mesa/src/amd/common/ac_llvm_build.c

1247 lines
36 KiB
C
Raw Normal View History

/*
* Copyright 2014 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
*/
/* based on pieces from si_pipe.c and radeon_llvm_emit.c */
#include "ac_llvm_build.h"
#include <llvm-c/Core.h>
#include "c11/threads.h"
#include <assert.h>
#include <stdio.h>
#include "ac_llvm_util.h"
#include "util/bitscan.h"
#include "util/macros.h"
#include "sid.h"
/* Initialize module-independent parts of the context.
*
* The caller is responsible for initializing ctx::module and ctx::builder.
*/
void
ac_llvm_context_init(struct ac_llvm_context *ctx, LLVMContextRef context)
{
LLVMValueRef args[1];
ctx->context = context;
ctx->module = NULL;
ctx->builder = NULL;
ctx->voidt = LLVMVoidTypeInContext(ctx->context);
ctx->i1 = LLVMInt1TypeInContext(ctx->context);
ctx->i8 = LLVMInt8TypeInContext(ctx->context);
ctx->i32 = LLVMIntTypeInContext(ctx->context, 32);
ctx->f32 = LLVMFloatTypeInContext(ctx->context);
ctx->v4i32 = LLVMVectorType(ctx->i32, 4);
ctx->v4f32 = LLVMVectorType(ctx->f32, 4);
ctx->v16i8 = LLVMVectorType(ctx->i8, 16);
ctx->range_md_kind = LLVMGetMDKindIDInContext(ctx->context,
"range", 5);
ctx->invariant_load_md_kind = LLVMGetMDKindIDInContext(ctx->context,
"invariant.load", 14);
ctx->fpmath_md_kind = LLVMGetMDKindIDInContext(ctx->context, "fpmath", 6);
args[0] = LLVMConstReal(ctx->f32, 2.5);
ctx->fpmath_md_2p5_ulp = LLVMMDNodeInContext(ctx->context, args, 1);
ctx->uniform_md_kind = LLVMGetMDKindIDInContext(ctx->context,
"amdgpu.uniform", 14);
ctx->empty_md = LLVMMDNodeInContext(ctx->context, NULL, 0);
}
LLVMValueRef
ac_build_intrinsic(struct ac_llvm_context *ctx, const char *name,
LLVMTypeRef return_type, LLVMValueRef *params,
unsigned param_count, unsigned attrib_mask)
{
LLVMValueRef function, call;
bool set_callsite_attrs = HAVE_LLVM >= 0x0400 &&
!(attrib_mask & AC_FUNC_ATTR_LEGACY);
function = LLVMGetNamedFunction(ctx->module, name);
if (!function) {
LLVMTypeRef param_types[32], function_type;
unsigned i;
assert(param_count <= 32);
for (i = 0; i < param_count; ++i) {
assert(params[i]);
param_types[i] = LLVMTypeOf(params[i]);
}
function_type =
LLVMFunctionType(return_type, param_types, param_count, 0);
function = LLVMAddFunction(ctx->module, name, function_type);
LLVMSetFunctionCallConv(function, LLVMCCallConv);
LLVMSetLinkage(function, LLVMExternalLinkage);
if (!set_callsite_attrs)
ac_add_func_attributes(ctx->context, function, attrib_mask);
}
call = LLVMBuildCall(ctx->builder, function, params, param_count, "");
if (set_callsite_attrs)
ac_add_func_attributes(ctx->context, call, attrib_mask);
return call;
}
static LLVMValueRef bitcast_to_float(struct ac_llvm_context *ctx,
LLVMValueRef value)
{
LLVMTypeRef type = LLVMTypeOf(value);
LLVMTypeRef new_type;
if (LLVMGetTypeKind(type) == LLVMVectorTypeKind)
new_type = LLVMVectorType(ctx->f32, LLVMGetVectorSize(type));
else
new_type = ctx->f32;
return LLVMBuildBitCast(ctx->builder, value, new_type, "");
}
/**
* Given the i32 or vNi32 \p type, generate the textual name (e.g. for use with
* intrinsic names).
*/
void ac_build_type_name_for_intr(LLVMTypeRef type, char *buf, unsigned bufsize)
{
LLVMTypeRef elem_type = type;
assert(bufsize >= 8);
if (LLVMGetTypeKind(type) == LLVMVectorTypeKind) {
int ret = snprintf(buf, bufsize, "v%u",
LLVMGetVectorSize(type));
if (ret < 0) {
char *type_name = LLVMPrintTypeToString(type);
fprintf(stderr, "Error building type name for: %s\n",
type_name);
return;
}
elem_type = LLVMGetElementType(type);
buf += ret;
bufsize -= ret;
}
switch (LLVMGetTypeKind(elem_type)) {
default: break;
case LLVMIntegerTypeKind:
snprintf(buf, bufsize, "i%d", LLVMGetIntTypeWidth(elem_type));
break;
case LLVMFloatTypeKind:
snprintf(buf, bufsize, "f32");
break;
case LLVMDoubleTypeKind:
snprintf(buf, bufsize, "f64");
break;
}
}
LLVMValueRef
ac_build_gather_values_extended(struct ac_llvm_context *ctx,
LLVMValueRef *values,
unsigned value_count,
unsigned value_stride,
bool load)
{
LLVMBuilderRef builder = ctx->builder;
2017-02-23 00:34:27 +00:00
LLVMValueRef vec = NULL;
unsigned i;
if (value_count == 1) {
if (load)
return LLVMBuildLoad(builder, values[0], "");
return values[0];
} else if (!value_count)
unreachable("value_count is 0");
for (i = 0; i < value_count; i++) {
LLVMValueRef value = values[i * value_stride];
if (load)
value = LLVMBuildLoad(builder, value, "");
if (!i)
vec = LLVMGetUndef( LLVMVectorType(LLVMTypeOf(value), value_count));
LLVMValueRef index = LLVMConstInt(ctx->i32, i, false);
vec = LLVMBuildInsertElement(builder, vec, value, index, "");
}
return vec;
}
LLVMValueRef
ac_build_gather_values(struct ac_llvm_context *ctx,
LLVMValueRef *values,
unsigned value_count)
{
return ac_build_gather_values_extended(ctx, values, value_count, 1, false);
}
LLVMValueRef
ac_build_fdiv(struct ac_llvm_context *ctx,
LLVMValueRef num,
LLVMValueRef den)
{
LLVMValueRef ret = LLVMBuildFDiv(ctx->builder, num, den, "");
if (!LLVMIsConstant(ret))
LLVMSetMetadata(ret, ctx->fpmath_md_kind, ctx->fpmath_md_2p5_ulp);
return ret;
}
/* Coordinates for cube map selection. sc, tc, and ma are as in Table 8.27
* of the OpenGL 4.5 (Compatibility Profile) specification, except ma is
* already multiplied by two. id is the cube face number.
*/
struct cube_selection_coords {
LLVMValueRef stc[2];
LLVMValueRef ma;
LLVMValueRef id;
};
static void
build_cube_intrinsic(struct ac_llvm_context *ctx,
LLVMValueRef in[3],
struct cube_selection_coords *out)
{
LLVMBuilderRef builder = ctx->builder;
if (HAVE_LLVM >= 0x0309) {
LLVMTypeRef f32 = ctx->f32;
out->stc[1] = ac_build_intrinsic(ctx, "llvm.amdgcn.cubetc",
f32, in, 3, AC_FUNC_ATTR_READNONE);
out->stc[0] = ac_build_intrinsic(ctx, "llvm.amdgcn.cubesc",
f32, in, 3, AC_FUNC_ATTR_READNONE);
out->ma = ac_build_intrinsic(ctx, "llvm.amdgcn.cubema",
f32, in, 3, AC_FUNC_ATTR_READNONE);
out->id = ac_build_intrinsic(ctx, "llvm.amdgcn.cubeid",
f32, in, 3, AC_FUNC_ATTR_READNONE);
} else {
LLVMValueRef c[4] = {
in[0],
in[1],
in[2],
LLVMGetUndef(LLVMTypeOf(in[0]))
};
LLVMValueRef vec = ac_build_gather_values(ctx, c, 4);
LLVMValueRef tmp =
ac_build_intrinsic(ctx, "llvm.AMDGPU.cube",
LLVMTypeOf(vec), &vec, 1,
AC_FUNC_ATTR_READNONE);
out->stc[1] = LLVMBuildExtractElement(builder, tmp,
LLVMConstInt(ctx->i32, 0, 0), "");
out->stc[0] = LLVMBuildExtractElement(builder, tmp,
LLVMConstInt(ctx->i32, 1, 0), "");
out->ma = LLVMBuildExtractElement(builder, tmp,
LLVMConstInt(ctx->i32, 2, 0), "");
out->id = LLVMBuildExtractElement(builder, tmp,
LLVMConstInt(ctx->i32, 3, 0), "");
}
}
/**
* Build a manual selection sequence for cube face sc/tc coordinates and
* major axis vector (multiplied by 2 for consistency) for the given
* vec3 \p coords, for the face implied by \p selcoords.
*
* For the major axis, we always adjust the sign to be in the direction of
* selcoords.ma; i.e., a positive out_ma means that coords is pointed towards
* the selcoords major axis.
*/
static void build_cube_select(LLVMBuilderRef builder,
const struct cube_selection_coords *selcoords,
const LLVMValueRef *coords,
LLVMValueRef *out_st,
LLVMValueRef *out_ma)
{
LLVMTypeRef f32 = LLVMTypeOf(coords[0]);
LLVMValueRef is_ma_positive;
LLVMValueRef sgn_ma;
LLVMValueRef is_ma_z, is_not_ma_z;
LLVMValueRef is_ma_y;
LLVMValueRef is_ma_x;
LLVMValueRef sgn;
LLVMValueRef tmp;
is_ma_positive = LLVMBuildFCmp(builder, LLVMRealUGE,
selcoords->ma, LLVMConstReal(f32, 0.0), "");
sgn_ma = LLVMBuildSelect(builder, is_ma_positive,
LLVMConstReal(f32, 1.0), LLVMConstReal(f32, -1.0), "");
is_ma_z = LLVMBuildFCmp(builder, LLVMRealUGE, selcoords->id, LLVMConstReal(f32, 4.0), "");
is_not_ma_z = LLVMBuildNot(builder, is_ma_z, "");
is_ma_y = LLVMBuildAnd(builder, is_not_ma_z,
LLVMBuildFCmp(builder, LLVMRealUGE, selcoords->id, LLVMConstReal(f32, 2.0), ""), "");
is_ma_x = LLVMBuildAnd(builder, is_not_ma_z, LLVMBuildNot(builder, is_ma_y, ""), "");
/* Select sc */
tmp = LLVMBuildSelect(builder, is_ma_z, coords[2], coords[0], "");
sgn = LLVMBuildSelect(builder, is_ma_y, LLVMConstReal(f32, 1.0),
LLVMBuildSelect(builder, is_ma_x, sgn_ma,
LLVMBuildFNeg(builder, sgn_ma, ""), ""), "");
out_st[0] = LLVMBuildFMul(builder, tmp, sgn, "");
/* Select tc */
tmp = LLVMBuildSelect(builder, is_ma_y, coords[2], coords[1], "");
sgn = LLVMBuildSelect(builder, is_ma_y, LLVMBuildFNeg(builder, sgn_ma, ""),
LLVMConstReal(f32, -1.0), "");
out_st[1] = LLVMBuildFMul(builder, tmp, sgn, "");
/* Select ma */
tmp = LLVMBuildSelect(builder, is_ma_z, coords[2],
LLVMBuildSelect(builder, is_ma_y, coords[1], coords[0], ""), "");
sgn = LLVMBuildSelect(builder, is_ma_positive,
LLVMConstReal(f32, 2.0), LLVMConstReal(f32, -2.0), "");
*out_ma = LLVMBuildFMul(builder, tmp, sgn, "");
}
void
ac_prepare_cube_coords(struct ac_llvm_context *ctx,
bool is_deriv, bool is_array,
LLVMValueRef *coords_arg,
LLVMValueRef *derivs_arg)
{
LLVMBuilderRef builder = ctx->builder;
struct cube_selection_coords selcoords;
LLVMValueRef coords[3];
LLVMValueRef invma;
build_cube_intrinsic(ctx, coords_arg, &selcoords);
invma = ac_build_intrinsic(ctx, "llvm.fabs.f32",
ctx->f32, &selcoords.ma, 1, AC_FUNC_ATTR_READNONE);
invma = ac_build_fdiv(ctx, LLVMConstReal(ctx->f32, 1.0), invma);
for (int i = 0; i < 2; ++i)
coords[i] = LLVMBuildFMul(builder, selcoords.stc[i], invma, "");
coords[2] = selcoords.id;
if (is_deriv && derivs_arg) {
LLVMValueRef derivs[4];
int axis;
/* Convert cube derivatives to 2D derivatives. */
for (axis = 0; axis < 2; axis++) {
LLVMValueRef deriv_st[2];
LLVMValueRef deriv_ma;
/* Transform the derivative alongside the texture
* coordinate. Mathematically, the correct formula is
* as follows. Assume we're projecting onto the +Z face
* and denote by dx/dh the derivative of the (original)
* X texture coordinate with respect to horizontal
* window coordinates. The projection onto the +Z face
* plane is:
*
* f(x,z) = x/z
*
* Then df/dh = df/dx * dx/dh + df/dz * dz/dh
* = 1/z * dx/dh - x/z * 1/z * dz/dh.
*
* This motivatives the implementation below.
*
* Whether this actually gives the expected results for
* apps that might feed in derivatives obtained via
* finite differences is anyone's guess. The OpenGL spec
* seems awfully quiet about how textureGrad for cube
* maps should be handled.
*/
build_cube_select(builder, &selcoords, &derivs_arg[axis * 3],
deriv_st, &deriv_ma);
deriv_ma = LLVMBuildFMul(builder, deriv_ma, invma, "");
for (int i = 0; i < 2; ++i)
derivs[axis * 2 + i] =
LLVMBuildFSub(builder,
LLVMBuildFMul(builder, deriv_st[i], invma, ""),
LLVMBuildFMul(builder, deriv_ma, coords[i], ""), "");
}
memcpy(derivs_arg, derivs, sizeof(derivs));
}
/* Shift the texture coordinate. This must be applied after the
* derivative calculation.
*/
for (int i = 0; i < 2; ++i)
coords[i] = LLVMBuildFAdd(builder, coords[i], LLVMConstReal(ctx->f32, 1.5), "");
if (is_array) {
/* for cube arrays coord.z = coord.w(array_index) * 8 + face */
/* coords_arg.w component - array_index for cube arrays */
LLVMValueRef tmp = LLVMBuildFMul(ctx->builder, coords_arg[3], LLVMConstReal(ctx->f32, 8.0), "");
coords[2] = LLVMBuildFAdd(ctx->builder, tmp, coords[2], "");
}
memcpy(coords_arg, coords, sizeof(coords));
}
LLVMValueRef
ac_build_fs_interp(struct ac_llvm_context *ctx,
LLVMValueRef llvm_chan,
LLVMValueRef attr_number,
LLVMValueRef params,
LLVMValueRef i,
LLVMValueRef j)
{
LLVMValueRef args[5];
LLVMValueRef p1;
if (HAVE_LLVM < 0x0400) {
LLVMValueRef ij[2];
ij[0] = LLVMBuildBitCast(ctx->builder, i, ctx->i32, "");
ij[1] = LLVMBuildBitCast(ctx->builder, j, ctx->i32, "");
args[0] = llvm_chan;
args[1] = attr_number;
args[2] = params;
args[3] = ac_build_gather_values(ctx, ij, 2);
return ac_build_intrinsic(ctx, "llvm.SI.fs.interp",
ctx->f32, args, 4,
AC_FUNC_ATTR_READNONE);
}
args[0] = i;
args[1] = llvm_chan;
args[2] = attr_number;
args[3] = params;
p1 = ac_build_intrinsic(ctx, "llvm.amdgcn.interp.p1",
ctx->f32, args, 4, AC_FUNC_ATTR_READNONE);
args[0] = p1;
args[1] = j;
args[2] = llvm_chan;
args[3] = attr_number;
args[4] = params;
return ac_build_intrinsic(ctx, "llvm.amdgcn.interp.p2",
ctx->f32, args, 5, AC_FUNC_ATTR_READNONE);
}
LLVMValueRef
ac_build_fs_interp_mov(struct ac_llvm_context *ctx,
LLVMValueRef parameter,
LLVMValueRef llvm_chan,
LLVMValueRef attr_number,
LLVMValueRef params)
{
LLVMValueRef args[4];
if (HAVE_LLVM < 0x0400) {
args[0] = llvm_chan;
args[1] = attr_number;
args[2] = params;
return ac_build_intrinsic(ctx,
"llvm.SI.fs.constant",
ctx->f32, args, 3,
AC_FUNC_ATTR_READNONE);
}
args[0] = parameter;
args[1] = llvm_chan;
args[2] = attr_number;
args[3] = params;
return ac_build_intrinsic(ctx, "llvm.amdgcn.interp.mov",
ctx->f32, args, 4, AC_FUNC_ATTR_READNONE);
}
LLVMValueRef
ac_build_gep0(struct ac_llvm_context *ctx,
LLVMValueRef base_ptr,
LLVMValueRef index)
{
LLVMValueRef indices[2] = {
LLVMConstInt(ctx->i32, 0, 0),
index,
};
return LLVMBuildGEP(ctx->builder, base_ptr,
indices, 2, "");
}
void
ac_build_indexed_store(struct ac_llvm_context *ctx,
LLVMValueRef base_ptr, LLVMValueRef index,
LLVMValueRef value)
{
LLVMBuildStore(ctx->builder, value,
ac_build_gep0(ctx, base_ptr, index));
}
/**
* Build an LLVM bytecode indexed load using LLVMBuildGEP + LLVMBuildLoad.
* It's equivalent to doing a load from &base_ptr[index].
*
* \param base_ptr Where the array starts.
* \param index The element index into the array.
* \param uniform Whether the base_ptr and index can be assumed to be
* dynamically uniform
*/
LLVMValueRef
ac_build_indexed_load(struct ac_llvm_context *ctx,
LLVMValueRef base_ptr, LLVMValueRef index,
bool uniform)
{
LLVMValueRef pointer;
pointer = ac_build_gep0(ctx, base_ptr, index);
if (uniform)
LLVMSetMetadata(pointer, ctx->uniform_md_kind, ctx->empty_md);
return LLVMBuildLoad(ctx->builder, pointer, "");
}
/**
* Do a load from &base_ptr[index], but also add a flag that it's loading
* a constant from a dynamically uniform index.
*/
LLVMValueRef
ac_build_indexed_load_const(struct ac_llvm_context *ctx,
LLVMValueRef base_ptr, LLVMValueRef index)
{
LLVMValueRef result = ac_build_indexed_load(ctx, base_ptr, index, true);
LLVMSetMetadata(result, ctx->invariant_load_md_kind, ctx->empty_md);
return result;
}
/* TBUFFER_STORE_FORMAT_{X,XY,XYZ,XYZW} <- the suffix is selected by num_channels=1..4.
* The type of vdata must be one of i32 (num_channels=1), v2i32 (num_channels=2),
* or v4i32 (num_channels=3,4).
*/
void
ac_build_buffer_store_dword(struct ac_llvm_context *ctx,
LLVMValueRef rsrc,
LLVMValueRef vdata,
unsigned num_channels,
LLVMValueRef voffset,
LLVMValueRef soffset,
unsigned inst_offset,
bool glc,
bool slc,
bool writeonly_memory,
bool has_add_tid)
{
/* TODO: Fix stores with ADD_TID and remove the "has_add_tid" flag. */
if (HAVE_LLVM >= 0x0309 && !has_add_tid) {
/* Split 3 channel stores, becase LLVM doesn't support 3-channel
* intrinsics. */
if (num_channels == 3) {
LLVMValueRef v[3], v01;
for (int i = 0; i < 3; i++) {
v[i] = LLVMBuildExtractElement(ctx->builder, vdata,
LLVMConstInt(ctx->i32, i, 0), "");
}
v01 = ac_build_gather_values(ctx, v, 2);
ac_build_buffer_store_dword(ctx, rsrc, v01, 2, voffset,
soffset, inst_offset, glc, slc,
writeonly_memory, has_add_tid);
ac_build_buffer_store_dword(ctx, rsrc, v[2], 1, voffset,
soffset, inst_offset + 8,
glc, slc,
writeonly_memory, has_add_tid);
return;
}
unsigned func = CLAMP(num_channels, 1, 3) - 1;
static const char *types[] = {"f32", "v2f32", "v4f32"};
char name[256];
LLVMValueRef offset = soffset;
if (inst_offset)
offset = LLVMBuildAdd(ctx->builder, offset,
LLVMConstInt(ctx->i32, inst_offset, 0), "");
if (voffset)
offset = LLVMBuildAdd(ctx->builder, offset, voffset, "");
LLVMValueRef args[] = {
bitcast_to_float(ctx, vdata),
LLVMBuildBitCast(ctx->builder, rsrc, ctx->v4i32, ""),
LLVMConstInt(ctx->i32, 0, 0),
offset,
LLVMConstInt(ctx->i1, glc, 0),
LLVMConstInt(ctx->i1, slc, 0),
};
snprintf(name, sizeof(name), "llvm.amdgcn.buffer.store.%s",
types[func]);
ac_build_intrinsic(ctx, name, ctx->voidt,
args, ARRAY_SIZE(args),
writeonly_memory ?
AC_FUNC_ATTR_INACCESSIBLE_MEM_ONLY :
AC_FUNC_ATTR_WRITEONLY);
return;
}
static unsigned dfmt[] = {
V_008F0C_BUF_DATA_FORMAT_32,
V_008F0C_BUF_DATA_FORMAT_32_32,
V_008F0C_BUF_DATA_FORMAT_32_32_32,
V_008F0C_BUF_DATA_FORMAT_32_32_32_32
};
assert(num_channels >= 1 && num_channels <= 4);
LLVMValueRef args[] = {
rsrc,
vdata,
LLVMConstInt(ctx->i32, num_channels, 0),
voffset ? voffset : LLVMGetUndef(ctx->i32),
soffset,
LLVMConstInt(ctx->i32, inst_offset, 0),
LLVMConstInt(ctx->i32, dfmt[num_channels - 1], 0),
LLVMConstInt(ctx->i32, V_008F0C_BUF_NUM_FORMAT_UINT, 0),
LLVMConstInt(ctx->i32, voffset != NULL, 0),
LLVMConstInt(ctx->i32, 0, 0), /* idxen */
LLVMConstInt(ctx->i32, glc, 0),
LLVMConstInt(ctx->i32, slc, 0),
LLVMConstInt(ctx->i32, 0, 0), /* tfe*/
};
/* The instruction offset field has 12 bits */
assert(voffset || inst_offset < (1 << 12));
/* The intrinsic is overloaded, we need to add a type suffix for overloading to work. */
unsigned func = CLAMP(num_channels, 1, 3) - 1;
const char *types[] = {"i32", "v2i32", "v4i32"};
char name[256];
snprintf(name, sizeof(name), "llvm.SI.tbuffer.store.%s", types[func]);
ac_build_intrinsic(ctx, name, ctx->voidt,
args, ARRAY_SIZE(args),
AC_FUNC_ATTR_LEGACY);
}
LLVMValueRef
ac_build_buffer_load(struct ac_llvm_context *ctx,
LLVMValueRef rsrc,
int num_channels,
LLVMValueRef vindex,
LLVMValueRef voffset,
LLVMValueRef soffset,
unsigned inst_offset,
unsigned glc,
unsigned slc,
bool readonly_memory)
{
unsigned func = CLAMP(num_channels, 1, 3) - 1;
if (HAVE_LLVM >= 0x309) {
LLVMValueRef args[] = {
LLVMBuildBitCast(ctx->builder, rsrc, ctx->v4i32, ""),
vindex ? vindex : LLVMConstInt(ctx->i32, 0, 0),
LLVMConstInt(ctx->i32, inst_offset, 0),
LLVMConstInt(ctx->i1, glc, 0),
LLVMConstInt(ctx->i1, slc, 0)
};
LLVMTypeRef types[] = {ctx->f32, LLVMVectorType(ctx->f32, 2),
ctx->v4f32};
const char *type_names[] = {"f32", "v2f32", "v4f32"};
char name[256];
if (voffset) {
args[2] = LLVMBuildAdd(ctx->builder, args[2], voffset,
"");
}
if (soffset) {
args[2] = LLVMBuildAdd(ctx->builder, args[2], soffset,
"");
}
snprintf(name, sizeof(name), "llvm.amdgcn.buffer.load.%s",
type_names[func]);
return ac_build_intrinsic(ctx, name, types[func], args,
ARRAY_SIZE(args),
/* READNONE means writes can't
* affect it, while READONLY means
* that writes can affect it. */
readonly_memory && HAVE_LLVM >= 0x0400 ?
AC_FUNC_ATTR_READNONE :
AC_FUNC_ATTR_READONLY);
} else {
LLVMValueRef args[] = {
LLVMBuildBitCast(ctx->builder, rsrc, ctx->v16i8, ""),
voffset ? voffset : vindex,
soffset,
LLVMConstInt(ctx->i32, inst_offset, 0),
LLVMConstInt(ctx->i32, voffset ? 1 : 0, 0), // offen
LLVMConstInt(ctx->i32, vindex ? 1 : 0, 0), //idxen
LLVMConstInt(ctx->i32, glc, 0),
LLVMConstInt(ctx->i32, slc, 0),
LLVMConstInt(ctx->i32, 0, 0), // TFE
};
LLVMTypeRef types[] = {ctx->i32, LLVMVectorType(ctx->i32, 2),
ctx->v4i32};
const char *type_names[] = {"i32", "v2i32", "v4i32"};
const char *arg_type = "i32";
char name[256];
if (voffset && vindex) {
LLVMValueRef vaddr[] = {vindex, voffset};
arg_type = "v2i32";
args[1] = ac_build_gather_values(ctx, vaddr, 2);
}
snprintf(name, sizeof(name), "llvm.SI.buffer.load.dword.%s.%s",
type_names[func], arg_type);
return ac_build_intrinsic(ctx, name, types[func], args,
ARRAY_SIZE(args), AC_FUNC_ATTR_READONLY);
}
}
LLVMValueRef ac_build_buffer_load_format(struct ac_llvm_context *ctx,
LLVMValueRef rsrc,
LLVMValueRef vindex,
LLVMValueRef voffset,
bool readonly_memory)
{
if (HAVE_LLVM >= 0x0309) {
LLVMValueRef args [] = {
LLVMBuildBitCast(ctx->builder, rsrc, ctx->v4i32, ""),
vindex,
voffset,
LLVMConstInt(ctx->i1, 0, 0), /* glc */
LLVMConstInt(ctx->i1, 0, 0), /* slc */
};
return ac_build_intrinsic(ctx,
"llvm.amdgcn.buffer.load.format.v4f32",
ctx->v4f32, args, ARRAY_SIZE(args),
/* READNONE means writes can't
* affect it, while READONLY means
* that writes can affect it. */
readonly_memory && HAVE_LLVM >= 0x0400 ?
AC_FUNC_ATTR_READNONE :
AC_FUNC_ATTR_READONLY);
}
LLVMValueRef args[] = {
rsrc,
voffset,
vindex,
};
return ac_build_intrinsic(ctx, "llvm.SI.vs.load.input",
ctx->v4f32, args, 3,
AC_FUNC_ATTR_READNONE |
AC_FUNC_ATTR_LEGACY);
}
/**
* Set range metadata on an instruction. This can only be used on load and
* call instructions. If you know an instruction can only produce the values
* 0, 1, 2, you would do set_range_metadata(value, 0, 3);
* \p lo is the minimum value inclusive.
* \p hi is the maximum value exclusive.
*/
static void set_range_metadata(struct ac_llvm_context *ctx,
LLVMValueRef value, unsigned lo, unsigned hi)
{
LLVMValueRef range_md, md_args[2];
LLVMTypeRef type = LLVMTypeOf(value);
LLVMContextRef context = LLVMGetTypeContext(type);
md_args[0] = LLVMConstInt(type, lo, false);
md_args[1] = LLVMConstInt(type, hi, false);
range_md = LLVMMDNodeInContext(context, md_args, 2);
LLVMSetMetadata(value, ctx->range_md_kind, range_md);
}
LLVMValueRef
ac_get_thread_id(struct ac_llvm_context *ctx)
{
LLVMValueRef tid;
LLVMValueRef tid_args[2];
tid_args[0] = LLVMConstInt(ctx->i32, 0xffffffff, false);
tid_args[1] = LLVMConstInt(ctx->i32, 0, false);
tid_args[1] = ac_build_intrinsic(ctx,
"llvm.amdgcn.mbcnt.lo", ctx->i32,
tid_args, 2, AC_FUNC_ATTR_READNONE);
tid = ac_build_intrinsic(ctx, "llvm.amdgcn.mbcnt.hi",
ctx->i32, tid_args,
2, AC_FUNC_ATTR_READNONE);
set_range_metadata(ctx, tid, 0, 64);
return tid;
}
/*
* SI implements derivatives using the local data store (LDS)
* All writes to the LDS happen in all executing threads at
* the same time. TID is the Thread ID for the current
* thread and is a value between 0 and 63, representing
* the thread's position in the wavefront.
*
* For the pixel shader threads are grouped into quads of four pixels.
* The TIDs of the pixels of a quad are:
*
* +------+------+
* |4n + 0|4n + 1|
* +------+------+
* |4n + 2|4n + 3|
* +------+------+
*
* So, masking the TID with 0xfffffffc yields the TID of the top left pixel
* of the quad, masking with 0xfffffffd yields the TID of the top pixel of
* the current pixel's column, and masking with 0xfffffffe yields the TID
* of the left pixel of the current pixel's row.
*
* Adding 1 yields the TID of the pixel to the right of the left pixel, and
* adding 2 yields the TID of the pixel below the top pixel.
*/
LLVMValueRef
ac_build_ddxy(struct ac_llvm_context *ctx,
bool has_ds_bpermute,
uint32_t mask,
int idx,
LLVMValueRef lds,
LLVMValueRef val)
{
LLVMValueRef thread_id, tl, trbl, tl_tid, trbl_tid, args[2];
LLVMValueRef result;
thread_id = ac_get_thread_id(ctx);
tl_tid = LLVMBuildAnd(ctx->builder, thread_id,
LLVMConstInt(ctx->i32, mask, false), "");
trbl_tid = LLVMBuildAdd(ctx->builder, tl_tid,
LLVMConstInt(ctx->i32, idx, false), "");
if (has_ds_bpermute) {
args[0] = LLVMBuildMul(ctx->builder, tl_tid,
LLVMConstInt(ctx->i32, 4, false), "");
args[1] = val;
tl = ac_build_intrinsic(ctx,
"llvm.amdgcn.ds.bpermute", ctx->i32,
args, 2,
AC_FUNC_ATTR_READNONE |
AC_FUNC_ATTR_CONVERGENT);
args[0] = LLVMBuildMul(ctx->builder, trbl_tid,
LLVMConstInt(ctx->i32, 4, false), "");
trbl = ac_build_intrinsic(ctx,
"llvm.amdgcn.ds.bpermute", ctx->i32,
args, 2,
AC_FUNC_ATTR_READNONE |
AC_FUNC_ATTR_CONVERGENT);
} else {
LLVMValueRef store_ptr, load_ptr0, load_ptr1;
store_ptr = ac_build_gep0(ctx, lds, thread_id);
load_ptr0 = ac_build_gep0(ctx, lds, tl_tid);
load_ptr1 = ac_build_gep0(ctx, lds, trbl_tid);
LLVMBuildStore(ctx->builder, val, store_ptr);
tl = LLVMBuildLoad(ctx->builder, load_ptr0, "");
trbl = LLVMBuildLoad(ctx->builder, load_ptr1, "");
}
tl = LLVMBuildBitCast(ctx->builder, tl, ctx->f32, "");
trbl = LLVMBuildBitCast(ctx->builder, trbl, ctx->f32, "");
result = LLVMBuildFSub(ctx->builder, trbl, tl, "");
return result;
}
void
ac_build_sendmsg(struct ac_llvm_context *ctx,
uint32_t msg,
LLVMValueRef wave_id)
{
LLVMValueRef args[2];
const char *intr_name = (HAVE_LLVM < 0x0400) ? "llvm.SI.sendmsg" : "llvm.amdgcn.s.sendmsg";
args[0] = LLVMConstInt(ctx->i32, msg, false);
args[1] = wave_id;
ac_build_intrinsic(ctx, intr_name, ctx->voidt, args, 2, 0);
}
LLVMValueRef
ac_build_imsb(struct ac_llvm_context *ctx,
LLVMValueRef arg,
LLVMTypeRef dst_type)
{
const char *intr_name = (HAVE_LLVM < 0x0400) ? "llvm.AMDGPU.flbit.i32" :
"llvm.amdgcn.sffbh.i32";
LLVMValueRef msb = ac_build_intrinsic(ctx, intr_name,
dst_type, &arg, 1,
AC_FUNC_ATTR_READNONE);
/* The HW returns the last bit index from MSB, but NIR/TGSI wants
* the index from LSB. Invert it by doing "31 - msb". */
msb = LLVMBuildSub(ctx->builder, LLVMConstInt(ctx->i32, 31, false),
msb, "");
LLVMValueRef all_ones = LLVMConstInt(ctx->i32, -1, true);
LLVMValueRef cond = LLVMBuildOr(ctx->builder,
LLVMBuildICmp(ctx->builder, LLVMIntEQ,
arg, LLVMConstInt(ctx->i32, 0, 0), ""),
LLVMBuildICmp(ctx->builder, LLVMIntEQ,
arg, all_ones, ""), "");
return LLVMBuildSelect(ctx->builder, cond, all_ones, msb, "");
}
LLVMValueRef
ac_build_umsb(struct ac_llvm_context *ctx,
LLVMValueRef arg,
LLVMTypeRef dst_type)
{
LLVMValueRef args[2] = {
arg,
LLVMConstInt(ctx->i1, 1, 0),
};
LLVMValueRef msb = ac_build_intrinsic(ctx, "llvm.ctlz.i32",
dst_type, args, ARRAY_SIZE(args),
AC_FUNC_ATTR_READNONE);
/* The HW returns the last bit index from MSB, but TGSI/NIR wants
* the index from LSB. Invert it by doing "31 - msb". */
msb = LLVMBuildSub(ctx->builder, LLVMConstInt(ctx->i32, 31, false),
msb, "");
/* check for zero */
return LLVMBuildSelect(ctx->builder,
LLVMBuildICmp(ctx->builder, LLVMIntEQ, arg,
LLVMConstInt(ctx->i32, 0, 0), ""),
LLVMConstInt(ctx->i32, -1, true), msb, "");
}
LLVMValueRef ac_build_clamp(struct ac_llvm_context *ctx, LLVMValueRef value)
{
if (HAVE_LLVM >= 0x0500) {
LLVMValueRef max[2] = {
value,
LLVMConstReal(ctx->f32, 0),
};
LLVMValueRef min[2] = {
LLVMConstReal(ctx->f32, 1),
};
min[1] = ac_build_intrinsic(ctx, "llvm.maxnum.f32",
ctx->f32, max, 2,
AC_FUNC_ATTR_READNONE);
return ac_build_intrinsic(ctx, "llvm.minnum.f32",
ctx->f32, min, 2,
AC_FUNC_ATTR_READNONE);
}
LLVMValueRef args[3] = {
value,
LLVMConstReal(ctx->f32, 0),
LLVMConstReal(ctx->f32, 1),
};
return ac_build_intrinsic(ctx, "llvm.AMDGPU.clamp.", ctx->f32, args, 3,
AC_FUNC_ATTR_READNONE |
AC_FUNC_ATTR_LEGACY);
}
void ac_build_export(struct ac_llvm_context *ctx, struct ac_export_args *a)
{
LLVMValueRef args[9];
if (HAVE_LLVM >= 0x0500) {
args[0] = LLVMConstInt(ctx->i32, a->target, 0);
args[1] = LLVMConstInt(ctx->i32, a->enabled_channels, 0);
if (a->compr) {
LLVMTypeRef i16 = LLVMInt16TypeInContext(ctx->context);
LLVMTypeRef v2i16 = LLVMVectorType(i16, 2);
args[2] = LLVMBuildBitCast(ctx->builder, a->out[0],
v2i16, "");
args[3] = LLVMBuildBitCast(ctx->builder, a->out[1],
v2i16, "");
args[4] = LLVMConstInt(ctx->i1, a->done, 0);
args[5] = LLVMConstInt(ctx->i1, a->valid_mask, 0);
ac_build_intrinsic(ctx, "llvm.amdgcn.exp.compr.v2i16",
ctx->voidt, args, 6, 0);
} else {
args[2] = a->out[0];
args[3] = a->out[1];
args[4] = a->out[2];
args[5] = a->out[3];
args[6] = LLVMConstInt(ctx->i1, a->done, 0);
args[7] = LLVMConstInt(ctx->i1, a->valid_mask, 0);
ac_build_intrinsic(ctx, "llvm.amdgcn.exp.f32",
ctx->voidt, args, 8, 0);
}
return;
}
args[0] = LLVMConstInt(ctx->i32, a->enabled_channels, 0);
args[1] = LLVMConstInt(ctx->i32, a->valid_mask, 0);
args[2] = LLVMConstInt(ctx->i32, a->done, 0);
args[3] = LLVMConstInt(ctx->i32, a->target, 0);
args[4] = LLVMConstInt(ctx->i32, a->compr, 0);
memcpy(args + 5, a->out, sizeof(a->out[0]) * 4);
ac_build_intrinsic(ctx, "llvm.SI.export", ctx->voidt, args, 9,
AC_FUNC_ATTR_LEGACY);
}
LLVMValueRef ac_build_image_opcode(struct ac_llvm_context *ctx,
struct ac_image_args *a)
{
LLVMTypeRef dst_type;
LLVMValueRef args[11];
unsigned num_args = 0;
const char *name;
char intr_name[128], type[64];
if (HAVE_LLVM >= 0x0400) {
bool sample = a->opcode == ac_image_sample ||
a->opcode == ac_image_gather4 ||
a->opcode == ac_image_get_lod;
if (sample)
args[num_args++] = bitcast_to_float(ctx, a->addr);
else
args[num_args++] = a->addr;
args[num_args++] = a->resource;
if (sample)
args[num_args++] = a->sampler;
args[num_args++] = LLVMConstInt(ctx->i32, a->dmask, 0);
if (sample)
args[num_args++] = LLVMConstInt(ctx->i1, a->unorm, 0);
args[num_args++] = LLVMConstInt(ctx->i1, 0, 0); /* glc */
args[num_args++] = LLVMConstInt(ctx->i1, 0, 0); /* slc */
args[num_args++] = LLVMConstInt(ctx->i1, 0, 0); /* lwe */
args[num_args++] = LLVMConstInt(ctx->i1, a->da, 0);
switch (a->opcode) {
case ac_image_sample:
name = "llvm.amdgcn.image.sample";
break;
case ac_image_gather4:
name = "llvm.amdgcn.image.gather4";
break;
case ac_image_load:
name = "llvm.amdgcn.image.load";
break;
case ac_image_load_mip:
name = "llvm.amdgcn.image.load.mip";
break;
case ac_image_get_lod:
name = "llvm.amdgcn.image.getlod";
break;
case ac_image_get_resinfo:
name = "llvm.amdgcn.image.getresinfo";
break;
default:
unreachable("invalid image opcode");
}
ac_build_type_name_for_intr(LLVMTypeOf(args[0]), type,
sizeof(type));
snprintf(intr_name, sizeof(intr_name), "%s%s%s%s.v4f32.%s.v8i32",
name,
a->compare ? ".c" : "",
a->bias ? ".b" :
a->lod ? ".l" :
a->deriv ? ".d" :
a->level_zero ? ".lz" : "",
a->offset ? ".o" : "",
type);
LLVMValueRef result =
ac_build_intrinsic(ctx, intr_name,
ctx->v4f32, args, num_args,
AC_FUNC_ATTR_READNONE);
if (!sample) {
result = LLVMBuildBitCast(ctx->builder, result,
ctx->v4i32, "");
}
return result;
}
args[num_args++] = a->addr;
args[num_args++] = a->resource;
if (a->opcode == ac_image_load ||
a->opcode == ac_image_load_mip ||
a->opcode == ac_image_get_resinfo) {
dst_type = ctx->v4i32;
} else {
dst_type = ctx->v4f32;
args[num_args++] = a->sampler;
}
args[num_args++] = LLVMConstInt(ctx->i32, a->dmask, 0);
args[num_args++] = LLVMConstInt(ctx->i32, a->unorm, 0);
args[num_args++] = LLVMConstInt(ctx->i32, 0, 0); /* r128 */
args[num_args++] = LLVMConstInt(ctx->i32, a->da, 0);
args[num_args++] = LLVMConstInt(ctx->i32, 0, 0); /* glc */
args[num_args++] = LLVMConstInt(ctx->i32, 0, 0); /* slc */
args[num_args++] = LLVMConstInt(ctx->i32, 0, 0); /* tfe */
args[num_args++] = LLVMConstInt(ctx->i32, 0, 0); /* lwe */
switch (a->opcode) {
case ac_image_sample:
name = "llvm.SI.image.sample";
break;
case ac_image_gather4:
name = "llvm.SI.gather4";
break;
case ac_image_load:
name = "llvm.SI.image.load";
break;
case ac_image_load_mip:
name = "llvm.SI.image.load.mip";
break;
case ac_image_get_lod:
name = "llvm.SI.getlod";
break;
case ac_image_get_resinfo:
name = "llvm.SI.getresinfo";
break;
}
ac_build_type_name_for_intr(LLVMTypeOf(a->addr), type, sizeof(type));
snprintf(intr_name, sizeof(intr_name), "%s%s%s%s.%s",
name,
a->compare ? ".c" : "",
a->bias ? ".b" :
a->lod ? ".l" :
a->deriv ? ".d" :
a->level_zero ? ".lz" : "",
a->offset ? ".o" : "",
type);
return ac_build_intrinsic(ctx, intr_name,
dst_type, args, num_args,
AC_FUNC_ATTR_READNONE |
AC_FUNC_ATTR_LEGACY);
}
LLVMValueRef ac_build_cvt_pkrtz_f16(struct ac_llvm_context *ctx,
LLVMValueRef args[2])
{
if (HAVE_LLVM >= 0x0500) {
LLVMTypeRef v2f16 =
LLVMVectorType(LLVMHalfTypeInContext(ctx->context), 2);
LLVMValueRef res =
ac_build_intrinsic(ctx, "llvm.amdgcn.cvt.pkrtz",
v2f16, args, 2,
AC_FUNC_ATTR_READNONE);
return LLVMBuildBitCast(ctx->builder, res, ctx->i32, "");
}
return ac_build_intrinsic(ctx, "llvm.SI.packf16", ctx->i32, args, 2,
AC_FUNC_ATTR_READNONE |
AC_FUNC_ATTR_LEGACY);
}
/**
* KILL, AKA discard in GLSL.
*
* \param value kill if value < 0.0 or value == NULL.
*/
void ac_build_kill(struct ac_llvm_context *ctx, LLVMValueRef value)
{
if (value) {
ac_build_intrinsic(ctx, "llvm.AMDGPU.kill", ctx->voidt,
&value, 1, AC_FUNC_ATTR_LEGACY);
} else {
ac_build_intrinsic(ctx, "llvm.AMDGPU.kilp", ctx->voidt,
NULL, 0, AC_FUNC_ATTR_LEGACY);
}
}
LLVMValueRef ac_build_bfe(struct ac_llvm_context *ctx, LLVMValueRef input,
LLVMValueRef offset, LLVMValueRef width,
bool is_signed)
{
LLVMValueRef args[] = {
input,
offset,
width,
};
if (HAVE_LLVM >= 0x0500) {
return ac_build_intrinsic(ctx,
is_signed ? "llvm.amdgcn.sbfe.i32" :
"llvm.amdgcn.ubfe.i32",
ctx->i32, args, 3,
AC_FUNC_ATTR_READNONE);
}
return ac_build_intrinsic(ctx,
is_signed ? "llvm.AMDGPU.bfe.i32" :
"llvm.AMDGPU.bfe.u32",
ctx->i32, args, 3,
AC_FUNC_ATTR_READNONE |
AC_FUNC_ATTR_LEGACY);
}
void ac_get_image_intr_name(const char *base_name,
LLVMTypeRef data_type,
LLVMTypeRef coords_type,
LLVMTypeRef rsrc_type,
char *out_name, unsigned out_len)
{
char coords_type_name[8];
ac_build_type_name_for_intr(coords_type, coords_type_name,
sizeof(coords_type_name));
if (HAVE_LLVM <= 0x0309) {
snprintf(out_name, out_len, "%s.%s", base_name, coords_type_name);
} else {
char data_type_name[8];
char rsrc_type_name[8];
ac_build_type_name_for_intr(data_type, data_type_name,
sizeof(data_type_name));
ac_build_type_name_for_intr(rsrc_type, rsrc_type_name,
sizeof(rsrc_type_name));
snprintf(out_name, out_len, "%s.%s.%s.%s", base_name,
data_type_name, coords_type_name, rsrc_type_name);
}
}