mesa/src/glsl/nir/nir_lower_variables.c

1129 lines
37 KiB
C
Raw Normal View History

/*
* Copyright © 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Jason Ekstrand (jason@jlekstrand.net)
*
*/
#include "nir.h"
struct deref_node {
struct deref_node *parent;
const struct glsl_type *type;
bool lower_to_ssa;
struct set *loads;
struct set *stores;
struct set *copies;
nir_ssa_def **def_stack;
nir_ssa_def **def_stack_tail;
struct deref_node *wildcard;
struct deref_node *indirect;
struct deref_node *children[0];
};
struct lower_variables_state {
void *mem_ctx;
void *dead_ctx;
nir_function_impl *impl;
/* A hash table mapping variables to deref_node data */
struct hash_table *deref_var_nodes;
/* A hash table mapping dereference leaves to deref_node data. A deref
* is considered a leaf if it is fully-qualified (no wildcards) and
* direct. In short, these are the derefs we can actually consider
* lowering to SSA values.
*/
struct hash_table *deref_leaves;
/* A hash table mapping phi nodes to deref_state data */
struct hash_table *phi_table;
};
/* The following two functions implement a hash and equality check for
* variable dreferences. When the hash or equality function encounters an
* array, all indirects are treated as equal and are never equal to a
* direct dereference or a wildcard.
*
* Some of the magic numbers here were taken from _mesa_hash_data and one
* was just a big prime I found on the internet.
*/
static uint32_t
hash_deref(const void *void_deref)
{
const nir_deref *deref = void_deref;
uint32_t hash;
if (deref->child) {
hash = hash_deref(deref->child);
} else {
hash = 2166136261ul;
}
switch (deref->deref_type) {
case nir_deref_type_var:
hash ^= _mesa_hash_pointer(nir_deref_as_var(deref)->var);
break;
case nir_deref_type_array: {
nir_deref_array *array = nir_deref_as_array(deref);
hash += 268435183 * array->deref_array_type;
if (array->deref_array_type == nir_deref_array_type_direct)
hash ^= array->base_offset; /* Some prime */
break;
}
case nir_deref_type_struct:
hash ^= nir_deref_as_struct(deref)->index;
break;
}
return hash * 0x01000193;
}
static bool
derefs_equal(const void *void_a, const void *void_b)
{
const nir_deref *a = void_a;
const nir_deref *b = void_b;
if (a->deref_type != b->deref_type)
return false;
switch (a->deref_type) {
case nir_deref_type_var:
if (nir_deref_as_var(a)->var != nir_deref_as_var(b)->var)
return false;
break;
case nir_deref_type_array: {
nir_deref_array *a_arr = nir_deref_as_array(a);
nir_deref_array *b_arr = nir_deref_as_array(b);
if (a_arr->deref_array_type != b_arr->deref_array_type)
return false;
if (a_arr->deref_array_type == nir_deref_array_type_direct &&
a_arr->base_offset != b_arr->base_offset)
return false;
break;
}
case nir_deref_type_struct:
if (nir_deref_as_struct(a)->index != nir_deref_as_struct(b)->index)
return false;
break;
default:
unreachable("Invalid dreference type");
}
assert((a->child == NULL) == (b->child == NULL));
if (a->child)
return derefs_equal(a->child, b->child);
else
return true;
}
static int
type_get_length(const struct glsl_type *type)
{
switch (glsl_get_base_type(type)) {
case GLSL_TYPE_STRUCT:
case GLSL_TYPE_ARRAY:
return glsl_get_length(type);
case GLSL_TYPE_FLOAT:
case GLSL_TYPE_INT:
case GLSL_TYPE_UINT:
case GLSL_TYPE_BOOL:
if (glsl_type_is_matrix(type))
return glsl_get_matrix_columns(type);
else
return glsl_get_vector_elements(type);
default:
unreachable("Invalid deref base type");
}
}
static struct deref_node *
deref_node_create(struct deref_node *parent,
const struct glsl_type *type, void *mem_ctx)
{
size_t size = sizeof(struct deref_node) +
type_get_length(type) * sizeof(struct deref_node *);
struct deref_node *node = rzalloc_size(mem_ctx, size);
node->type = type;
node->parent = parent;
return node;
}
/* Gets the deref_node for the given deref chain and creates it if it
* doesn't yet exist. If the deref is a leaf (fully-qualified and direct)
* and add_to_leaves is true, it will be added to the hash table of leaves.
*/
static struct deref_node *
get_deref_node(nir_deref_var *deref, bool add_to_leaves,
struct lower_variables_state *state)
{
bool is_leaf = true;
struct deref_node *parent = NULL;
nir_deref *tail = &deref->deref;
while (tail) {
struct deref_node *node;
switch (tail->deref_type) {
case nir_deref_type_var: {
assert(tail == &deref->deref);
assert(parent == NULL);
struct hash_entry *entry =
_mesa_hash_table_search(state->deref_var_nodes, deref->var);
if (entry) {
node = entry->data;
} else {
node = deref_node_create(NULL, tail->type, state->dead_ctx);
_mesa_hash_table_insert(state->deref_var_nodes, deref->var, node);
}
break;
}
case nir_deref_type_struct: {
assert(parent != NULL);
nir_deref_struct *deref_struct = nir_deref_as_struct(tail);
assert(deref_struct->index < type_get_length(parent->type));
if (parent->children[deref_struct->index]) {
node = parent->children[deref_struct->index];
} else {
node = deref_node_create(parent, tail->type, state->dead_ctx);
parent->children[deref_struct->index] = node;
}
break;
}
case nir_deref_type_array: {
assert(parent != NULL);
nir_deref_array *arr = nir_deref_as_array(tail);
switch (arr->deref_array_type) {
case nir_deref_array_type_direct:
if (arr->base_offset >= type_get_length(parent->type)) {
/* This is possible if a loop unrolls and generates an
* out-of-bounds offset. We need to handle this at least
* somewhat gracefully.
*/
return NULL;
} else if (parent->children[arr->base_offset]) {
node = parent->children[arr->base_offset];
} else {
node = deref_node_create(parent, tail->type, state->dead_ctx);
parent->children[arr->base_offset] = node;
}
break;
case nir_deref_array_type_indirect:
if (parent->indirect) {
node = parent->indirect;
} else {
node = deref_node_create(parent, tail->type, state->dead_ctx);
parent->indirect = node;
}
is_leaf = false;
break;
case nir_deref_array_type_wildcard:
if (parent->wildcard) {
node = parent->wildcard;
} else {
node = deref_node_create(parent, tail->type, state->dead_ctx);
parent->wildcard = node;
}
is_leaf = false;
break;
default:
unreachable("Invalid array deref type");
}
break;
}
default:
unreachable("Invalid deref type");
}
parent = node;
tail = tail->child;
}
assert(parent);
if (is_leaf && add_to_leaves)
_mesa_hash_table_insert(state->deref_leaves, deref, parent);
return parent;
}
/* \sa foreach_deref_node_match */
static bool
foreach_deref_node_worker(struct deref_node *node, nir_deref *deref,
bool (* cb)(struct deref_node *node,
struct lower_variables_state *state),
struct lower_variables_state *state)
{
if (deref->child == NULL) {
return cb(node, state);
} else {
switch (deref->child->deref_type) {
case nir_deref_type_array: {
nir_deref_array *arr = nir_deref_as_array(deref->child);
assert(arr->deref_array_type == nir_deref_array_type_direct);
if (node->children[arr->base_offset] &&
!foreach_deref_node_worker(node->children[arr->base_offset],
deref->child, cb, state))
return false;
if (node->wildcard &&
!foreach_deref_node_worker(node->wildcard,
deref->child, cb, state))
return false;
return true;
}
case nir_deref_type_struct: {
nir_deref_struct *str = nir_deref_as_struct(deref->child);
return foreach_deref_node_worker(node->children[str->index],
deref->child, cb, state);
}
default:
unreachable("Invalid deref child type");
}
}
}
/* Walks over every "matching" deref_node and calls the callback. A node
* is considered to "match" if either refers to that deref or matches up t
* a wildcard. In other words, the following would match a[6].foo[3].bar:
*
* a[6].foo[3].bar
* a[*].foo[3].bar
* a[6].foo[*].bar
* a[*].foo[*].bar
*
* The given deref must be a full-length and fully qualified (no wildcards
* or indirexcts) deref chain.
*/
static bool
foreach_deref_node_match(nir_deref_var *deref,
bool (* cb)(struct deref_node *node,
struct lower_variables_state *state),
struct lower_variables_state *state)
{
nir_deref_var var_deref = *deref;
var_deref.deref.child = NULL;
struct deref_node *node = get_deref_node(&var_deref, false, state);
if (node == NULL)
return false;
return foreach_deref_node_worker(node, &deref->deref, cb, state);
}
/* \sa deref_may_be_aliased */
static bool
deref_may_be_aliased_node(struct deref_node *node, nir_deref *deref,
struct lower_variables_state *state)
{
if (deref->child == NULL) {
return false;
} else {
switch (deref->child->deref_type) {
case nir_deref_type_array: {
nir_deref_array *arr = nir_deref_as_array(deref->child);
if (arr->deref_array_type == nir_deref_array_type_indirect)
return true;
assert(arr->deref_array_type == nir_deref_array_type_direct);
if (node->children[arr->base_offset] &&
deref_may_be_aliased_node(node->children[arr->base_offset],
deref->child, state))
return true;
if (node->wildcard &&
deref_may_be_aliased_node(node->wildcard, deref->child, state))
return true;
return false;
}
case nir_deref_type_struct: {
nir_deref_struct *str = nir_deref_as_struct(deref->child);
if (node->children[str->index]) {
return deref_may_be_aliased_node(node->children[str->index],
deref->child, state);
} else {
return false;
}
}
default:
unreachable("Invalid nir_deref child type");
}
}
}
/* Returns true if there are no indirects that can ever touch this deref.
* This question can only be asked about fully-qualified derefs.
* Obviously, it's pointless to ask this about indirects, but we also
* rule-out wildcards. For example, if the given deref is a[6].foo, then
* any uses of a[i].foo would case this to return false, but a[i].bar would
* not affect it because it's a different structure member. A var_copy
* involving of a[*].bar also doesn't affect it because that can be lowered
* to entirely direct load/stores.
*/
static bool
deref_may_be_aliased(nir_deref_var *deref,
struct lower_variables_state *state)
{
nir_deref_var var_deref = *deref;
var_deref.deref.child = NULL;
struct deref_node *node = get_deref_node(&var_deref, false, state);
/* An invalid dereference can't be aliased. */
if (node == NULL)
return false;
return deref_may_be_aliased_node(node, &deref->deref, state);
}
static void
register_load_instr(nir_intrinsic_instr *load_instr, bool create_node,
struct lower_variables_state *state)
{
struct deref_node *node = get_deref_node(load_instr->variables[0],
create_node, state);
if (node == NULL)
return;
if (node->loads == NULL)
node->loads = _mesa_set_create(state->dead_ctx,
_mesa_key_pointer_equal);
_mesa_set_add(node->loads, _mesa_hash_pointer(load_instr), load_instr);
}
static void
register_store_instr(nir_intrinsic_instr *store_instr, bool create_node,
struct lower_variables_state *state)
{
struct deref_node *node = get_deref_node(store_instr->variables[0],
create_node, state);
if (node == NULL)
return;
if (node->stores == NULL)
node->stores = _mesa_set_create(state->dead_ctx,
_mesa_key_pointer_equal);
_mesa_set_add(node->stores, _mesa_hash_pointer(store_instr), store_instr);
}
static void
register_copy_instr(nir_intrinsic_instr *copy_instr, bool create_node,
struct lower_variables_state *state)
{
for (unsigned idx = 0; idx < 2; idx++) {
struct deref_node *node = get_deref_node(copy_instr->variables[idx],
create_node, state);
if (node == NULL)
continue;
if (node->copies == NULL)
node->copies = _mesa_set_create(state->dead_ctx,
_mesa_key_pointer_equal);
_mesa_set_add(node->copies, _mesa_hash_pointer(copy_instr), copy_instr);
}
}
/* Registers all variable uses in the given block. */
static bool
register_variable_uses_block(nir_block *block, void *void_state)
{
struct lower_variables_state *state = void_state;
nir_foreach_instr_safe(block, instr) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
switch (intrin->intrinsic) {
case nir_intrinsic_load_var:
register_load_instr(intrin, true, state);
break;
case nir_intrinsic_store_var:
register_store_instr(intrin, true, state);
break;
case nir_intrinsic_copy_var:
register_copy_instr(intrin, true, state);
break;
default:
continue;
}
}
return true;
}
/* Walks down the deref chain and returns the next deref in the chain whose
* child is a wildcard. In other words, given the chain a[1].foo[*].bar,
* this function will return the deref to foo. Calling it a second time
* with the [*].bar, it will return NULL.
*/
static nir_deref *
deref_next_wildcard_parent(nir_deref *deref)
{
for (nir_deref *tail = deref; tail->child; tail = tail->child) {
if (tail->child->deref_type != nir_deref_type_array)
continue;
nir_deref_array *arr = nir_deref_as_array(tail->child);
if (arr->deref_array_type == nir_deref_array_type_wildcard)
return tail;
}
return NULL;
}
/* Returns the last deref in the chain.
*/
static nir_deref *
get_deref_tail(nir_deref *deref)
{
while (deref->child)
deref = deref->child;
return deref;
}
/* This function recursively walks the given deref chain and replaces the
* given copy instruction with an equivalent sequence load/store
* operations.
*
* @copy_instr The copy instruction to replace; new instructions will be
* inserted before this one
*
* @dest_head The head of the destination variable deref chain
*
* @src_head The head of the source variable deref chain
*
* @dest_tail The current tail of the destination variable deref chain;
* this is used for recursion and external callers of this
* function should call it with tail == head
*
* @src_tail The current tail of the source variable deref chain;
* this is used for recursion and external callers of this
* function should call it with tail == head
*
* @state The current variable lowering state
*/
static void
emit_copy_load_store(nir_intrinsic_instr *copy_instr,
nir_deref_var *dest_head, nir_deref_var *src_head,
nir_deref *dest_tail, nir_deref *src_tail,
struct lower_variables_state *state)
{
/* Find the next pair of wildcards */
nir_deref *src_arr_parent = deref_next_wildcard_parent(src_tail);
nir_deref *dest_arr_parent = deref_next_wildcard_parent(dest_tail);
if (src_arr_parent || dest_arr_parent) {
/* Wildcards had better come in matched pairs */
assert(dest_arr_parent && dest_arr_parent);
nir_deref_array *src_arr = nir_deref_as_array(src_arr_parent->child);
nir_deref_array *dest_arr = nir_deref_as_array(dest_arr_parent->child);
unsigned length = type_get_length(src_arr_parent->type);
/* The wildcards should represent the same number of elements */
assert(length == type_get_length(dest_arr_parent->type));
assert(length > 0);
/* Walk over all of the elements that this wildcard refers to and
* call emit_copy_load_store on each one of them */
src_arr->deref_array_type = nir_deref_array_type_direct;
dest_arr->deref_array_type = nir_deref_array_type_direct;
for (unsigned i = 0; i < length; i++) {
src_arr->base_offset = i;
dest_arr->base_offset = i;
emit_copy_load_store(copy_instr, dest_head, src_head,
&dest_arr->deref, &src_arr->deref, state);
}
src_arr->deref_array_type = nir_deref_array_type_wildcard;
dest_arr->deref_array_type = nir_deref_array_type_wildcard;
} else {
/* In this case, we have no wildcards anymore, so all we have to do
* is just emit the load and store operations. */
src_tail = get_deref_tail(src_tail);
dest_tail = get_deref_tail(dest_tail);
assert(src_tail->type == dest_tail->type);
unsigned num_components = glsl_get_vector_elements(src_tail->type);
nir_deref *src_deref = nir_copy_deref(state->mem_ctx, &src_head->deref);
nir_deref *dest_deref = nir_copy_deref(state->mem_ctx, &dest_head->deref);
nir_intrinsic_instr *load =
nir_intrinsic_instr_create(state->mem_ctx, nir_intrinsic_load_var);
load->num_components = num_components;
load->variables[0] = nir_deref_as_var(src_deref);
load->dest.is_ssa = true;
nir_ssa_def_init(&load->instr, &load->dest.ssa, num_components, NULL);
nir_instr_insert_before(&copy_instr->instr, &load->instr);
register_load_instr(load, false, state);
nir_intrinsic_instr *store =
nir_intrinsic_instr_create(state->mem_ctx, nir_intrinsic_store_var);
store->num_components = num_components;
store->variables[0] = nir_deref_as_var(dest_deref);
store->src[0].is_ssa = true;
store->src[0].ssa = &load->dest.ssa;
nir_instr_insert_before(&copy_instr->instr, &store->instr);
register_store_instr(store, false, state);
}
}
/* Walks over all of the copy instructions to or from the given deref_node
* and lowers them to load/store intrinsics.
*/
static bool
lower_copies_to_load_store(struct deref_node *node,
struct lower_variables_state *state)
{
if (!node->copies)
return true;
struct set_entry *copy_entry;
set_foreach(node->copies, copy_entry) {
nir_intrinsic_instr *copy = (void *)copy_entry->key;
emit_copy_load_store(copy, copy->variables[0], copy->variables[1],
&copy->variables[0]->deref,
&copy->variables[1]->deref,
state);
for (unsigned i = 0; i < 2; ++i) {
struct deref_node *arg_node = get_deref_node(copy->variables[i],
false, state);
if (arg_node == NULL)
continue;
struct set_entry *arg_entry = _mesa_set_search(arg_node->copies,
copy_entry->hash,
copy);
assert(arg_entry);
_mesa_set_remove(node->copies, arg_entry);
}
nir_instr_remove(&copy->instr);
}
return true;
}
/* Returns a load_const instruction that represents the constant
* initializer for the given deref chain. The caller is responsible for
* ensuring that there actually is a constant initializer.
*/
static nir_load_const_instr *
get_const_initializer_load(const nir_deref_var *deref,
struct lower_variables_state *state)
{
nir_constant *constant = deref->var->constant_initializer;
const nir_deref *tail = &deref->deref;
unsigned matrix_offset = 0;
while (tail->child) {
switch (tail->child->deref_type) {
case nir_deref_type_array: {
nir_deref_array *arr = nir_deref_as_array(tail->child);
assert(arr->deref_array_type == nir_deref_array_type_direct);
if (glsl_type_is_matrix(tail->type)) {
assert(arr->deref.child == NULL);
matrix_offset = arr->base_offset;
} else {
constant = constant->elements[arr->base_offset];
}
break;
}
case nir_deref_type_struct: {
constant = constant->elements[nir_deref_as_struct(tail->child)->index];
break;
}
default:
unreachable("Invalid deref child type");
}
tail = tail->child;
}
nir_load_const_instr *load =
nir_load_const_instr_create(state->mem_ctx,
glsl_get_vector_elements(tail->type));
matrix_offset *= load->def.num_components;
for (unsigned i = 0; i < load->def.num_components; i++) {
switch (glsl_get_base_type(tail->type)) {
case GLSL_TYPE_FLOAT:
case GLSL_TYPE_INT:
case GLSL_TYPE_UINT:
load->value.u[i] = constant->value.u[matrix_offset + i];
break;
case GLSL_TYPE_BOOL:
load->value.u[i] = constant->value.u[matrix_offset + i] ?
NIR_TRUE : NIR_FALSE;
break;
default:
unreachable("Invalid immediate type");
}
}
return load;
}
/** Pushes an SSA def onto the def stack for the given node
*
* Each node is potentially associated with a stack of SSA definitions.
* This stack is used for determining what SSA definition reaches a given
* point in the program for variable renaming. The stack is always kept in
* dominance-order with at most one SSA def per block. If the SSA
* definition on the top of the stack is in the same block as the one being
* pushed, the top element is replaced.
*/
static void
def_stack_push(struct deref_node *node, nir_ssa_def *def,
struct lower_variables_state *state)
{
if (node->def_stack == NULL) {
node->def_stack = ralloc_array(state->dead_ctx, nir_ssa_def *,
state->impl->num_blocks);
node->def_stack_tail = node->def_stack - 1;
}
if (node->def_stack_tail >= node->def_stack) {
nir_ssa_def *top_def = *node->def_stack_tail;
if (def->parent_instr->block == top_def->parent_instr->block) {
/* They're in the same block, just replace the top */
*node->def_stack_tail = def;
return;
}
}
*(++node->def_stack_tail) = def;
}
/** Retrieves the SSA definition associated with the given node that
* reaches the current point in the program
*
* If the SSA def on the top of the stack is in the given block or some
* other block that dominates the given block, then the top of the stack is
* returned. Otherwise, the stack is popped until we get to an SSA
* definition that dominates the given block and that is returned. If we
* pop the stack all the way to empty, then we return the constant
* initializer (if it exists) or an SSA undef.
*/
static nir_ssa_def *
get_ssa_def_for_block(struct deref_node *node, nir_block *block,
struct lower_variables_state *state)
{
if (node->def_stack) {
while (node->def_stack_tail >= node->def_stack) {
nir_ssa_def *def = *node->def_stack_tail;
for (nir_block *dom = block; dom != NULL; dom = dom->imm_dom) {
if (def->parent_instr->block == dom)
return def;
}
node->def_stack_tail--;
}
}
/* If we got here then we don't have a definition that dominates the
* given block. This means that we need to add an undef and use that.
*/
nir_ssa_undef_instr *undef =
nir_ssa_undef_instr_create(state->mem_ctx,
glsl_get_vector_elements(node->type));
nir_instr_insert_before_cf_list(&state->impl->body, &undef->instr);
def_stack_push(node, &undef->def, state);
return &undef->def;
}
/* Given a block and one of its predecessors, this function fills in the
* souces of the phi nodes to take SSA defs from the given predecessor.
* This function must be called exactly once per block/predecessor pair.
*/
static void
add_phi_sources(nir_block *block, nir_block *pred,
struct lower_variables_state *state)
{
nir_foreach_instr(block, instr) {
if (instr->type != nir_instr_type_phi)
break;
nir_phi_instr *phi = nir_instr_as_phi(instr);
struct hash_entry *entry =
_mesa_hash_table_search(state->phi_table, phi);
if (!entry)
continue;
struct deref_node *node = entry->data;
nir_phi_src *src = ralloc(state->mem_ctx, nir_phi_src);
src->pred = pred;
src->src.is_ssa = true;
src->src.ssa = get_ssa_def_for_block(node, pred, state);
_mesa_set_add(src->src.ssa->uses, _mesa_hash_pointer(instr), instr);
exec_list_push_tail(&phi->srcs, &src->node);
}
}
/* Performs variable renaming by doing a DFS of the dominance tree
*
* This algorithm is very similar to the one outlined in "Efficiently
* Computing Static Single Assignment Form and the Control Dependence
* Graph" by Cytron et. al. The primary difference is in how the stacks of
* SSA definitions are handled. In the Cytron paper, they explicitly pop
* the old elements off the stack after visiting the dominance children.
* In our algorithm, popping old elements off the stack is implicitly
* handled by get_ssa_def_for_block.
*/
static bool
rename_variables_block(nir_block *block, struct lower_variables_state *state)
{
nir_foreach_instr_safe(block, instr) {
if (instr->type == nir_instr_type_phi) {
nir_phi_instr *phi = nir_instr_as_phi(instr);
struct hash_entry *entry =
_mesa_hash_table_search(state->phi_table, phi);
/* This can happen if we already have phi nodes in the program
* that were not created in this pass.
*/
if (!entry)
continue;
struct deref_node *node = entry->data;
def_stack_push(node, &phi->dest.ssa, state);
} else if (instr->type == nir_instr_type_intrinsic) {
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
switch (intrin->intrinsic) {
case nir_intrinsic_load_var: {
struct deref_node *node = get_deref_node(intrin->variables[0],
false, state);
if (node == NULL) {
/* If we hit this path then we are referencing an invalid
* value. Most likely, we unrolled something and are
* reading past the end of some array. In any case, this
* should result in an undefined value.
*/
nir_ssa_undef_instr *undef =
nir_ssa_undef_instr_create(state->mem_ctx,
intrin->num_components);
nir_instr_insert_before(&intrin->instr, &undef->instr);
nir_instr_remove(&intrin->instr);
nir_src new_src = {
.is_ssa = true,
.ssa = &undef->def,
};
nir_ssa_def_rewrite_uses(&intrin->dest.ssa, new_src,
state->mem_ctx);
continue;
}
if (!node->lower_to_ssa)
continue;
nir_alu_instr *mov = nir_alu_instr_create(state->mem_ctx,
nir_op_imov);
mov->src[0].src.is_ssa = true;
mov->src[0].src.ssa = get_ssa_def_for_block(node, block, state);
for (unsigned i = intrin->num_components; i < 4; i++)
mov->src[0].swizzle[i] = 0;
assert(intrin->dest.is_ssa);
mov->dest.write_mask = (1 << intrin->num_components) - 1;
mov->dest.dest.is_ssa = true;
nir_ssa_def_init(&mov->instr, &mov->dest.dest.ssa,
intrin->num_components, NULL);
nir_instr_insert_before(&intrin->instr, &mov->instr);
nir_instr_remove(&intrin->instr);
nir_src new_src = {
.is_ssa = true,
.ssa = &mov->dest.dest.ssa,
};
nir_ssa_def_rewrite_uses(&intrin->dest.ssa, new_src,
state->mem_ctx);
break;
}
case nir_intrinsic_store_var: {
struct deref_node *node = get_deref_node(intrin->variables[0],
false, state);
if (node == NULL) {
/* Probably an out-of-bounds array store. That should be a
* no-op. */
nir_instr_remove(&intrin->instr);
continue;
}
if (!node->lower_to_ssa)
continue;
assert(intrin->num_components ==
glsl_get_vector_elements(node->type));
assert(intrin->src[0].is_ssa);
nir_alu_instr *mov = nir_alu_instr_create(state->mem_ctx,
nir_op_imov);
mov->src[0].src.is_ssa = true;
mov->src[0].src.ssa = intrin->src[0].ssa;
for (unsigned i = intrin->num_components; i < 4; i++)
mov->src[0].swizzle[i] = 0;
mov->dest.write_mask = (1 << intrin->num_components) - 1;
mov->dest.dest.is_ssa = true;
nir_ssa_def_init(&mov->instr, &mov->dest.dest.ssa,
intrin->num_components, NULL);
nir_instr_insert_before(&intrin->instr, &mov->instr);
nir_instr_remove(&intrin->instr);
def_stack_push(node, &mov->dest.dest.ssa, state);
break;
}
default:
break;
}
}
}
if (block->successors[0])
add_phi_sources(block->successors[0], block, state);
if (block->successors[1])
add_phi_sources(block->successors[1], block, state);
for (unsigned i = 0; i < block->num_dom_children; ++i)
rename_variables_block(block->dom_children[i], state);
return true;
}
/* Inserts phi nodes for all variables marked lower_to_ssa
*
* This is the same algorithm as presented in "Efficiently Computing Static
* Single Assignment Form and the Control Dependence Graph" by Cytron et.
* al.
*/
static void
insert_phi_nodes(struct lower_variables_state *state)
{
unsigned work[state->impl->num_blocks];
unsigned has_already[state->impl->num_blocks];
nir_block *W[state->impl->num_blocks];
memset(work, 0, sizeof work);
memset(has_already, 0, sizeof has_already);
unsigned w_start, w_end;
unsigned iter_count = 0;
struct hash_entry *deref_entry;
hash_table_foreach(state->deref_leaves, deref_entry) {
struct deref_node *node = deref_entry->data;
if (node->stores == NULL)
continue;
if (!node->lower_to_ssa)
continue;
w_start = w_end = 0;
iter_count++;
struct set_entry *store_entry;
set_foreach(node->stores, store_entry) {
nir_intrinsic_instr *store = (nir_intrinsic_instr *)store_entry->key;
if (work[store->instr.block->index] < iter_count)
W[w_end++] = store->instr.block;
work[store->instr.block->index] = iter_count;
}
while (w_start != w_end) {
nir_block *cur = W[w_start++];
struct set_entry *dom_entry;
set_foreach(cur->dom_frontier, dom_entry) {
nir_block *next = (nir_block *) dom_entry->key;
/*
* If there's more than one return statement, then the end block
* can be a join point for some definitions. However, there are
* no instructions in the end block, so nothing would use those
* phi nodes. Of course, we couldn't place those phi nodes
* anyways due to the restriction of having no instructions in the
* end block...
*/
if (next == state->impl->end_block)
continue;
if (has_already[next->index] < iter_count) {
nir_phi_instr *phi = nir_phi_instr_create(state->mem_ctx);
phi->dest.is_ssa = true;
nir_ssa_def_init(&phi->instr, &phi->dest.ssa,
glsl_get_vector_elements(node->type), NULL);
nir_instr_insert_before_block(next, &phi->instr);
_mesa_hash_table_insert(state->phi_table, phi, node);
has_already[next->index] = iter_count;
if (work[next->index] < iter_count) {
work[next->index] = iter_count;
W[w_end++] = next;
}
}
}
}
}
}
static bool
nir_lower_variables_impl(nir_function_impl *impl)
{
struct lower_variables_state state;
state.mem_ctx = ralloc_parent(impl);
state.dead_ctx = ralloc_context(state.mem_ctx);
state.impl = impl;
state.deref_var_nodes = _mesa_hash_table_create(state.dead_ctx,
_mesa_hash_pointer,
_mesa_key_pointer_equal);
state.deref_leaves = _mesa_hash_table_create(state.dead_ctx,
hash_deref, derefs_equal);
state.phi_table = _mesa_hash_table_create(state.dead_ctx,
_mesa_hash_pointer,
_mesa_key_pointer_equal);
nir_foreach_block(impl, register_variable_uses_block, &state);
struct set *outputs = _mesa_set_create(state.dead_ctx,
_mesa_key_pointer_equal);
bool progress = false;
nir_metadata_require(impl, nir_metadata_block_index);
struct hash_entry *entry;
hash_table_foreach(state.deref_leaves, entry) {
nir_deref_var *deref = (void *)entry->key;
struct deref_node *node = entry->data;
if (deref->var->data.mode != nir_var_local) {
_mesa_hash_table_remove(state.deref_leaves, entry);
continue;
}
if (deref_may_be_aliased(deref, &state)) {
_mesa_hash_table_remove(state.deref_leaves, entry);
continue;
}
node->lower_to_ssa = true;
progress = true;
if (deref->var->constant_initializer) {
nir_load_const_instr *load = get_const_initializer_load(deref, &state);
nir_ssa_def_init(&load->instr, &load->def,
glsl_get_vector_elements(node->type), NULL);
nir_instr_insert_before_cf_list(&impl->body, &load->instr);
def_stack_push(node, &load->def, &state);
}
if (deref->var->data.mode == nir_var_shader_out)
_mesa_set_add(outputs, _mesa_hash_pointer(node), node);
foreach_deref_node_match(deref, lower_copies_to_load_store, &state);
}
if (!progress)
return false;
nir_metadata_require(impl, nir_metadata_dominance);
insert_phi_nodes(&state);
rename_variables_block(impl->start_block, &state);
nir_metadata_preserve(impl, nir_metadata_block_index |
nir_metadata_dominance);
ralloc_free(state.dead_ctx);
return progress;
}
void
nir_lower_variables(nir_shader *shader)
{
nir_foreach_overload(shader, overload) {
if (overload->impl)
nir_lower_variables_impl(overload->impl);
}
}