir_block *after)
{
/*
* We move after into before, so we have to deal with up to 2 successors vs.
* possibly a large number of predecessors.
*
* TODO: special case when before is empty and after isn't?
*/
move_successors(after, before);
foreach_list_typed(nir_instr, instr, node, &after->instr_list) {
instr->block = before;
}
exec_list_append(&before->instr_list, &after->instr_list);
exec_node_remove(&after->cf_node.node);
}
void
nir_cf_node_remove(nir_cf_node *node)
{
nir_function_impl *impl = nir_cf_node_get_function(node);
impl->block_index_dirty = true;
if (node->type == nir_cf_node_block) {
/*
* Basic blocks can't really be removed by themselves, since they act as
* padding between the non-basic blocks. So all we do here is empty the
* block of instructions.
*
* TODO: could we assert here?
*/
exec_list_make_empty(&nir_cf_node_as_block(node)->instr_list);
} else {
nir_cf_node *before = nir_cf_node_prev(node);
assert(before->type == nir_cf_node_block);
nir_block *before_block = nir_cf_node_as_block(before);
nir_cf_node *after = nir_cf_node_next(node);
assert(after->type == nir_cf_node_block);
nir_block *after_block = nir_cf_node_as_block(after);
exec_node_remove(&node->node);
stitch_blocks(before_block, after_block);
}
}
static bool
add_use_cb(nir_src *src, void *state)
{
nir_instr *instr = (nir_instr *) state;
if (src->is_ssa)
return true;
nir_register *reg = src->reg.reg;
_mesa_set_add(reg->uses, _mesa_hash_pointer(instr), instr);
return true;
}
static bool
add_def_cb(nir_dest *dest, void *state)
{
nir_instr *instr = (nir_instr *) state;
if (dest->is_ssa)
return true;
nir_register *reg = dest->reg.reg;
_mesa_set_add(reg->defs, _mesa_hash_pointer(instr), instr);
return true;
}
static void
add_defs_uses(nir_instr *instr)
{
nir_foreach_src(instr, add_use_cb, instr);
nir_foreach_dest(instr, add_def_cb, instr);
}
void
nir_instr_insert_before(nir_instr *instr, nir_instr *before)
{
assert(before->type != nir_instr_type_jump);
before->block = instr->block;
add_defs_uses(before);
exec_node_insert_node_before(&instr->node, &before->node);
}
void
nir_instr_insert_after(nir_instr *instr, nir_instr *after)
{
if (after->type == nir_instr_type_jump) {
assert(instr == nir_block_last_instr(instr->block));
assert(instr->type != nir_instr_type_jump);
}
after->block = instr->block;
add_defs_uses(after);
exec_node_insert_after(&instr->node, &after->node);
if (after->type == nir_instr_type_jump)
handle_jump(after->block);
}
void
nir_instr_insert_before_block(nir_block *block, nir_instr *before)
{
if (before->type == nir_instr_type_jump)
assert(exec_list_is_empty(&block->instr_list));
before->block = block;
add_defs_uses(before);
exec_list_push_head(&block->instr_list, &before->node);
if (before->type == nir_instr_type_jump)
handle_jump(block);
}
void
nir_instr_insert_after_block(nir_block *block, nir_instr *after)
{
if (after->type == nir_instr_type_jump) {
assert(exec_list_is_empty(&block->instr_list) ||
nir_block_last_instr(block)->type != nir_instr_type_jump);
}
after->block = block;
add_defs_uses(after);
exec_list_push_tail(&block->instr_list, &after->node);
if (after->type == nir_instr_type_jump)
handle_jump(block);
}
void
nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
{
if (node->type == nir_cf_node_block) {
nir_instr_insert_before_block(nir_cf_node_as_block(node), before);
} else {
nir_cf_node *prev = nir_cf_node_prev(node);
assert(prev->type == nir_cf_node_block);
nir_block *prev_block = nir_cf_node_as_block(prev);
nir_instr_insert_before_block(prev_block, before);
}
}
void
nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
{
if (node->type == nir_cf_node_block) {
nir_instr_insert_after_block(nir_cf_node_as_block(node), after);
} else {
nir_cf_node *next = nir_cf_node_next(node);
assert(next->type == nir_cf_node_block);
nir_block *next_block = nir_cf_node_as_block(next);
nir_instr_insert_before_block(next_block, after);
}
}
void
nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
{
nir_cf_node *first_node = exec_node_data(nir_cf_node,
exec_list_get_head(list), node);
nir_instr_insert_before_cf(first_node, before);
}
void
nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
{
nir_cf_node *last_node = exec_node_data(nir_cf_node,
exec_list_get_tail(list), node);
nir_instr_insert_after_cf(last_node, after);
}
static bool
remove_use_cb(nir_src *src, void *state)
{
nir_instr *instr = (nir_instr *) state;
if (src->is_ssa)
return true;
nir_register *reg = src->reg.reg;
struct set_entry *entry = _mesa_set_search(reg->uses,
_mesa_hash_pointer(instr),
instr);
if (entry)
_mesa_set_remove(reg->uses, entry);
return true;
}
static bool
remove_def_cb(nir_dest *dest, void *state)
{
nir_instr *instr = (nir_instr *) state;
if (dest->is_ssa)
return true;
nir_register *reg = dest->reg.reg;
struct set_entry *entry = _mesa_set_search(reg->defs,
_mesa_hash_pointer(instr),
instr);
if (entry)
_mesa_set_remove(reg->defs, entry);
return true;
}
static void
remove_defs_uses(nir_instr *instr)
{
nir_foreach_dest(instr, remove_def_cb, instr);
nir_foreach_src(instr, remove_use_cb, instr);
}
void nir_instr_remove(nir_instr *instr)
{
remove_defs_uses(instr);
exec_node_remove(&instr->node);
if (instr->type == nir_instr_type_jump) {
nir_jump_instr *jump_instr = nir_instr_as_jump(instr);
handle_remove_jump(instr->block, jump_instr->type);
}
}
/*@}*/
void
nir_index_local_regs(nir_function_impl *impl)
{
unsigned index = 0;
foreach_list_typed(nir_register, reg, node, &impl->registers) {
reg->index = index++;
}
}
void
nir_index_global_regs(nir_shader *shader)
{
unsigned index = 0;
foreach_list_typed(nir_register, reg, node, &shader->registers) {
reg->index = index++;
}
}
static bool
visit_alu_dest(nir_alu_instr *instr, nir_foreach_dest_cb cb, void *state)
{
return cb(&instr->dest.dest, state);
}
static bool
visit_intrinsic_dest(nir_intrinsic_instr *instr, nir_foreach_dest_cb cb,
void *state)
{
if (nir_intrinsic_infos[instr->intrinsic].has_dest)
return cb(&instr->dest, state);
return true;
}
static bool
visit_texture_dest(nir_tex_instr *instr, nir_foreach_dest_cb cb,
void *state)
{
return cb(&instr->dest, state);
}
static bool
visit_load_const_dest(nir_load_const_instr *instr, nir_foreach_dest_cb cb,
void *state)
{
return cb(&instr->dest, state);
}
static bool
visit_phi_dest(nir_phi_instr *instr, nir_foreach_dest_cb cb, void *state)
{
return cb(&instr->dest, state);
}
bool
nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state)
{
switch (instr->type) {
case nir_instr_type_alu:
return visit_alu_dest(nir_instr_as_alu(instr), cb, state);
case nir_instr_type_intrinsic:
return visit_intrinsic_dest(nir_instr_as_intrinsic(instr), cb, state);
case nir_instr_type_texture:
return visit_texture_dest(nir_instr_as_texture(instr), cb, state);
case nir_instr_type_load_const:
return visit_load_const_dest(nir_instr_as_load_const(instr), cb, state);
case nir_instr_type_phi:
return visit_phi_dest(nir_instr_as_phi(instr), cb, state);
break;
case nir_instr_type_ssa_undef:
case nir_instr_type_call:
case nir_instr_type_jump:
break;
default:
unreachable("Invalid instruction type");
break;
}
return true;
}
static bool
visit_src(nir_src *src, nir_foreach_src_cb cb, void *state)
{
if (!cb(src, state))
return false;
if (!src->is_ssa && src->reg.indirect)
return cb(src->reg.indirect, state);
return true;
}
static bool
visit_deref_array_src(nir_deref_array *deref, nir_foreach_src_cb cb,
void *state)
{
if (deref->has_indirect)
return visit_src(&deref->indirect, cb, state);
return true;
}
static bool
visit_deref_src(nir_deref_var *deref, nir_foreach_src_cb cb, void *state)
{
nir_deref *cur = &deref->deref;
while (cur != NULL) {
if (cur->deref_type == nir_deref_type_array)
if (!visit_deref_array_src(nir_deref_as_array(cur), cb, state))
return false;
cur = cur->child;
}
return true;
}
static bool
visit_alu_src(nir_alu_instr *instr, nir_foreach_src_cb cb, void *state)
{
for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
if (!visit_src(&instr->src[i].src, cb, state))
return false;
if (instr->has_predicate)
if (!visit_src(&instr->predicate, cb, state))
return false;
return true;
}
static bool
visit_tex_src(nir_tex_instr *instr, nir_foreach_src_cb cb, void *state)
{
for (unsigned i = 0; i < instr->num_srcs; i++)
if (!visit_src(&instr->src[i], cb, state))
return false;
if (instr->has_predicate)
if (!visit_src(&instr->predicate, cb, state))
return false;
if (instr->sampler != NULL)
if (!visit_deref_src(instr->sampler, cb, state))
return false;
return true;
}
static bool
visit_intrinsic_src(nir_intrinsic_instr *instr, nir_foreach_src_cb cb,
void *state)
{
unsigned num_srcs = nir_intrinsic_infos[instr->intrinsic].num_srcs;
for (unsigned i = 0; i < num_srcs; i++)
if (!visit_src(&instr->src[i], cb, state))
return false;
unsigned num_vars =
nir_intrinsic_infos[instr->intrinsic].num_variables;
for (unsigned i = 0; i < num_vars; i++)
if (!visit_deref_src(instr->variables[i], cb, state))
return false;
if (instr->has_predicate)
if (!visit_src(&instr->predicate, cb, state))
return false;
return true;
}
static bool
visit_call_src(nir_call_instr *instr, nir_foreach_src_cb cb, void *state)
{
if (instr->has_predicate)
if (!visit_src(&instr->predicate, cb, state))
return false;
return true;
}
static bool
visit_load_const_src(nir_load_const_instr *instr, nir_foreach_src_cb cb,
void *state)
{
if (instr->has_predicate)
if (!visit_src(&instr->predicate, cb, state))
return false;
return true;
}
static bool
visit_phi_src(nir_phi_instr *instr, nir_foreach_src_cb cb, void *state)
{
foreach_list_typed(nir_phi_src, src, node, &instr->srcs) {
if (!visit_src(&src->src, cb, state))
return false;
}
return true;
}
typedef struct {
void *state;
nir_foreach_src_cb cb;
} visit_dest_indirect_state;
static bool
visit_dest_indirect(nir_dest *dest, void *_state)
{
visit_dest_indirect_state *state = (visit_dest_indirect_state *) _state;
if (!dest->is_ssa && dest->reg.indirect)
return state->cb(dest->reg.indirect, state->state);
return true;
}
bool
nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state)
{
switch (instr->type) {
case nir_instr_type_alu:
if (!visit_alu_src(nir_instr_as_alu(instr), cb, state))
return false;
break;
case nir_instr_type_intrinsic:
if (!visit_intrinsic_src(nir_instr_as_intrinsic(instr), cb, state))
return false;
break;
case nir_instr_type_texture:
if (!visit_tex_src(nir_instr_as_texture(instr), cb, state))
return false;
break;
case nir_instr_type_call:
if (!visit_call_src(nir_instr_as_call(instr), cb, state))
return false;
break;
case nir_instr_type_load_const:
if (!visit_load_const_src(nir_instr_as_load_const(instr), cb, state))
return false;
break;
case nir_instr_type_phi:
if (!visit_phi_src(nir_instr_as_phi(instr), cb, state))
return false;
break;
case nir_instr_type_jump:
case nir_instr_type_ssa_undef:
return true;
default:
unreachable("Invalid instruction type");
break;
}
visit_dest_indirect_state dest_state;
dest_state.state = state;
dest_state.cb = cb;
return nir_foreach_dest(instr, visit_dest_indirect, &dest_state);
}
static bool foreach_cf_node(nir_cf_node *node, nir_foreach_block_cb cb,
void *state);
static bool
foreach_block(nir_block *block, nir_foreach_block_cb cb, void *state)
{
return cb(block, state);
}
static bool
foreach_if(nir_if *if_stmt, nir_foreach_block_cb cb, void *state)
{
foreach_list_typed(nir_cf_node, node, node, &if_stmt->then_list) {
if (!foreach_cf_node(node, cb, state))
return false;
}
foreach_list_typed(nir_cf_node, node, node, &if_stmt->else_list) {
if (!foreach_cf_node(node, cb, state))
return false;
}
return true;
}
static bool
foreach_loop(nir_loop *loop, nir_foreach_block_cb cb, void *state)
{
foreach_list_typed(nir_cf_node, node, node, &loop->body) {
if (!foreach_cf_node(node, cb, state))
return false;
}
return true;
}
static bool
foreach_cf_node(nir_cf_node *node, nir_foreach_block_cb cb, void *state)
{
switch (node->type) {
case nir_cf_node_block:
return foreach_block(nir_cf_node_as_block(node), cb, state);
case nir_cf_node_if:
return foreach_if(nir_cf_node_as_if(node), cb, state);
case nir_cf_node_loop:
return foreach_loop(nir_cf_node_as_loop(node), cb, state);
break;
default:
unreachable("Invalid CFG node type");
break;
}
return false;
}
bool
nir_foreach_block(nir_function_impl *impl, nir_foreach_block_cb cb, void *state)
{
foreach_list_typed(nir_cf_node, node, node, &impl->body) {
if (!foreach_cf_node(node, cb, state))
return false;
}
cb(impl->end_block, state);
return true;
}
static bool
index_block(nir_block *block, void *state)
{
unsigned *index = (unsigned *) state;
block->index = (*index)++;
return true;
}
void
nir_index_blocks(nir_function_impl *impl)
{
unsigned index = 0;
if (!impl->block_index_dirty)
return;
nir_foreach_block(impl, index_block, &index);
impl->num_blocks = index;
impl->block_index_dirty = false;
}
static void
index_ssa_def(nir_ssa_def *def, unsigned *index)
{
def->index = (*index)++;
}
static bool
index_ssa_def_cb(nir_dest *dest, void *state)
{
unsigned *index = (unsigned *) state;
if (dest->is_ssa)
index_ssa_def(&dest->ssa, index);
return true;
}
static void
index_ssa_undef(nir_ssa_undef_instr *instr, unsigned *index)
{
index_ssa_def(&instr->def, index);
}
static bool
index_ssa_block(nir_block *block, void *state)
{
unsigned *index = (unsigned *) state;
nir_foreach_instr(block, instr) {
if (instr->type == nir_instr_type_ssa_undef)
index_ssa_undef(nir_instr_as_ssa_undef(instr), index);
else
nir_foreach_dest(instr, index_ssa_def_cb, state);
}
return true;
}
void
nir_index_ssa_defs(nir_function_impl *impl)
{
unsigned index = 0;
nir_foreach_block(impl, index_ssa_block, &index);
}